Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

A Mini-review on Helicobacter pylori with Gastric Cancer and Available Treatments

Author(s): Teresa V. Jacob and Gaurav M. Doshi*

Volume 24, Issue 3, 2024

Published on: 09 October, 2023

Page: [277 - 290] Pages: 14

DOI: 10.2174/1871530323666230824161901

Price: $65

Abstract

Helicobacter pylori (H. pylori) is the most thoroughly researched etiological component for stomach inflammation and malignancies. Even though there are conventional recommendations and treatment regimens for eradicating H. pylori, failure rates continue to climb. Antibiotic resistance contributes significantly to misdiagnoses, false positive results, and clinical failures, all of which raise the chance of infection recurrence. This review aims to explore the molecular mechanisms underlying drug resistance in H. pylori and discuss novel approaches for detecting genotypic resistance. Modulation of drug uptake/ efflux, biofilm, and coccoid development. Newer genome sequencing approaches capable of detecting H. pylori genotypic resistance are presented. Prolonged infection in the stomach causes major problems such as gastric cancer. The review discusses how H. pylori causes stomach cancer, recent biomarkers such as miRNAs, molecular pathways in the development of gastric cancer, and diagnostic methods and clinical trials for the disease. Efforts have been made to summarize the recent advancements made toward early diagnosis and novel therapeutic approaches for H. pylori-induced gastric cancer.

Next »
Graphical Abstract

[1]
Marshall, B.; Warren, J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984, 323(8390), 1311-1315.
[http://dx.doi.org/10.1016/S0140-6736(84)91816-6] [PMID: 6145023]
[2]
Mégraud, F. A humble bacterium sweeps this year’s Nobel Prize. Cell, 2005, 123(6), 975-976.
[http://dx.doi.org/10.1016/j.cell.2005.11.032] [PMID: 16360024]
[3]
Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G.; Ng, S.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology, 2017, 153(2), 420-429.
[http://dx.doi.org/10.1053/j.gastro.2017.04.022] [PMID: 28456631]
[4]
Cancer IA for R on. Biological agents. IARC monogr eval carcinog risks hum 2012. Available from: https://www.cabdirect.org/globalhealth/abstract/20193171478 [cited 2023 Apr 23].
[5]
Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Soerjomataram, I. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. EClinicalMedicine, 2022, 47, 101404.
[http://dx.doi.org/10.1016/j.eclinm.2022.101404] [PMID: 35497064]
[6]
Sukri, A.; Hanafiah, A.; Mohamad Zin, N.; Kosai, N.R. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. Acta Pathol. Microbiol. Scand. Suppl., 2020, 128(2), 150-161.
[http://dx.doi.org/10.1111/apm.13034] [PMID: 32352605]
[7]
Backert, S.; Neddermann, M.; Maubach, G.; Naumann, M. Pathogenesis of Helicobacter pylori infection. Helicobacter, 2016, 21(Suppl. 1), 19-25.
[http://dx.doi.org/10.1111/hel.12335] [PMID: 27531534]
[8]
Mezmale, L.; Coelho, L.G.; Bordin, D.; Leja, M. Review: Epidemiology of Helicobacter pylori. Helicobacter, 2020, 25(Suppl. 1), e12734.
[http://dx.doi.org/10.1111/hel.12734] [PMID: 32918344]
[9]
Pereira-Marques, J.; Ferreira, R.M.; Pinto-Ribeiro, I.; Figueiredo, C. Helicobacter pylori Infection, the Gastric Microbiome and Gastric Cancer; , 2019, pp. 195-210. Available from: http://link.springer.com/10.1007/5584_2019_366
[http://dx.doi.org/10.1007/5584_2019_366]
[10]
Safaralizadeh, R.; Dastmalchi, N.; Hosseinpourfeizi, M.; Latifi-Navid, S. Helicobacter pylori virulence factors in relation to gastrointestinal diseases in Iran. Microb. Pathog., 2017, 105, 211-217.
[http://dx.doi.org/10.1016/j.micpath.2017.02.026] [PMID: 28232251]
[11]
Toh, J.W.T.; Wilson, R.B. Pathways of gastric carcinogenesis, Helicobacter pylori virulence and interactions with antioxidant systems, vitamin c and phytochemicals. Int. J. Mol. Sci., 2020, 21(17), 6451.
[http://dx.doi.org/10.3390/ijms21176451] [PMID: 32899442]
[12]
Borka, B.R.; Meliț, L.E.; Mărginean, C.O. Worldwide prevalence and risk factors of Helicobacter pylori infection in children. Children (Basel), 2022, 9(9), 1359.
[http://dx.doi.org/10.3390/children9091359] [PMID: 36138669]
[13]
Duan, M.; Li, Y.; Liu, J.; Zhang, W.; Dong, Y.; Han, Z.; Wan, M.; Lin, M.; Lin, B.; Kong, Q.; Ding, Y.; Yang, X.; Zuo, X.; Li, Y. Transmission routes and patterns of Helicobacter pylori. Helicobacter, 2023, 28(1), e12945.
[http://dx.doi.org/10.1111/hel.12945] [PMID: 36645421]
[14]
Sun, Y.; Zhang, J. Helicobacter pylori recrudescence and its influencing factors. J. Cell. Mol. Med., 2019, 23(12), 7919-7925.
[http://dx.doi.org/10.1111/jcmm.14682] [PMID: 31536675]
[15]
Ito, N.; Tsujimoto, H.; Ueno, H.; Xie, Q.; Shinomiya, N. Helicobacter pylori-mediated immunity and signaling transduction in gastric cancer. J. Clin. Med., 2020, 9(11), 3699.
[http://dx.doi.org/10.3390/jcm9113699] [PMID: 33217986]
[16]
Krzyżek, P.; Grande, R.; Migdał, P.; Paluch, E.; Gościniak, G. Biofilm formation as a complex result of virulence and adaptive responses of Helicobacter pylori. Pathogens, 2020, 9(12), 1062.
[http://dx.doi.org/10.3390/pathogens9121062] [PMID: 33353223]
[17]
Yang, D.C.; Blair, K.M.; Taylor, J.A.; Petersen, T.W.; Sessler, T.; Tull, C.M. A genome-wide Helicobacter pylori morphology screen uncovers a membrane-spanning helical cell shape complex. J. Bacteriol., 2019, 201(14), e007240.
[http://dx.doi.org/10.1128/JB.00724-18]
[18]
Salama, N.R. Cell morphology as a virulence determinant: lessons from Helicobacter pylori. Curr. Opin. Microbiol., 2020, 54, 11-17.
[http://dx.doi.org/10.1016/j.mib.2019.12.002] [PMID: 32014717]
[19]
Gasiorowski, E.; Auger, R.; Tian, X.; Hicham, S.; Ecobichon, C.; Roure, S. HupA, the main undecaprenyl pyrophosphate and phosphatidylglycerol phosphate phosphatase in Helicobacter pylori is essential for colonization of the stomach. PLoS Pathog., 2019, 15(9), e1007972.
[http://dx.doi.org/10.1371/journal.ppat.1007972]
[20]
Scott, D.R.; Marcus, E.A.; Wen, Y.; Singh, S.; Feng, J.; Sachs, G. Cytoplasmic histidine kinase (HP0244)-regulated assembly of urease with UreI, a channel for urea and its metabolites, CO2, NH3, and NH4(+), is necessary for acid survival of Helicobacter pylori. J. Bacteriol., 2010, 192(1), 94-103.
[http://dx.doi.org/10.1128/JB.00848-09] [PMID: 19854893]
[21]
Schoep, T.D.; Fulurija, A.; Good, F.; Lu, W.; Himbeck, R.P.; Schwan, C. Surface properties of Helicobacter pylori urease complex are essential for persistence. PLoS One, 2010, 5(11), e15042.
[http://dx.doi.org/10.1371/journal.pone.0015042]
[22]
Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells, 2020, 10(1), 27.
[http://dx.doi.org/10.3390/cells10010027] [PMID: 33375694]
[23]
Fu, H.W.; Lai, Y.C. The role of Helicobacter pylori neutrophil-activating protein in the pathogenesis of H. pylori and beyond: From a virulence factor to therapeutic targets and therapeutic agents. Int. J. Mol. Sci., 2022, 24(1), 91.
[http://dx.doi.org/10.3390/ijms24010091] [PMID: 36613542]
[24]
Wen, S.H.; Hong, Z.W.; Chen, C.C.; Chang, H.W.; Fu, H.W. Helicobacter pylori neutrophil-activating protein directly interacts with and activates toll-like receptor 2 to induce the secretion of interleukin-8 from neutrophils and atra-induced differentiated HL-60 cells. Int. J. Mol. Sci., 2021, 22(21), 11560.
[http://dx.doi.org/10.3390/ijms222111560] [PMID: 34768994]
[25]
Sáenz, J.B. Early Re“cag”nition: CagA-specific CD8+ T cells shape the immune response to Helicobacter pylori. Gastroenterology, 2023, 164(4), 520-521.
[http://dx.doi.org/10.1053/j.gastro.2023.01.024] [PMID: 36708789]
[26]
Suzuki, M.; Mimuro, H.; Kiga, K.; Fukumatsu, M.; Ishijima, N.; Morikawa, H.; Nagai, S.; Koyasu, S.; Gilman, R.H.; Kersulyte, D.; Berg, D.E.; Sasakawa, C. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe, 2009, 5(1), 23-34.
[http://dx.doi.org/10.1016/j.chom.2008.11.010] [PMID: 19154985]
[27]
Khan, M.; Khan, S.; Ali, A.; Akbar, H.; Sayaf, A.M.; Khan, A.; Wei, D.Q. Immunoinformatics approaches to explore Helicobacter pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci. Rep., 2019, 9(1), 13321.
[http://dx.doi.org/10.1038/s41598-019-49354-z] [PMID: 31527719]
[28]
ClinicalTrials.gov. Comparison of vonoprazan-based versus lansoprazole-based triple therapy, high dose dual therapy, bismuth and non-bismuth quadruple therapy in the first-line treatment of Helicobacter pylori Infection., 2021. Available from: https://beta.clinicaltrials.gov/study/NCT04713670
[29]
ClinicalTrials.gov. Comparison between high-dose amoxicillin dual therapy and pylera quadruple therapy in the treatment of Helicobacter pylori infection. 2021. Available from: https://beta.clinicaltrials.gov/study/NCT05100446
[30]
ClinicalTrials.gov. Screening strategy for gastric cancer prevention. 2022. Available from: https://beta.clinicaltrials.gov/study/NCT05387005
[31]
ClinicalTrials.gov. Pilot study of stomach cancer early detection and prevention with endoscopy. 2023. Available from: https://beta.clinicaltrials.gov/study/NCT05566899 [cited 2023 Apr 10].
[32]
Chen, X.X.; Chen, Y.X.; Han, X.B.; Zhao, X.; Zhang, L.F.; Liu, J.Y.; Shi, Y.Q. Efficacy and safety of berberine hydro-chloride, amoxicillin, and rabeprazole triple therapy in the first eradication of Helicobacter pylori. J. Dig. Diz., 2022, 23, 568-576.
[33]
ClinicalTrials.gov. Optimal tailored treatment for H. pylori infection according to the presence of DPO-PCR based clarithromycin resistance; , 2020. Available from: https://beta.clinicaltrials.gov/study/NCT04462133
[34]
Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[35]
Nyssen, O.P.; Bordin, D.; Tepes, B.; Pérez-Aisa, Á.; Vaira, D.; Caldas, M.; Bujanda, L.; Castro-Fernandez, M.; Lerang, F.; Leja, M.; Rodrigo, L.; Rokkas, T.; Kupcinskas, L.; Pérez-Lasala, J.; Jonaitis, L.; Shvets, O.; Gasbarrini, A.; Simsek, H.; Axon, A.T.R.; Buzás, G.; Machado, J.C.; Niv, Y.; Boyanova, L.; Goldis, A.; Lamy, V.; Tonkic, A.; Przytulski, K.; Beglinger, C.; Venerito, M.; Bytzer, P.; Capelle, L.; Milosavljević, T.; Milivojevic, V.; Veijola, L.; Molina-Infante, J.; Vologzhanina, L.; Fadeenko, G.; Ariño, I.; Fiorini, G.; Garre, A.; Garrido, J.; F Pérez, C.; Puig, I.; Heluwaert, F.; Megraud, F.; O’Morain, C.; Gisbert, J.P. European Registry on Helicobacter pylori management (Hp-EuReg): patterns and trends in first-line empirical eradication prescription and outcomes of 5 years and 21 533 patients. Gut, 2021, 70(1), 40-54.
[http://dx.doi.org/10.1136/gutjnl-2020-321372] [PMID: 32958544]
[36]
Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG clinical guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 2017, 112(2), 212-239.
[http://dx.doi.org/10.1038/ajg.2016.563] [PMID: 28071659]
[37]
Nyssen, O.P.; Perez-Aisa, A.; Castro-Fernandez, M.; Pellicano, R.; Huguet, J.M.; Rodrigo, L.; Ortuñ, J.; o; Gomez-Rodriguez, B.J.; Pinto, R.M.; Areia, M.; Perona, M.; Nuñez, O.; Romano, M.; Gravina, A.G.; Pozzati, L.; Fernandez-Bermejo, M.; Venerito, M.; Malfertheiner, P.; Fernanadez-Salazar, L.; Gasbarrini, A.; Vaira, D.; Puig, I.; Megraud, F.; O’Morain, C.; Gisbert, J.P. European Registry on Helicobacter pylori management: Single‐capsule bismuth quadruple therapy is effective in real‐world clinical practice. United European Gastroenterol. J., 2021, 9(1), 38-46.
[http://dx.doi.org/10.1177/2050640620972615] [PMID: 33176617]
[38]
Rokkas, T.; Gisbert, J.P.; Malfertheiner, P.; Niv, Y.; Gasbarrini, A.; Leja, M.; Megraud, F.; O’Morain, C.; Graham, D.Y. Comparative effectiveness of multiple different first-line treatment regimens for helicobacter pylori infection: a network meta-analysis. Gastroenterology, 2021, 161(2), 495-507.e4.
[http://dx.doi.org/10.1053/j.gastro.2021.04.012] [PMID: 33839101]
[39]
Suzuki, S.; Gotoda, T.; Kusano, C.; Iwatsuka, K.; Moriyama, M. The efficacy and tolerability of a triple therapy containing a potassium-competitive acid blocker compared with a 7-day ppi-based low-dose clarithromycin triple therapy. Am. J. Gastroenterol., 2016, 111(7), 949-956.
[http://dx.doi.org/10.1038/ajg.2016.182] [PMID: 27185079]
[40]
Murakami, K.; Sakurai, Y.; Shiino, M.; Funao, N.; Nishimura, A.; Asaka, M. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: A phase III, randomised, double-blind study. Gut, 2016, 65(9), 1439-1446.
[http://dx.doi.org/10.1136/gutjnl-2015-311304] [PMID: 26935876]
[41]
Thung, I.; Aramin, H.; Vavinskaya, V.; Gupta, S.; Park, J.Y.; Crowe, S.E.; Valasek, M.A. Review article: The global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther., 2016, 43(4), 514-533.
[http://dx.doi.org/10.1111/apt.13497] [PMID: 26694080]
[42]
Gebreslassie, K.G.; Demoz, G.T.; Mahari, D.D. Primary resistance pattern of Helicobacter pylori to antibiotics in adult population: A systematic review. Infect. Drug Resist., 2020, 13, 1567-1573.
[http://dx.doi.org/10.2147/IDR.S250200] [PMID: 32547126]
[43]
Yonezawa, H.; Osaki, T.; Kamiya, S. biofilm formation by helicobacter pylori and its involvement for antibiotic resistance. BioMed Res. Int., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/914791] [PMID: 26078970]
[44]
Nishino, K.; Yamasaki, S.; Nakashima, R.; Zwama, M.; Hayashi-Nishino, M. Function and inhibitory mechanisms of multidrug efflux pumps. Front. Microbiol., 2021, 12, 737288.
[http://dx.doi.org/10.3389/fmicb.2021.737288] [PMID: 34925258]
[45]
Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of antibiotic resistance in Helicobacter pylori: A systematic review and meta-analysis in world health organization regions. Gastroenterology, 2018, 155(5), 1372-1382.e17.
[http://dx.doi.org/10.1053/j.gastro.2018.07.007] [PMID: 29990487]
[46]
Gong, Y.; Yuan, Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit. Rev. Microbiol., 2018, 44(3), 371-392.
[http://dx.doi.org/10.1080/1040841X.2017.1418285] [PMID: 29293032]
[47]
Attaran, B.; Salehi, N.; Ghadiri, B.; Esmaeili, M.; Kalateh, S.; Tashakoripour, M.; Hosseini, M.; Mohammadi, M. The penicillin binding protein 1A of Helicobacter pylori, its amoxicillin binding site and access routes. Gut Pathog., 2021, 13(1), 43.
[http://dx.doi.org/10.1186/s13099-021-00438-0] [PMID: 34183046]
[48]
Wang, J.; Xie, X.; Zhong, Z.; Yuan, H.; Xu, P.; Gao, H.; Lai, Y. Prevalence of antibiotic resistance of Helicobacter pylori isolates in Shanghai, China. Am. J. Transl. Res., 2022, 14(11), 7831-7841.
[PMID: 36505283]
[49]
Albasha, A.M.; Elnosh, M.M.; Osman, E.H.; Zeinalabdin, D.M.; Fadl, A.A.M.; Ali, M.A.; Altayb, H.N. Helicobacter pylori 23S rRNA gene A2142G, A2143G, T2182C, and C2195T mutations associated with clarithromycin resistance detected in Sudanese patients. BMC Microbiol., 2021, 21(1), 38.
[http://dx.doi.org/10.1186/s12866-021-02096-3] [PMID: 33535966]
[50]
Cui, R.; Song, Z.; Suo, B.; Tian, X.; Xue, Y.; Meng, L.; Niu, Z.; Jin, Z.; Zhang, H.; Zhou, L. Correlation analysis among genotype resistance, phenotype resistance and eradication effect of Helicobacter pylori. Infect. Drug Resist., 2021, 14, 1747-1756.
[http://dx.doi.org/10.2147/IDR.S305996] [PMID: 34012273]
[51]
Martínez-Júlvez, M.; Rojas, A.L.; Olekhnovich, I.; Angarica, V.E.; Hoffman, P.S.; Sancho, J. Structure of RdxA-an oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. FEBS J., 2012, 279(23), 4306-4317.
[http://dx.doi.org/10.1111/febs.12020] [PMID: 23039228]
[52]
Shetty, V.; Lamichhane, B.; Tay, C.Y.; Pai, G.C.; Lingadakai, R.; Balaraju, G.; Shetty, S.; Ballal, M.; Chua, E.G. High primary resistance to metronidazole and levofloxacin, and a moderate resistance to clarithromycin in Helicobacter pylori isolated from Karnataka patients. Gut Pathog., 2019, 11(1), 21.
[http://dx.doi.org/10.1186/s13099-019-0305-x] [PMID: 31110563]
[53]
Lauener, F.; Imkamp, F.; Lehours, P.; Buissonnière, A.; Benejat, L.; Zbinden, R.; Keller, P.; Wagner, K. Genetic determinants and prediction of antibiotic resistance phenotypes in Helicobacter pylori. J. Clin. Med., 2019, 8(1), 53.
[http://dx.doi.org/10.3390/jcm8010053] [PMID: 30621024]
[54]
Srisuphanunt, M.; Wilairatana, P.; Kooltheat, N.; Duangchan, T.; Katzenmeier, G.; Rose, J.B. Molecular mechanisms of antibiotic resistance and novel treatment strategies for Helicobacter pylori infections. Trop. Med. Infect. Dis., 2023, 8(3), 163.
[http://dx.doi.org/10.3390/tropicalmed8030163] [PMID: 36977164]
[55]
Hu, Y.; Zhang, M.; Lu, B.; Dai, J. Helicobacter pylori and antibiotic resistance, A continuing and intractable problem. Helicobacter, 2016, 21(5), 349-363.
[http://dx.doi.org/10.1111/hel.12299] [PMID: 26822340]
[56]
Boyanova, L.; Hadzhiyski, P.; Kandilarov, N.; Markovska, R.; Mitov, I. Multidrug resistance in Helicobacter pylori: Current state and future directions. Expert Rev. Clin. Pharmacol., 2019, 12(9), 909-915.
[http://dx.doi.org/10.1080/17512433.2019.1654858] [PMID: 31424296]
[57]
Huang, J.Y.; Sweeney, E.; Guillemin, K.; Amieva, M.R. Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLoS Pathog., 2017, 13(1), e1006118.
[http://dx.doi.org/10.1371/journal.ppat.1006118]
[58]
Madsen, J.S.; Burmølle, M.; Hansen, L.H.; Sørensen, S.J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol., 2012, 65(2), 183-195.
[http://dx.doi.org/10.1111/j.1574-695X.2012.00960.x] [PMID: 22444301]
[59]
Greene, C.; Vadlamudi, G.; Newton, D.; Foxman, B.; Xi, C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control, 2016, 44(5), e65-e71.
[http://dx.doi.org/10.1016/j.ajic.2015.12.012] [PMID: 26851196]
[60]
Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol., 2019, 17(8), 479-496.
[http://dx.doi.org/10.1038/s41579-019-0218-1] [PMID: 31235888]
[61]
Ailloud, F.; Didelot, X.; Woltemate, S.; Pfaffinger, G.; Overmann, J.; Bader, R.C.; Schulz, C.; Malfertheiner, P.; Suerbaum, S. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun., 2019, 10(1), 2273.
[http://dx.doi.org/10.1038/s41467-019-10050-1] [PMID: 31118420]
[62]
Sun, L.; Talarico, S.; Yao, L.; He, L.; Self, S.; You, Y. Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance. J. Clin. Microbiol., 2018, 56(9), e00019.
[63]
Farzi, N.; Behzad, C.; Hasani, Z.; Alebouyeh, M.; Zojaji, H.; Zali, M.R. Characterization of clarithromycin heteroresistance among Helicobacter pylori strains isolated from the antrum and corpus of the stomach. Folia Microbiol., 2019, 64(2), 143-151.
[http://dx.doi.org/10.1007/s12223-018-0637-9] [PMID: 30097895]
[64]
Kocsmár, É.; Kocsmár, I.; Buzás, G.M.; Szirtes, I.; Wacha, J.; Takáts, A.; Hritz, I.; Schaff, Z.; Rugge, M.; Fassan, M.; Kiss, A.; Lotz, G. Helicobacter pylori heteroresistance to clarithromycin in adults-New data by in situ detection and improved concept. Helicobacter, 2020, 25(1), e12670.
[http://dx.doi.org/10.1111/hel.12670] [PMID: 31701608]
[65]
Rizvanov, A.A.; Haertlé, T.; Bogomolnaya, L.; Talebi Bezmin Abadi, A. Helicobacter pylori and its antibiotic heteroresistance: a neglected issue in published guidelines. Front. Microbiol., 2019, 10, 1796.
[http://dx.doi.org/10.3389/fmicb.2019.01796] [PMID: 31456763]
[66]
Tshibangu-Kabamba, E.; Ngoma-Kisoko, P.J.; Tuan, V.P.; Matsumoto, T.; Akada, J.; Kido, Y.; Tshimpi-Wola, A.; Tshiamala-Kashala, P.; Ahuka-Mundeke, S.; Mumba, N.D.; Disashi-Tumba, G.; Yamaoka, Y. Next-generation sequencing of the whole bacterial genome for tracking molecular insight into the broad-spectrum antimicrobial resistance of Helicobacter pylori clinical isolates from the democratic republic of congo. Microorganisms, 2020, 8(6), 887.
[http://dx.doi.org/10.3390/microorganisms8060887] [PMID: 32545318]
[67]
Maljkovic, B.I.; Melendrez, M.C.; Bishop-Lilly, K.A.; Rutvisuttinunt, W.; Pollett, S.; Talundzic, E. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: Approaches, applications, and considerations for development of laboratory capacity. J. Infect. Dis., 2020, 221(3), 5292-5307.
[68]
Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using genomics to track global antimicrobial resistance. Front. Public Health, 2019, 7, 242.
[http://dx.doi.org/10.3389/fpubh.2019.00242] [PMID: 31552211]
[69]
Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet., 2018, 19(1), 9-20.
[http://dx.doi.org/10.1038/nrg.2017.88] [PMID: 29129921]
[70]
Moss, E.L.; Maghini, D.G.; Bhatt, A.S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol., 2020, 38(6), 701-707.
[http://dx.doi.org/10.1038/s41587-020-0422-6] [PMID: 32042169]
[71]
Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol, 2019, 57(3), e01405-18.
[http://dx.doi.org/10.1128/JCM.01405-18]
[72]
Vital, J.S.; Tanoeiro, L.; Lopes-Oliveira, R.; Vale, F.F. Biomarker characterization and prediction of virulence and antibiotic resistance from Helicobacter pylori next generation sequencing data. Biomolecules, 2022, 12(5), 691.
[http://dx.doi.org/10.3390/biom12050691] [PMID: 35625618]
[73]
Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of next‐generation sequencing technologies. Curr. Protoc. Mol. Biol., 2018, 122(1), e59.
[http://dx.doi.org/10.1002/cpmb.59] [PMID: 29851291]
[74]
Tshibangu-Kabamba, E.; Yamaoka, Y. Helicobacter pylori infection and antibiotic resistance — from biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(9), 613-629.
[http://dx.doi.org/10.1038/s41575-021-00449-x] [PMID: 34002081]
[75]
Godavarthy, P.K.; Puli, C. From antibiotic resistance to antibiotic renaissance: A new era in Helicobacter pylori treatment. Cureus, 2023. Available from: https://www.cureus.com/articles/144015-from-antibiotic-resistance-to-antibiotic-renaissance-a-new-era-in-helicobacter-pylori-treatment
[http://dx.doi.org/10.7759/cureus.36041]
[76]
Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, J.; Maciejewski, R.; Polkowski, W. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag. Res., 2018, 10, 239-248.
[http://dx.doi.org/10.2147/CMAR.S149619] [PMID: 29445300]
[77]
Díaz, P.; Valderrama, M.; Bravo, J.; Quest, A.F.G. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front. Microbiol., 2018, 9, 5.
[http://dx.doi.org/10.3389/fmicb.2018.00005] [PMID: 29403459]
[78]
Morais, S.; Costa, A.; Albuquerque, G.; Araújo, N.; Tsugane, S.; Hidaka, A.; Hamada, G.S.; Ye, W.; Plymoth, A.; Leja, M.; Gasenko, E.; Zaridze, D.; Maximovich, D.; Malekzadeh, R.; Derakhshan, M.H.; Pelucchi, C.; Negri, E.; Camargo, M.C.; Curado, M.P.; Vioque, J.; Zhang, Z.F.; La Vecchia, C.; Boffetta, P.; Lunet, N. “True” Helicobacter pylori infection and non‐cardia gastric cancer: A pooled analysis within the Stomach Cancer Pooling (StoP) Project. Helicobacter, 2022, 27(3), e12883.
[http://dx.doi.org/10.1111/hel.12883] [PMID: 35235224]
[79]
Floch, P.; Mégraud, F.; Lehours, P. Helicobacter pylori strains and gastric MALT lymphoma. Toxins, 2017, 9(4), 132.
[http://dx.doi.org/10.3390/toxins9040132] [PMID: 28397767]
[80]
Dong, E.; Duan, L.; Wu, B.U. Racial and ethnic minorities at increased risk for gastric cancer in a regional US population study. Clin. Gastroenterol. Hepatol., 2017, 15(4), 511-517.
[http://dx.doi.org/10.1016/j.cgh.2016.11.033] [PMID: 27939654]
[81]
Etemadi, A.; Safiri, S.; Sepanlou, S.G.; Ikuta, K.; Bisignano, C.; Shakeri, R.; Amani, M.; Fitzmaurice, C.; Nixon, M.; Abbasi, N.; Abolhassani, H.; Advani, S.M.; Afarideh, M.; Akinyemiju, T.; Alam, T.; Alikhani, M.; Alipour, V.; Allen, C.A.; Almasi-Hashiani, A.; Arabloo, J.; Assadi, R.; Atique, S.; Awasthi, A.; Bakhtiari, A.; Behzadifar, M.; Berhe, K.; Bhala, N.; Bijani, A.; Bin Sayeed, M.S.; Bjørge, T.; Borzì, A.M.; Braithwaite, D.; Brenner, H.; Carreras, G.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Chu, D-T.; Costa, V.M.; Daryani, A.; Davitoiu, D.V.; Demoz, G.T.; Demis, A.B.; Denova-Gutiérrez, E.; Dey, S.; Dianati, N.M.; Djalalinia, S.; Emamian, M.H.; Farahmand, M.; Fernandes, J.C.; Fischer, F.; Foroutan, M.; Gad, M.M.; Gallus, S.; Gebremeskel, G.G.; Gedefew, G.A.; Ghaseni-Kebria, F.; Gorini, G.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haro, J.M.; Harvey, J.D.; Hasanzadeh, A.; Hashemian, M.; Hassen, H.Y.; Hay, S.I.; Hidru, H.D.; Hos-tiuc, M.; Househ, M.; Ilesanmi, O.; Ilic, M.D.; Innos, K.; Islami, F.; James, S.L.; Jenabi, E.; kalhor, R.; Kamangar, F.; Kasaeian, A.; Kengne, A.P.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, G.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khoja, A.T.; Khosravi S., F.; Kim, Y.J.; Kocarnik, J.M.; Komaki, H.; Koyanagi, A.; Kumar, V.; La Vecchia, C.; Lopez, A.D.; Lunevicius, R.; Manafi, N.; Manda, A-L.; Geta, B.; Meheretu, H.; Mengistu, G.; Miazgowski, B.; Mir, S.M.; Mohammad, K.A.; Mohammad Gholi Mezerji, N.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mohammad P., R.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moosazadeh, M.; Moossavi, M.; Moradi, G.; Moradpour, F.; Moradzadeh, R.; Moreno Vel squez, I.; Mosapour, A.; Naderi, M.; Naik, G.; Najafi, F.; Nahvijou, A.; Negoi, I.; Nikbakhsh, R.; Nojomi, M.; Olagunju, A.T.; Olagunju, T.O.; Oren, E.; Parsian, H.; Piccinelli, C.; Pourshams, A.; Poustchi, H.; Rabiee, N.; Radfar, A.; Rafiei, A.; Rahimi, M.; Rahmati, M.; Renzaho, A.M.N.; Rezaei, N.; Ribeiro, A.I.; Roshandel, G.; Saad, A.M.; Saadatagah, S.; Salimzadeh, H.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sarveazad, A.; Sawhney, M.; Shaahmadi, F.; Sekerija, M.; Shaikh, M.A.; Shamshirian, A.; Siddappa Malleshappa, S.K.; Singh, J.A.; Smarandache, C-G.; Soofi, M.; Tabuchi, T.; Tadesse, D.B.; Tapak, L.; Tesfay, B.E.; Traini, E.; Tran, B.; Tran, K.B.; Vacante, M.; Vahedian-Azimi, A.; Veisani, Y.; Vosoughi, K.; Vujcic, I.S.; Westerman, R.; Wondmieneh, A.B.; Xu, R.; Yaya, S.; Yazdi-Feyzabadi, V.; Yousefi, Z.; Yousefi, B.; Zahirian Moghadam, T.; Zaki, L.; Zamani, M.; Zamanian, M.; Zandian, H.; Zarghi, A.; Zhang, Z-J.; Naghavi, M.; Malekzadeh, R. The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol. Hepatol., 2020, 5(1), 42-54.
[http://dx.doi.org/10.1016/S2468-1253(19)30328-0] [PMID: 31648970]
[82]
Huang, R.J.; Ende, A.R.; Singla, A.; Higa, J.T.; Choi, A.Y.; Lee, A.B. Prevalence, risk factors, and surveillance patterns for gastric intestinal metaplasia among patients undergoing upper endoscopy with biopsy. Gastrointest Endosc, 2020, 91(1), 70-77.
[http://dx.doi.org/10.1016/j.gie.2019.07.038]
[83]
Katoh, H.; Ishikawa, S. Lifestyles, genetics, and future perspectives on gastric cancer in east Asian populations. J. Hum. Genet., 2021, 66(9), 887-899.
[http://dx.doi.org/10.1038/s10038-021-00960-8] [PMID: 34267306]
[84]
Lyons, K.; Le, L.C.; Pham, Y.T.H.; Borron, C.; Park, J.Y.; Tran, C.T.D.; Tran, T.V.; Tran, H.T.T.; Vu, K.T.; Do, C.D.; Pelucchi, C.; La Vecchia, C.; Zgibor, J.; Boffetta, P.; Luu, H.N. Gastric cancer: Epidemiology, biology, and prevention: A mini review. Eur. J. Cancer Prev., 2019, 28(5), 397-412.
[http://dx.doi.org/10.1097/CEJ.0000000000000480] [PMID: 31386635]
[85]
Jardim, S.R.; de Souza, L.M.P.; de Souza, H.S.P. The rise of gastrointestinal cancers as a Global phenomenon: Unhealthy behavior or progress? Int. J. Environ. Res. Public Health, 2023, 20(4), 3640.
[http://dx.doi.org/10.3390/ijerph20043640] [PMID: 36834334]
[86]
Piscione, M.; Mazzone, M.; Di Marcantonio, M.C.; Muraro, R.; Mincione, G. Eradication of Helicobacter pylori and gastric cancer: A controversial relationship. Front. Microbiol., 2021, 12, 630852.
[http://dx.doi.org/10.3389/fmicb.2021.630852] [PMID: 33613500]
[87]
Braga, L.L.B.C.; Batista, M.H.R.; de Azevedo, O.G.R.; da Silva Costa, K.C.; Gomes, A.D.; Rocha, G.A.; Queiroz, D.M.M. oipA “on” status of Helicobacter pylori is associated with gastric cancer in North-Eastern Brazil. BMC Cancer, 2019, 19(1), 48.
[http://dx.doi.org/10.1186/s12885-018-5249-x] [PMID: 30630444]
[88]
Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210.
[http://dx.doi.org/10.1016/j.intimp.2020.106210] [PMID: 31972425]
[89]
Ismael, AB.; Mergani, A.; Salim, A.; Mostafa, S.; Alkafaween, I. Interferon- γ receptor-1 gene promoter polymorphisms and susceptibility for brucellosis in Makkah region. Afr. Health Sci., 2018, 18(4), 1157-1165.
[http://dx.doi.org/10.4314/ahs.v18i4.36] [PMID: 30766581]
[90]
Owen, K.L.; Brockwell, N.K.; Parker, B.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers (Basel), 2019, 11(12), 2002.
[http://dx.doi.org/10.3390/cancers11122002] [PMID: 31842362]
[91]
Xia, R.; Zhang, B.; Wang, X.; Jia, Q. Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells. Iran. J. Basic Med. Sci., 2019, 22(7), 710-715.
[PMID: 32373290]
[92]
Alipour, M. Molecular Mechanism of Helicobacter pylori-induced gastric cancer. J. Gastrointest. Cancer, 2021, 52(1), 23-30.
[http://dx.doi.org/10.1007/s12029-020-00518-5] [PMID: 32926335]
[93]
Shabgah, A.G.; Mohammadi, H.; Goleij, P.; Hedayati-Moghadam, M.; Salmaninejad, A.; Navashenaq, J.G. The role of non-coding genome in cancer-associated fibroblasts; stateof- the-art and perspectives in cancer targeted therapy. Curr. Drug Targets, 2021, 22(13), 1524-1535.
[http://dx.doi.org/10.2174/1389450122666210216091953] [PMID: 33593257]
[94]
Donnelly, J.M.; Engevik, A.C.; Engevik, M.; Schumacher, M.A.; Xiao, C.; Yang, L.; Worrell, R.T.; Zavros, Y. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell. Dig. Dis. Sci., 2014, 59(3), 569-582.
[http://dx.doi.org/10.1007/s10620-013-2927-z] [PMID: 24202649]
[95]
Krzysiek-Maczka, G.; Targosz, A.; Szczyrk, U.; Strzałka, M.; Sliwowski, Z.; Brzozowski, T.; Czyz, J.; Ptak-Belowska, A. Role of Helicobacter pylori infection in cancer‐associated fibroblast‐induced epithelial‐mesenchymal transition in vitro. Helicobacter, 2018, 23(6), e12538.
[http://dx.doi.org/10.1111/hel.12538] [PMID: 30246423]
[96]
Che, Y.; Geng, B.; Xu, Y.; Miao, X.; Chen, L.; Mu, X.; Pan, J.; Zhang, C.; Zhao, T.; Wang, C.; Li, X.; Wen, H.; Liu, Z.; You, Q. Helicobacter pylori -induced exosomal MET educates tumour-associated macrophages to promote gastric cancer progression. J. Cell. Mol. Med., 2018, 22(11), 5708-5719.
[http://dx.doi.org/10.1111/jcmm.13847] [PMID: 30160350]
[97]
Krzysiek-Maczka, G.; Targosz, A.; Ptak-Belowska, A.; Korbut, E.; Szczyrk, U.; Strzalka, M.; Brzozowski, T. Molecular alterations in fibroblasts exposed to Helicobacter pylori: A missing link in bacterial inflammation progressing into gastric carcinogenesis? J. Physiol. Pharmacol., 2013, 64(1), 77-87.
[PMID: 23568974]
[98]
Shen, J.; Zhai, J.; You, Q.; Zhang, G.; He, M.; Yao, X.; Shen, L. Cancer-associated fibroblasts-derived VCAM1 induced by H. pylori infection facilitates tumor invasion in gastric cancer. Oncogene, 2020, 39(14), 2961-2974, e00261.
[http://dx.doi.org/10.1038/s41388-020-1197-4] [PMID: 32034307]
[99]
Altobelli, A.; Bauer, M.; Velez, K.; Cover, T.L.; Müller, A. Helicobacter pylori VacA targets myeloid cells in the gastric lamina propria to promote peripherally induced regulatory T-Cell differentiation and persistent infection. mBio, 2019, 10(2), e00261.
[100]
Navashenaq, J.G.; Shabgah, A.G.; Banach, M.; Jamialahmadi, T.; Penson, P.E.; Johnston, T.P.; Sahebkar, A. The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Semin. Cancer Biol., 2022, 86(Pt 3), 951-959.
[http://dx.doi.org/10.1016/j.semcancer.2021.09.014] [PMID: 34600095]
[101]
Diril, M.K.; Ratnacaram, C.K.; Padmakumar, V.C.; Du, T.; Wasser, M.; Coppola, V.; Tessarollo, L.; Kaldis, P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA, 2012, 109(10), 3826-3831.
[http://dx.doi.org/10.1073/pnas.1115201109] [PMID: 22355113]
[102]
Tong, Y.; Huang, Y.; Zhang, Y.; Zeng, X.; Yan, M.; Xia, Z.; Lai, D. DPP3/CDK1 contributes to the progression of colorectal cancer through regulating cell proliferation, cell apoptosis, and cell migration. Cell Death Dis., 2021, 12(6), 529.
[http://dx.doi.org/10.1038/s41419-021-03796-4] [PMID: 34023852]
[103]
Luo, Y.; Wu, Y.; Peng, Y.; Liu, X.; Bie, J.; Li, S. Systematic analysis to identify a key role of CDK1 in mediating gene interaction networks in cervical cancer development. Irish. J. Med. Sci., 2016, 185(1), 231-9.
[104]
Yang, W.; Cho, H.; Shin, H.Y.; Chung, J.Y.; Kang, E.S. Accumulation of cytoplasmic Cdk1 is associated with cancer growth and survival rate in epithelial ovarian cancer. Oncotarget, 2016, 7(31), 49481-97.
[105]
Wu, C.X.; Wang, X.Q.; Chok, S.H.; Man, K.; Tsang, S.H.Y.; Chan, A.C.Y.; Ma, K.W.; Xia, W.; Cheung, T.T. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics, 2018, 8(14), 3737-3750.
[http://dx.doi.org/10.7150/thno.25487] [PMID: 30083256]
[106]
Huang, J.; Chen, P.; Liu, K.; Liu, J.; Zhou, B.; Wu, R.; Peng, Q.; Liu, Z.X.; Li, C.; Kroemer, G.; Lotze, M.; Zeh, H.; Kang, R.; Tang, D. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut, 2021, 70(5), 890-899.
[http://dx.doi.org/10.1136/gutjnl-2019-320441] [PMID: 32816920]
[107]
Peng, C.; Ouyang, Y.; Lu, N.; Li, N. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: Recent advances. Front. Immunol., 2020, 11, 1387.
[http://dx.doi.org/10.3389/fimmu.2020.01387]
[108]
Zhu, S.; Al-Mathkour, M.; Cao, L.; Khalafi, S.; Chen, Z.; Poveda, J.; Peng, D.; Lu, H.; Soutto, M.; Hu, T.; McDonald, O.G.; Zaika, A.; El-Rifai, W. CDK1 bridges NF-κB and β-catenin signaling in response to H. pylori infection in gastric tumorigenesis. Cell Rep., 2023, 42(1), 112005.
[http://dx.doi.org/10.1016/j.celrep.2023.112005] [PMID: 36681899]
[109]
Rosenbauer, J.; Zhang, C.; Mattes, B.; Reinartz, I.; Wedgwood, K.; Schindler, S. Modeling of Wnt-mediated tissue patterning in vertebrate embryogenesis. PLoS Comput. Biol., 2020, 16(6), e1007417.
[http://dx.doi.org/10.1371/journal.pcbi.1007417]
[110]
Koushyar, S.; Powell, A.G.; Vincan, E.; Phesse, T.J. Targeting Wnt signaling for the treatment of gastric cancer. Int. J. Mol. Sci., 2020, 21(11), 3927.
[http://dx.doi.org/10.3390/ijms21113927] [PMID: 32486243]
[111]
Yu, F.; Yu, C.; Li, F.; Zuo, Y.; Wang, Y.; Yao, L.; Wu, C.; Wang, C.; Ye, L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther., 2021, 6(1), 307.
[http://dx.doi.org/10.1038/s41392-021-00701-5] [PMID: 34456337]
[112]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[113]
Wang, X.Q.; Lo, C.M.; Chen, L.; Ngan, E.S.W.; Xu, A.; Poon, R.Y.C. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ., 2017, 24(1), 38-48.
[http://dx.doi.org/10.1038/cdd.2016.84] [PMID: 27636107]
[114]
Wu, D.; Pan, W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci., 2010, 35(3), 161-168.
[http://dx.doi.org/10.1016/j.tibs.2009.10.002] [PMID: 19884009]
[115]
Grillone, K.; Riillo, C.; Scionti, F.; Rocca, R.; Tradigo, G.; Guzzi, P.H.; Alcaro, S.; Di Martino, M.T.; Tagliaferri, P.; Tassone, P. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res., 2020, 39(1), 117.
[http://dx.doi.org/10.1186/s13046-020-01622-x] [PMID: 32563270]
[116]
Wei, L.; Sun, J.; Zhang, N.; Zheng, Y.; Wang, X.; Lv, L.; Liu, J.; Xu, Y.; Shen, Y.; Yang, M. Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol. Cancer, 2020, 19(1), 62.
[http://dx.doi.org/10.1186/s12943-020-01185-7] [PMID: 32192494]
[117]
Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer, 2018, 18(1), 5-18.
[http://dx.doi.org/10.1038/nrc.2017.99] [PMID: 29170536]
[118]
Preethi, K.A.; Selvakumar, S.C.; Ross, K.; Jayaraman, S.; Tusubira, D.; Sekar, D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol. Cancer, 2022, 21(1), 54.
[http://dx.doi.org/10.1186/s12943-022-01525-9] [PMID: 35172817]
[119]
Banerjee, S.; Thompson, W.E.; Chowdhury, I. Emerging roles of microRNAs in the regulation of Toll-like receptor (TLR)-signaling. Front. Biosci., 2021, 26(4), 771-796.
[http://dx.doi.org/10.2741/4917] [PMID: 33049693]
[120]
Wang, C.; Hu, Y.; Yang, H.; Wang, S.; Zhou, B.; Bao, Y.; Huang, Y.; Luo, Q.; Yang, C.; Xie, X.; Yang, S. Function of non-coding rna in Helicobacter pylori-infected gastric cancer. Front. Mol. Biosci., 2021, 8, 649105.
[http://dx.doi.org/10.3389/fmolb.2021.649105] [PMID: 34046430]
[121]
Săsăran, M.O.; Meliț, L.E.; Dobru, E.D. MicroRNA modulation of host immune response and inflammation triggered by Helicobacter pylori. Int. J. Mol. Sci., 2021, 22(3), 1406.
[http://dx.doi.org/10.3390/ijms22031406] [PMID: 33573346]
[122]
Wu, Ye-feng; Xu, Q.; He, C-y; Liu, J-w; Deng, N.; Sun, L-p; Yuan, Y. Association of polymorphisms in three pri-miRNAs that target pepsinogen C with the risk and prognosis of gastric cancer. Sci. Rep., 2017, 7(1), 39528.
[123]
Ou, Y.; Ren, H.; Zhao, R.; Song, L.; Liu, Z.; Xu, W.; Liu, Y.; Wang, S. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR‐155/KLF4 signaling pathway. Mol. Carcinog., 2019, 58(8), 1427-1437.
[http://dx.doi.org/10.1002/mc.23025] [PMID: 31162747]
[124]
Cortés-Márquez, A.C.; Mendoza-Elizalde, S.; Arenas-Huertero, F.; Trillo-Tinoco, J.; Valencia-Mayoral, P.; Consuelo-Sánchez, A.; Zarate-Franco, J.; Dionicio-Avendaño, A.R.; Herrera-Esquivel, J.J.; Recinos-Carrera, E.G.; Colín-Valverde, C.; Rivera-Gutiérrez, S.; Reyes-López, A.; Vigueras-Galindo, J.C.; Velázquez-Guadarrama, N. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model. BMC Infect. Dis., 2018, 18(1), 463.
[http://dx.doi.org/10.1186/s12879-018-3368-2] [PMID: 30219037]
[125]
Choi, J.M.; Kim, S.G.; Yang, H.J.; Lim, J.H.; Cho, N.Y.; Kim, W.H.; Kim, J.S.; Jung, H.C. Helicobacter pylori eradication can reverse the methylation-associated regulation of miR-200a/b in gastric carcinogenesis. Gut Liver, 2020, 14(5), 571-580.
[http://dx.doi.org/10.5009/gnl19299] [PMID: 31887809]
[126]
Tahara, T.; Tahara, S.; Horiguchi, N.; Kawamura, T.; Okubo, M.; Nagasaka, M.; Nakagawa, Y.; Shibata, T.; Urano, M.; Tsukamoto, T.; Kuroda, M.; Ohmiya, N. Gastric mucosal microarchitectures associated with irreversibility with Helicobacter pylori eradication and down-regulation of micro RNA (miR)-124a. Cancer Invest., 2019, 37(9), 417-426.
[http://dx.doi.org/10.1080/07357907.2019.1663207] [PMID: 31483161]
[127]
Zhang, X.; Yao, J.; Guo, K.; Huang, H.; Huai, S.; Ye, R.; Niu, B.; Ji, T.; Han, W.; Li, J. The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget, 2018, 9(2), 2105-2119.
[http://dx.doi.org/10.18632/oncotarget.23249] [PMID: 29416757]
[128]
Zhang, Z.; Li, Z.; Gao, C.; Chen, P.; Chen, J.; Liu, W.; Xiao, S.; Lu, H. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab. Invest., 2008, 88(12), 1358-1366.
[http://dx.doi.org/10.1038/labinvest.2008.94] [PMID: 18794849]
[129]
Yang, F.; Xu, Y.; Liu, C.; Ma, C.; Zou, S.; Xu, X.; Jia, J.; Liu, Z. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression. Cell Death Dis., 2018, 9(1), 12.
[http://dx.doi.org/10.1038/s41419-017-0020-9] [PMID: 29317648]
[130]
Tan, X.; Tang, H.; Bi, J.; Li, N.; Jia, Y. MicroRNA‐222‐3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J. Cell. Biochem., 2018, 119(7), 5153-5162.
[http://dx.doi.org/10.1002/jcb.26542] [PMID: 29227536]
[131]
Huang, L.; Wang, Z.; Pan, D. Penicillin-binding protein 1A mutation positive Helicobacter pylori promote epithelial-mesenchymal transition in gastric cancer via the suppression of microRNA 134. Int. J. Oncol., 2019, 54(3), 916-928.
[132]
Xu, X-c.; Zhang, W-b.; Li, C-x.; Gao, H.; Pei, Q.; Cao, B-w.; He, Th. Up-regulation of MiR-1915 inhibits proliferation, invasion, and migration of Helicobacter pylori -infected gastric cancer cells via targeting RAGE. Yonsei Med. J., 2019, 60(1), 38.
[133]
Gilani, N.; Arabi, B.R.; Aftabi, Y.; Faramarzi, E.; Edgünlü, T.; Somi, M.H. Identifying potential miRNA biomarkers for gastric cancer diagnosis using machine learning variable selection approach. Front. Genet., 2022, 12, 779455.
[http://dx.doi.org/10.3389/fgene.2021.779455] [PMID: 35082831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy