Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Systematic Review Article

The Therapeutic Effect of Silymarin and Silibinin on Depression and Anxiety Disorders and Possible Mechanism in the Brain: A Systematic Review

Author(s): Sahar Rostamian, Saeid Heidari-Soureshjani* and Catherine M.T. Sherwin

Volume 23, Issue 2, 2023

Published on: 29 August, 2023

Page: [86 - 94] Pages: 9

DOI: 10.2174/1871524923666230823094403

Price: $65

Abstract

Background: Depression and anxiety are the most common mental disorders worldwide.

Objective: We aimed to review silymarin and silibinin effects and underlying mechanisms in the central nervous system (CNS) for depression and anxiety treatment.

Methods: The research protocol was prepared based on following the PRISMA statement. An extensive search was done in essential databases such as PubMed, Cochrane Library, Web of Science (ISI), Embase, and Scopus. Considering the study inclusion and exclusion criteria, 17 studies were finally included. The desired information was extracted from the studies and recorded in Excel, and the consequences and mechanisms were reviewed.

Results: Silymarin and silibinin upregulated brain-derived neurotrophic factor (BDNF) and improved neural stem cells (NSCs) proliferation in the cortex and hippocampus. They also increased neurochemical serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels. Silymarin and silibinin reduced malondialdehyde (MDA) formation and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. In addition, silymarin and silibinin reduced interleukin (IL)-6, IL-1β, and IL-12β, reducing tumor necrosis factor α (TNF-α) induced neuroinflammation.

Conclusion: Silymarin and silibinin exert anti-depression and anxiolytic effects by regulating neurotransmitters, endocrine, neurogenesis, and immunologic systems. Therefore, as natural and complementary medicines, they can be used to reduce the symptoms of depression and anxiety; However, more clinical studies are needed in this field.

« Previous
Graphical Abstract

[1]
Akil H, Gordon J, Hen R. et al. Treatment resistant depression: A multi-scale, systems biology approach. Neurosci Biobehav Rev 2018; 84: 272-88.
[http://dx.doi.org/10.1016/j.neubiorev.2017.08.019] [PMID: 28859997]
[2]
Dudek KA, Dion-Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53(1): 183-221.
[http://dx.doi.org/10.1111/ejn.14547] [PMID: 31421056]
[3]
König H, Kِönig HH, Konnopka A. The excess costs of depression: A systematic review and meta-analysis. Epidemiol Psychiatr Sci 2020; 29: e30.
[http://dx.doi.org/10.1017/S2045796019000180] [PMID: 30947759]
[4]
Chand SP, Arif H. Depression. StatPearls. Treasure Island, FL: StatPearls Publishing 2022. Updated 2022 Jul 18 Internet
[5]
Kielan A, Jaworski M. Mosiołek A, Chodkiewicz J, Święcicki Ł Walewska-Zielecka B. Factors related to the level of depression and suicidal behavior among men with diagnosed depression, physically Ill Men, and Healthy Men. Front Psychiatry 2021; 12: 644097.
[http://dx.doi.org/10.3389/fpsyt.2021.644097] [PMID: 34248697]
[6]
Edinoff AN, Akuly HA, Hanna TA. et al. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol Int 2021; 13(3): 387-401.
[http://dx.doi.org/10.3390/neurolint13030038] [PMID: 34449705]
[7]
Yang X, Fang Y, Chen H. et al. Global, regional and national burden of anxiety disorders from 1990 to 2019: Results from the global burden of disease study 2019. Epidemiol Psychiatr Sci 2021; 30: e36.
[http://dx.doi.org/10.1017/S2045796021000275] [PMID: 33955350]
[8]
Ströhle A, Gensichen J, Domschke K. The diagnosis and treatment of anxiety disorders. Dtsch Arztebl Int 2018; 155(37): 611-20.
[http://dx.doi.org/10.3238/arztebl.2018.0611] [PMID: 30282583]
[9]
Garakani A, Murrough JW, Freire RC. et al. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Front Psychiatry 2020; 11: 595584.
[http://dx.doi.org/10.3389/fpsyt.2020.595584] [PMID: 33424664]
[10]
Blackburn TP. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol Res Perspect 2019; 7(3): e00472.
[http://dx.doi.org/10.1002/prp2.472] [PMID: 31065377]
[11]
Krijnen-de Bruin E, Scholten W, Muntingh A. et al. Psychological interventions to prevent relapse in anxiety and depression: A systematic review and meta-analysis. PLoS One 2022; 17(8): e0272200.
[http://dx.doi.org/10.1371/journal.pone.0272200] [PMID: 35960783]
[12]
Tanaka N, Kashiwada Y. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies. J Nat Med 2021; 75(4): 762-83.
[http://dx.doi.org/10.1007/s11418-021-01545-7] [PMID: 34255289]
[13]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[14]
Satari A, Amini SA, Raeisi E, Lemoigne Y, Heidarian E. Synergetic impact of combined 5-fluorouracil and rutin on apoptosis in pC3 cancer cells through the modulation of P53 gene expression. Adv Pharm Bull 2019; 9(3): 462-9.
[http://dx.doi.org/10.15171/apb.2019.055] [PMID: 31592435]
[15]
Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism. molecules 2017; 22(11): 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]
[16]
Garikapati DR, Shaik PB, Penchalaiah H. Evaluate neuroprotective effect of silibinin using chronic unpredictable stress (cus) model. Int J Physiol Pathophysiol Pharmacol 2018; 10(6): 184-91.
[PMID: 30697365]
[17]
Solati J, Yaghmaei P, Mohammdadi K. Role of the 5-HT1A serotonergic system in anxiolytic-like effects of silymarin. Neurophysiology 2012; 44(1): 49-55.
[http://dx.doi.org/10.1007/s11062-012-9266-0]
[18]
Yaghmaei P, Oryan S, Mohammadi K, Solati J. Role of serotonergic system on modulation of depressogenic-like effects of silymarine. Iran J Pharm Res 2012; 11(1): 331-7.
[PMID: 24250456]
[19]
Kosari-Nasab M, Rabiei A, Doosti MH, Salari AA. Adolescent silymarin treatment increases anxiety-like behaviors in adult mice. Behav Pharmacol 2014; 25(4): 325-30.
[http://dx.doi.org/10.1097/FBP.0000000000000051] [PMID: 24978280]
[20]
Yan WJ, Tan YC, Xu JC. et al. Protective effects of silibinin and its possible mechanism of action in mice exposed to chronic unpredictable mild stress. Biomol Ther 2015; 23(3): 245-50.
[http://dx.doi.org/10.4062/biomolther.2014.138] [PMID: 25995823]
[21]
Malaguarnera G, Bertino G, Chisari G. et al. Silybin supplementation during HCV therapy with pegylated interferon-α plus ribavirin reduces depression and anxiety and increases work ability. BMC Psychiatry 2016; 16(1): 398.
[http://dx.doi.org/10.1186/s12888-016-1115-z] [PMID: 27842532]
[22]
Song X, Liu B, Cui L. et al. Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav 2017; 179: 487-93.
[http://dx.doi.org/10.1016/j.physbeh.2017.07.023] [PMID: 28735062]
[23]
Song X, Zhou B, Cui L. et al. Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress. Neurochem Res 2017; 42(4): 1073-83.
[http://dx.doi.org/10.1007/s11064-016-2141-4] [PMID: 28004303]
[24]
Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari AA. Anxiolytic- and antidepressant-like effects of Silymarin compared to diazepam and fluoxetine in a mouse model of mild traumatic brain injury. Toxicol Appl Pharmacol 2018; 338: 159-73.
[http://dx.doi.org/10.1016/j.taap.2017.11.012] [PMID: 29175455]
[25]
Li YJ, Li YJ, Yang LD. et al. Silibinin exerts antidepressant effects by improving neurogenesis through BDNF/TrkB pathway. Behav Brain Res 2018; 348: 184-91.
[http://dx.doi.org/10.1016/j.bbr.2018.04.025] [PMID: 29680784]
[26]
Thakare VN, Patil RR, Oswal RJ, Dhakane VD, Aswar MK, Patel BM. Therapeutic potential of silymarin in chronic unpredictable mild stress induced depressive-like behavior in mice. J Psychopharmacol 2018; 32(2): 223-35.
[http://dx.doi.org/10.1177/0269881117742666] [PMID: 29215318]
[27]
Ashraf A, Mahmoud PA, Reda H. et al. Silymarin and silymarin nanoparticles guard against chronic unpredictable mild stress induced depressive-like behavior in mice: involvement of neurogenesis and NLRP3 inflammasome. J Psychopharmacol 2019; 33(5): 615-31.
[http://dx.doi.org/10.1177/0269881119836221] [PMID: 30896354]
[28]
El-Elimat T, Alzoubi K, AbuAlSamen M, Al Subeh Z, Graf T, Oberlies N. Silymarin prevents memory impairments, anxiety, and depressive-like symptoms in a rat model of post-traumatic stress disorder. Planta Med 2019; 85(1): 32-40.
[http://dx.doi.org/10.1055/a-0710-5673] [PMID: 30153692]
[29]
Kumburovic I, Selakovic D, Juric T. et al. Antioxidant effects of satureja hortensis l. attenuate the anxiogenic effect of cisplatin in rats. Oxid Med Cell Longev 2019; 2019: 1-15.
[http://dx.doi.org/10.1155/2019/8307196] [PMID: 31467638]
[30]
Yön B, Belviranlı M, Okudan N. The effect of silymarin supplementation on cognitive impairment induced by diabetes in rats. J Basic Clin Physiol Pharmacol 2019; 30(4): 20180109.
[http://dx.doi.org/10.1515/jbcpp-2018-0109] [PMID: 31017870]
[31]
Lee B, Choi GM, Sur B. Silibinin prevents depression-like behaviors in a single prolonged stress rat model: The possible role of serotonin. BMC Complementary Medicine and Therapies 2020; 20(1): 70.
[http://dx.doi.org/10.1186/s12906-020-2868-y] [PMID: 32143600]
[32]
Liu X, Chen W, Wang C. et al. Silibinin ameliorates depression/anxiety-like behaviors of Parkinson’s disease mouse model and is associated with attenuated STING-IRF3-IFN-β pathway activation and neuroinflammation. Physiol Behav 2021; 241: 113593.
[http://dx.doi.org/10.1016/j.physbeh.2021.113593] [PMID: 34536434]
[33]
Jeyabalan S, Nachammai V, Muthusamy S. Anxiolytic effects of silibinin and naringenin on zebrafish model: A preclinical study. Indian J Pharmacol 2021; 53(6): 457-64.
[http://dx.doi.org/10.4103/ijp.IJP_18_20] [PMID: 34975133]
[34]
Thakare VN, Aswar MK, Kulkarni YP, Patil RR, Patel BM. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response. Physiol Behav 2017; 179: 401-10.
[http://dx.doi.org/10.1016/j.physbeh.2017.07.010] [PMID: 28711395]
[35]
Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin North Am 2009; 32(3): 549-75.
[http://dx.doi.org/10.1016/j.psc.2009.05.004] [PMID: 19716990]
[36]
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43(11): 1128-43.
[http://dx.doi.org/10.1007/s12272-020-01292-5] [PMID: 33225387]
[37]
Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 2017; 20(12): 1036-46.
[http://dx.doi.org/10.1093/ijnp/pyx056] [PMID: 29106542]
[38]
Hsueh PT, Wang HH, Liu CL, Ni WF, Chen YL, Liu JK. Expression of cerebral serotonin related to anxiety-like behaviors in C57BL/6 offspring induced by repeated subcutaneous prenatal exposure to low-dose lipopolysaccharide. PLoS One 2017; 12(6): e0179970.
[http://dx.doi.org/10.1371/journal.pone.0179970] [PMID: 28650979]
[39]
Yohn CN, Gergues MM, Samuels BA. The role of 5-HT receptors in depression. Mol Brain 2017; 10(1): 28.
[http://dx.doi.org/10.1186/s13041-017-0306-y] [PMID: 28646910]
[40]
Jiang Y, Zou D, Li Y. et al. Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals 2022; 15(10): 1203.
[http://dx.doi.org/10.3390/ph15101203] [PMID: 36297314]
[41]
Pannu A, Sharma PC, Thakur VK, Goyal RK. Emerging role of flavonoids as the treatment of depression. Biomolecules 2021; 11(12): 1825.
[http://dx.doi.org/10.3390/biom11121825] [PMID: 34944471]
[42]
Borah A, Paul R, Choudhury S. et al. Neuroprotective potential of silymarin against CNS disorders: Insight into the pathways and molecular mechanisms of action. CNS Neurosci Ther 2013; 19(11): 847-53.
[http://dx.doi.org/10.1111/cns.12175] [PMID: 24118806]
[43]
Bao H, Song J. Treating brain disorders by targeting adult neural stem cells. Trends Mol Med 2018; 24(12): 991-1006.
[http://dx.doi.org/10.1016/j.molmed.2018.10.001] [PMID: 30447904]
[44]
Guan LP, Liu BY. Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur J Med Chem 2016; 121: 47-57.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.026] [PMID: 27214511]
[45]
Dou SH, Cui Y, Huang SM, Zhang B. The role of brain-derived neurotrophic factor signaling in central nervous system disease pathogenesis. Front Hum Neurosci 2022; 16: 924155.
[http://dx.doi.org/10.3389/fnhum.2022.924155] [PMID: 35814950]
[46]
Lee CH, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol 2019; 10: 1696.
[http://dx.doi.org/10.3389/fimmu.2019.01696] [PMID: 31379879]
[47]
Aziz HA, Awaad A. Titanium dioxide (TiO 2) nanoparticles induced apoptosis of splenocytes in adult male albino rat and the protective role of milk thistle seeds extract. Int J 2014; 2: 732-46.
[48]
Khazaei R, Seidavi A, Bouyeh M. A review on the mechanisms of the effect of silymarin in milk thistle (Silybum marianum) on some laboratory animals. Vet Med Sci 2022; 8(1): 289-301.
[http://dx.doi.org/10.1002/vms3.641] [PMID: 34599793]
[49]
Wadhwa K, Pahwa R, Kumar M. et al. Mechanistic insights into the pharmacological significance of silymarin. Molecules 2022; 27(16): 5327.
[http://dx.doi.org/10.3390/molecules27165327] [PMID: 36014565]
[50]
Correia AS, Cardoso A, Vale N. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants 2023; 12(2): 470.
[http://dx.doi.org/10.3390/antiox12020470] [PMID: 36830028]
[51]
Fedoce AG, Ferreira F, Bota RG, Bonet-Costa V, Sun PY, Davies KJA. The role of oxidative stress in anxiety disorder: Cause or consequence? Free Radic Res 2018; 52(7): 737-50.
[http://dx.doi.org/10.1080/10715762.2018.1475733] [PMID: 29742940]
[52]
Krolow R, Arcego DM, Noschang C, Weis SN, Dalmaz C. Oxidative imbalance and anxiety disorders. Curr Neuropharmacol 2014; 12(2): 193-204.
[http://dx.doi.org/10.2174/1570159X11666131120223530] [PMID: 24669212]
[53]
Black CN, Bot M, Scheffer PG, Penninx BWJH. Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; results from a large adult cohort. Psychol Med 2017; 47(5): 936-48.
[http://dx.doi.org/10.1017/S0033291716002828] [PMID: 27928978]
[54]
Filatova EV, Shadrina MI, Slominsky PA. Major depression: One brain, one disease, one set of intertwined processes. Cells 2021; 10(6): 1283.
[http://dx.doi.org/10.3390/cells10061283] [PMID: 34064233]
[55]
Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015; 144(3): 365-73.
[http://dx.doi.org/10.1111/imm.12443] [PMID: 25580634]
[56]
Muñoz-Castañeda JR, Montilla P, Padillo FJ. et al. Role of serotonin in cerebral oxidative stress in rats. Acta Neurobiol Exp 2006; 66(1): 1-6.
[PMID: 16617671]
[57]
Soleimani V, Delghandi PS, Moallem SA, Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother Res 2019; 33(6): 1627-38.
[http://dx.doi.org/10.1002/ptr.6361] [PMID: 31069872]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy