Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction

Author(s): Guo-Dong Yang, Da-Shi Ma, Chun-Ye Ma and Yang Bai*

Volume 19, Issue 7, 2024

Published on: 23 August, 2023

Page: [942 - 958] Pages: 17

DOI: 10.2174/1574888X18666230823091017

Price: $65

Abstract

Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.

[1]
Madhur MS, Elijovich F, Alexander MR, et al. Hypertension. Circ Res 2021; 128(7): 908-33.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318052] [PMID: 33793336]
[2]
Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131.
[http://dx.doi.org/10.1186/s13287-018-0876-3] [PMID: 29751774]
[3]
Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 2003; 75(3): 389-97.
[http://dx.doi.org/10.1097/01.TP.0000045055.63901.A9] [PMID: 12589164]
[4]
Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103(5): 697-705.
[http://dx.doi.org/10.1172/JCI5298] [PMID: 10074487]
[5]
Hui1 Z. Effect of Ophiopogon Japonicus inducing differentiation of bone marrow mesenchymal stem cells in myocardial cells. Chinese Archives Of Traditional Chinese Medicine 2020; 38(2): 96-101.
[6]
Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103(5): 1669-75.
[http://dx.doi.org/10.1182/blood-2003-05-1670] [PMID: 14576065]
[7]
Fang H, et al. Biological characteristics of different sources of mesenchymal stem cells. Chinese Journal of Tissue Engineering Research 2015; (32): 5243-8.
[8]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[9]
Zhang X, Zhang L, Li Y, Yin Z, Feng Y, Ji Y. Human umbilical cord mesenchymal stem cells (hUCMSCs) promotes the recovery of ovarian function in a rat model of premature ovarian failure (POF). Gynecol Endocrinol 2021; 37(4): 353-7.
[http://dx.doi.org/10.1080/09513590.2021.1878133] [PMID: 33491494]
[10]
Zhou W, Silva M, Feng C, et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res Ther 2021; 12(1): 174.
[http://dx.doi.org/10.1186/s13287-021-02248-2] [PMID: 33712072]
[11]
Ge L, et al. Biological characteristics of human olfactory mucosa mesenchymal stem cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015; 40(1): 53-8.
[12]
Pu W, Xu D, Zhang C, Zhao Z, Yang M. Rapid generation of functional hepatocyte-like cells from human minor salivary gland-derived stem cells. Biochem Biophys Res Commun 2020; 522(3): 805-10.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.173] [PMID: 31791589]
[13]
Kassis I, Zangi L, Rivkin R, et al. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 2006; 37(10): 967-76.
[http://dx.doi.org/10.1038/sj.bmt.1705358] [PMID: 16670702]
[14]
Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: A novel stem cell population. J Transl Med 2007; 5(1): 57.
[http://dx.doi.org/10.1186/1479-5876-5-57] [PMID: 18005405]
[15]
Fu WL, Zhou CY, Yu JK. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 2014; 42(3): 592-601.
[http://dx.doi.org/10.1177/0363546513512778] [PMID: 24327479]
[16]
Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121(2): 368-74.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04284.x] [PMID: 12694261]
[17]
Yang YHK. Aging of mesenchymal stem cells: Implication in regenerative medicine. Regen Ther 2018; 9: 120-2.
[http://dx.doi.org/10.1016/j.reth.2018.09.002] [PMID: 30525083]
[18]
Dongjia WANG. Comparison of proliferation and osteogenic differentiation potential in different generations of BMSCs derived from SD rats. J Oral Maxillofac Surg 2021; 31(1): 16-23.
[19]
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31(10): 890-6.
[http://dx.doi.org/10.1016/S0301-472X(03)00110-3] [PMID: 14550804]
[20]
Deans RJ, Moseley AB. Mesenchymal stem cells. Exp Hematol 2000; 28(8): 875-84.
[http://dx.doi.org/10.1016/S0301-472X(00)00482-3] [PMID: 10989188]
[21]
Karp JM, Leng Teo GS. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell 2009; 4(3): 206-16.
[http://dx.doi.org/10.1016/j.stem.2009.02.001] [PMID: 19265660]
[22]
Jin W, Liang X, Brooks A, et al. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ 2018; 6: e6072.
[http://dx.doi.org/10.7717/peerj.6072] [PMID: 30564525]
[23]
Rüster B, Göttig S, Ludwig RJ, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006; 108(12): 3938-44.
[http://dx.doi.org/10.1182/blood-2006-05-025098] [PMID: 16896152]
[24]
Chen YW, Hsieh SC, Yang YC, et al. Functional engineered mesenchymal stem cells with fibronectin-gold composite coated catheters for vascular tissue regeneration. Nanomedicine (Lond) 2018; 14(3): 699-711.
[http://dx.doi.org/10.1016/j.nano.2017.12.023] [PMID: 29325741]
[25]
Wei Y, et al. Cardiomyocyte-like differentiation of bone marrow mesenchymal stem cells induced by myocardial tissue lysates from different parts of the myocardium. Chinese Journal of Tissue Engineering Research 2021; 25(1): 32.
[26]
Assis ACM, Carvalho JL, Jacoby BA, et al. Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 2010; 19(2): 219-30.
[http://dx.doi.org/10.3727/096368909X479677] [PMID: 19906330]
[27]
Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410(6829): 701-5.
[http://dx.doi.org/10.1038/35070587] [PMID: 11287958]
[28]
Piryaei A, Soleimani M, Heidari MH, Saheli M, Rohani R, Almasieh M. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine. Cell Biol Int 2015; 39(5): 519-30.
[http://dx.doi.org/10.1002/cbin.10421] [PMID: 25573851]
[29]
Chaput N, Théry C. Exosomes: Immune properties and potential clinical implementations. Semin Immunopathol 2011; 33(5): 419-40.
[http://dx.doi.org/10.1007/s00281-010-0233-9] [PMID: 21174094]
[30]
Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cell-free therapy. Stem Cells Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/6305295] [PMID: 29410682]
[31]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013; 10(3): 301-12.
[http://dx.doi.org/10.1016/j.scr.2013.01.002] [PMID: 23399448]
[32]
Li G, Wang G, Ma L, et al. miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38α. Biochem Biophys Res Commun 2016; 478(3): 1165-72.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.086] [PMID: 27544030]
[33]
Liang Zeng. Effect of the exosomes of bone marrow mesenchymal stem cells modified by miR-22 on cardiomyocyte apoptosis in the rats with acute myocardial infarction. Chin J Crit Care 2021; 41(2): 154-60.
[34]
Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431(7011): 997-1002.
[http://dx.doi.org/10.1038/nature02989] [PMID: 15496926]
[35]
Maryanovich M, Zaltsman Y, Ruggiero A, et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 2015; 6(1): 7901.
[http://dx.doi.org/10.1038/ncomms8901] [PMID: 26219591]
[36]
Gross A. BCL-2 family proteins as regulators of mitochondria metabolism. Biochim Biophys Acta Bioenerg 2016; 1857(8): 1243-6.
[http://dx.doi.org/10.1016/j.bbabio.2016.01.017]
[37]
Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci 2006; 103(5): 1283-8.
[http://dx.doi.org/10.1073/pnas.0510511103] [PMID: 16432190]
[38]
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004; 303(5660): 1007-10.
[http://dx.doi.org/10.1126/science.1093133] [PMID: 14963329]
[39]
Plotnikov EY, Khryapenkova TG, Vasileva AK, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 2008; 12(5a): 1622-31.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00205.x] [PMID: 18088382]
[40]
Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344(23): 1750-7.
[http://dx.doi.org/10.1056/NEJM200106073442303] [PMID: 11396441]
[41]
Anversa P, Leri A. Innate regeneration in the aging heart: healing from within. Mayo Clin Proc 2013; 88(8): 871-83.
[http://dx.doi.org/10.1016/j.mayocp.2013.04.001] [PMID: 23910414]
[42]
Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc Respir Dis (Seoul) 2014; 77(3): 116-23.
[http://dx.doi.org/10.4046/trd.2014.77.3.116] [PMID: 25309606]
[43]
Chu W, Gan Y, Zhuang Y, et al. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther 2018; 9(1): 157.
[http://dx.doi.org/10.1186/s13287-018-0906-1] [PMID: 29895312]
[44]
Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7(4): 430-6.
[http://dx.doi.org/10.1038/86498] [PMID: 11283669]
[45]
McFarlin K, Gao X, Liu YB, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 2006; 14(4): 471-8.
[http://dx.doi.org/10.1111/j.1743-6109.2006.00153.x] [PMID: 16939576]
[46]
Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005; 97(11): 1142-51.
[http://dx.doi.org/10.1161/01.RES.0000193596.94936.2c] [PMID: 16254213]
[47]
Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2011; 2(10): 845-54.
[http://dx.doi.org/10.1007/s13238-011-1097-z] [PMID: 22058039]
[48]
Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94(5): 678-85.
[http://dx.doi.org/10.1161/01.RES.0000118601.37875.AC] [PMID: 14739163]
[49]
Oswald J, Boxberger S, Jørgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3): 377-84.
[http://dx.doi.org/10.1634/stemcells.22-3-377] [PMID: 15153614]
[50]
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: Molecular and cellular mechanisms. J Invest Dermatol 2007; 127(3): 514-25.
[http://dx.doi.org/10.1038/sj.jid.5700701] [PMID: 17299434]
[51]
Lo Sicco C, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6(3): 1018-28.
[http://dx.doi.org/10.1002/sctm.16-0363] [PMID: 28186708]
[52]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308.
[http://dx.doi.org/10.1186/s12967-015-0642-6] [PMID: 26386558]
[53]
Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44.
[http://dx.doi.org/10.1089/scd.2013.0479] [PMID: 24367916]
[54]
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res 2016; 64(4): 831-40.
[http://dx.doi.org/10.1007/s12026-016-8798-6] [PMID: 27115513]
[55]
Li Y, Wang F, Guo R, et al. Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life 2019; 71(9): 1284-92.
[http://dx.doi.org/10.1002/iub.2035] [PMID: 30889317]
[56]
Liu Y, Wang L, Kikuiri T, et al. Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 2011; 17(12): 1594-601.
[http://dx.doi.org/10.1038/nm.2542] [PMID: 22101767]
[57]
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 1970; 3(4): 393-403.
[http://dx.doi.org/10.1111/j.1365-2184.1970.tb00347.x] [PMID: 5523063]
[58]
Phinney DG. Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol Biol 2008; 449: 171-86.
[http://dx.doi.org/10.1007/978-1-60327-169-1_12] [PMID: 18370091]
[59]
Salehinejad P, Alitheen NB, Ali AM, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell Dev Biol Anim 2012; 48(2): 75-83.
[http://dx.doi.org/10.1007/s11626-011-9480-x] [PMID: 22274909]
[60]
Stricklin GP, Bauer EA, Jeffrey JJ, Eisen AZ. Human skin collagenase: Isolation of precursor and active forms from both fibroblast and organ cultures. Biochemistry 1977; 16(8): 1607-15.
[http://dx.doi.org/10.1021/bi00627a013] [PMID: 192268]
[61]
Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194(3): 664-73.
[http://dx.doi.org/10.1016/j.ajog.2006.01.101] [PMID: 16522395]
[62]
Can A, Karahuseyinoglu S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25(11): 2886-95.
[http://dx.doi.org/10.1634/stemcells.2007-0417] [PMID: 17690177]
[63]
Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50(2): e12334.
[http://dx.doi.org/10.1111/cpr.12334] [PMID: 28144997]
[64]
Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 2013; 15(8): 979-85.
[http://dx.doi.org/10.1016/j.jcyt.2013.04.001] [PMID: 23725689]
[65]
Cai Y, Liu T, Fang F, Xiong C, Shen S. Comparisons of mouse mesenchymal stem cells in primary adherent culture of compact bone fragments and whole bone marrow. Stem Cells Int 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/708906] [PMID: 25821472]
[66]
Priya N, Sarcar S, Majumdar AS, SundarRaj S. Explant culture: A simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J Tissue Eng Regen Med 2014; 8(9): 706-16.
[http://dx.doi.org/10.1002/term.1569] [PMID: 22837175]
[67]
Georgiou GM, Roberton DM, Ellis WM, Shen BJ, Ekert H, Hosking CS. CFU-c enrichment from human bone marrow using a discontinuous Percoll gradient and soybean agglutinin in comparison with Ficoll-paque. Clin Exp Immunol 1983; 53(2): 491-6.
[PMID: 6309446]
[68]
Chang Y, Hsieh PH, Chao CC. The efficiency of Percoll and Ficoll density gradient media in the isolation of marrow derived human mesenchymal stem cells with osteogenic potential. Chang Gung Med J 2009; 32(3): 264-75.
[PMID: 19527605]
[69]
Bourzac C, Smith LC, Vincent P, Beauchamp G, Lavoie JP, Laverty S. Isolation of equine bone marrow-derived mesenchymal stem cells: A comparison between three protocols. Equine Vet J 2010; 42(6): 519-27.
[http://dx.doi.org/10.1111/j.2042-3306.2010.00098.x] [PMID: 20716192]
[70]
Rosca AM, Burlacu A. Isolation of a mouse bone marrow population enriched in stem and progenitor cells by centrifugation on a Percoll gradient. Biotechnol Appl Biochem 2010; 55(4): 199-208.
[http://dx.doi.org/10.1042/BA20090356] [PMID: 20331436]
[71]
Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 2001; 19(3): 180-92.
[http://dx.doi.org/10.1634/stemcells.19-3-180] [PMID: 11359943]
[72]
Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 2002; 30(7): 783-91.
[http://dx.doi.org/10.1016/S0301-472X(02)00812-3] [PMID: 12135677]
[73]
Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P. Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45 med,low phenotype. Br J Haematol 2003; 122(3): 506-17.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04469.x] [PMID: 12877680]
[74]
Tondreau T, Meuleman N, Delforge A, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 2005; 23(8): 1105-12.
[http://dx.doi.org/10.1634/stemcells.2004-0330] [PMID: 15955825]
[75]
Jones EA, English A, Kinsey SE, et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 2006; 70B(6): 391-9.
[http://dx.doi.org/10.1002/cyto.b.20118] [PMID: 16977637]
[76]
Liu Q-H, Ge J, Liu K-Y. Are CD133 and CD271 useful in positive selection to enrich umbilical cord blood mesenchymal stem cells? Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18(5): 1286-91.
[PMID: 21129278]
[77]
Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: Phenotype, proliferation kinetics and differentiation potential. Cytotherapy 2004; 6(4): 372-9.
[http://dx.doi.org/10.1080/14653240410004943] [PMID: 16146890]
[78]
Jia Z, Liang Y, Xu X, et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int 2018; 42(3): 262-71.
[http://dx.doi.org/10.1002/cbin.10903] [PMID: 29068101]
[79]
Jia Z. Magnetic-activated cell sorting strategies to isolate and purify synovial fluid-derived mesenchymal stem cells from a rabbit model. J Vis Exp 2018; 138
[80]
Amiri F, Halabian R, Dehgan Harati M, et al. Positive selection of Wharton’s jelly-derived CD105 + cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology 2015; 20(4): 208-16.
[http://dx.doi.org/10.1179/1607845414Y.0000000185] [PMID: 25116042]
[81]
Huss R. Perspectives on the morphology and biology of CD34-negative stem cells. J Hematother Stem Cell Res 2000; 9(6): 783-93.
[http://dx.doi.org/10.1089/152581600750062228] [PMID: 11177591]
[82]
Chalmers JJ, Zborowski M, Moore L, Mandal S, Fang B, Sun L. Theoretical analysis of cell separation based on cell surface marker density. Biotechnol Bioeng 1998; 59(1): 10-20.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19980705)59:1<10:AID-BIT3>3.0.CO;2-W] [PMID: 10099309]
[83]
Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Rep Prog Phys 2015; 78(1): 016601.
[http://dx.doi.org/10.1088/0034-4885/78/1/016601] [PMID: 25471081]
[84]
Grützkau A, Radbruch A. Small but mighty: How the MACS®-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A 2010; 77A(7): 643-7.
[http://dx.doi.org/10.1002/cyto.a.20918] [PMID: 20583279]
[85]
Robert D, Pamme N, Conjeaud H, Gazeau F, Iles A, Wilhelm C. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 2011; 11(11): 1902-10.
[http://dx.doi.org/10.1039/c0lc00656d] [PMID: 21512692]
[86]
Shen Y, Huang Z, Liu X, et al. Iron-induced myocardial injury: An alarming side effect of superparamagnetic iron oxide nanoparticles. J Cell Mol Med 2015; 19(8): 2032-5.
[http://dx.doi.org/10.1111/jcmm.12582] [PMID: 26041641]
[87]
Schade A, Müller P, Delyagina E, et al. Magnetic nanoparticle based nonviral microrna delivery into freshly isolated CD105 + hMSCs. Stem Cells Int 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/197154] [PMID: 24799915]
[88]
Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J. Cell separation: Terminology and practical considerations. J Tissue Eng 2013; 4.
[http://dx.doi.org/10.1177/2041731412472690] [PMID: 23440031]
[89]
Müller P, Gaebel R, Lemcke H, et al. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS® purified stem cell products. Biomaterials 2017; 135: 74-84.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.002] [PMID: 28494265]
[90]
Boiret N, Rapatel C, Veyrat-Masson R, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 2005; 33(2): 219-25.
[http://dx.doi.org/10.1016/j.exphem.2004.11.001] [PMID: 15676216]
[91]
Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A. Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 2007; 37(2): 152-9.
[http://dx.doi.org/10.1165/rcmb.2006-0386OC] [PMID: 17395889]
[92]
Kitano Y, Radu A, Shaaban A, Flake AW. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol 2000; 28(12): 1460-9.
[http://dx.doi.org/10.1016/S0301-472X(00)00551-8] [PMID: 11146168]
[93]
Ito K, Aoyama T, Fukiage K, et al. A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric. Tissue Eng Part C Methods 2010; 16(1): 81-91.
[http://dx.doi.org/10.1089/ten.tec.2008.0693] [PMID: 19364273]
[94]
Wang Y-h, Zheng R, Chen L. Isolation and culture of rat bone marrow mesenchymal stem cells using density gradient centrifugation and adherence separation screening. Chinese Journal of Tissue Engineering Research 2014; 18(28): 4463.
[95]
Xing W, Pang AM, Yao JF, et al. Efficient isolation of mesenchymal stem cells from human bone marrow by direct plating method combined with modified primary explant culture. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013; 21(2): 451-4.
[PMID: 23628052]
[96]
Krause U, Harter C, Seckinger A, et al. Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev 2007; 16(1): 31-8.
[http://dx.doi.org/10.1089/scd.2006.0089] [PMID: 17348804]
[97]
Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 2008; 103(6): 525-36.
[http://dx.doi.org/10.1007/s00395-008-0741-0] [PMID: 18704259]
[98]
Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003; 108(7): 863-8.
[http://dx.doi.org/10.1161/01.CIR.0000084828.50310.6A] [PMID: 12900340]
[99]
Grøgaard HK, Sigurjonsson OE, Brekke M, et al. Cardiac accumulation of bone marrow mononuclear progenitor cells after intracoronary or intravenous injection in pigs subjected to acute myocardial infarction with subsequent reperfusion. Cardiovasc Revasc Med 2007; 8(1): 21-7.
[http://dx.doi.org/10.1016/j.carrev.2006.09.001] [PMID: 17293265]
[100]
Rui CHENG, You-rong Z, Ling M, Feng C, Yong X. Therapeutic effectiveness of autologous bone marrow mesenchymal stem cells transplantation by three different ways in AMI. Chin J Exp Surg 2005; 22(12): 1504-6.
[101]
Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 2009; 30(22): 2722-32.
[http://dx.doi.org/10.1093/eurheartj/ehp265] [PMID: 19586959]
[102]
Balana B, Nicoletti C, Zahanich I, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res 2006; 16(12): 949-60.
[http://dx.doi.org/10.1038/sj.cr.7310116] [PMID: 17160070]
[103]
Dong L, et al. Sodium butyrate induces rat bone marrow mesenchymal stem cells to differentiate into cardiomyocytes in vitro. Chinese Journal of Tissue Engineering Research 2012; 16(19): 3462.
[104]
Zhou R. Meglumine cyclic adenylate induces differentiation of bone marrow mesenchymal stem cells into cardiomyocytes in vitro. Chinese Journal of Pathophysiology 2011; 10.
[105]
Bartunek J, Croissant JD, Wijns W, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol 2007; 292(2): H1095-104.
[http://dx.doi.org/10.1152/ajpheart.01009.2005] [PMID: 17056665]
[106]
Xing Y, Lv A, Wang L, Yan X. The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 2012; 360(1-2): 279-87.
[http://dx.doi.org/10.1007/s11010-011-1067-z] [PMID: 21935612]
[107]
Somers P, Cornelissen R, Thierens H, Van Nooten G. An optimized growth factor cocktail for ovine mesenchymal stem cells. Growth Factors 2012; 30(1): 37-48.
[http://dx.doi.org/10.3109/08977194.2011.634411] [PMID: 22077617]
[108]
Rong ZHOU, Yan-hong LI, Feng-zhi W. Meglumine cyclic adenylate induces differentiation of bone marrow mesenchymal stem cells into cardiomyocytes in vitro. Chinese Journal of Pathophysiology 2005; 3(7): 528-30.
[109]
Xue-yun S. Combination of tanshinone IIa and astragaloside induces bone marrow mesenchymal stem cells differentiating into myocardium-like cells. Chinese Journal of Tissue Engineering Research 2013; 17(36): 6515.
[110]
Chen J, Wei J, Huang Y, et al. Danhong injection enhances the therapeutic efficacy of mesenchymal stem cells in myocardial infarction by promoting angiogenesis. Front Physiol 2018; 9: 991.
[http://dx.doi.org/10.3389/fphys.2018.00991] [PMID: 30093864]
[111]
Li Q, Sun G. Effect of icaritin on ferroptosis of bone marrow mesenchymal stem cells and their differentiation into cardiomyocytes. Chinese Journal of Tissue Engineering Research 2021; 25(13): 1988.
[112]
Huang Y, Jia X, Bai K, Gong X, Fan Y. Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 2010; 41(7): 497-505.
[http://dx.doi.org/10.1016/j.arcmed.2010.10.002] [PMID: 21167388]
[113]
Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006; 98(11): 1414-21.
[http://dx.doi.org/10.1161/01.RES.0000225952.61196.39] [PMID: 16690882]
[114]
Wang J. Effects of biomimetic electrical stimulation on inducing differentiation of rat bone marrow mesenchymal stem cells into cardiomyocyte-like cells in isolated myocardium. Medical Journal of Chinese People's Liberation Army 1983.(05):
[115]
Rangappa S, Entwistle JWC, Wechsler AS, Kresh JY. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 2003; 126(1): 124-32.
[http://dx.doi.org/10.1016/S0022-5223(03)00074-6] [PMID: 12878947]
[116]
Jia Q. Differentiation of bone marrow mesenchymal stem cells into cardiomyocytes by simulating cardiac microenvironment in vitro. J Clin Rehabil Tissue Eng Res 2008; 12(8): 1489-92.
[117]
Ocansey DKW, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: An update. J Transl Med 2020; 18(1): 42.
[http://dx.doi.org/10.1186/s12967-020-02234-x] [PMID: 32000804]
[118]
Lv Y, Li XJ, Wang HP, Liu B, Chen W, Zhang L. TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs. Iran J Basic Med Sci 2020; 23(8): 1012-9.
[PMID: 32952947]
[119]
Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2007; 77(1): 134-42.
[http://dx.doi.org/10.1093/cvr/cvm025] [PMID: 18006467]
[120]
Zhang Y, Ou L, Cheng Z, Jia X, Gao N, Kong D. Genetic modification of bone marrow mesenchymal stem cells with human CXCR4 gene and migration in vitro. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih 2009; 26(3): 595-600.
[PMID: 19634680]
[121]
Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007; 25(8): 2118-27.
[http://dx.doi.org/10.1634/stemcells.2006-0771] [PMID: 17478584]
[122]
Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20(6): 661-9.
[http://dx.doi.org/10.1096/fj.05-5211com] [PMID: 16581974]
[123]
Stender S, Murphy M, O’Brien T, et al. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 2007; 13: 93-9.
[http://dx.doi.org/10.22203/eCM.v013a10] [PMID: 17538898]
[124]
Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S. Multipotent mesenchymal stromal cells: Optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy 2008; 10(8): 815-23.
[http://dx.doi.org/10.1080/14653240802474307] [PMID: 19058061]
[125]
Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H. Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 2008; 15(7): 537-44.
[http://dx.doi.org/10.1038/gt.2008.9] [PMID: 18256695]
[126]
Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 2005; 18(6): 383-9.
[http://dx.doi.org/10.1002/nbm.970] [PMID: 16013087]
[127]
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology 2019; 30(50): 502003.
[http://dx.doi.org/10.1088/1361-6528/ab4241] [PMID: 31491782]
[128]
Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003; 107(16): 2134-9.
[http://dx.doi.org/10.1161/01.CIR.0000062649.63838.C9] [PMID: 12695305]
[129]
Schächinger V, Assmus B, Honold J, et al. Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy. Clin Res Cardiol 2006; 95(1): 13-22.
[http://dx.doi.org/10.1007/s00392-006-0314-x] [PMID: 16598441]
[130]
Numaguchi Y, Sone T, Okumura K, et al. The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 2006; 114(1_supplement) (Suppl.). : I114-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.000588 ] [PMID: 16820559]
[131]
Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103(5): 634-7.
[http://dx.doi.org/10.1161/01.CIR.103.5.634] [PMID: 11156872]
[132]
Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003; 107(7): 1024-32.
[http://dx.doi.org/10.1161/01.CIR.0000051460.85800.BB] [PMID: 12600917]
[133]
Xu S, Zhu J, Yu L, Fu G. Endothelial progenitor cells: Current development of their paracrine factors in cardiovascular therapy. J Cardiovasc Pharmacol 2012; 59(4): 387-96.
[http://dx.doi.org/10.1097/FJC.0b013e3182440338] [PMID: 22157259]
[134]
Muscari C, Gamberini C, Basile I, et al. Comparison between culture conditions improving growth and differentiation of blood and bone marrow cells committed to the endothelial cell lineage. Biol Proced Online 2010; 12(1): 89-106.
[http://dx.doi.org/10.1007/s12575-009-9023-y] [PMID: 21406067]
[135]
Rufaihah AJ, Vaibavi SR, Plotkin M, et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 2013; 34(33): 8195-202.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.031] [PMID: 23891519]
[136]
Zheng X-h, Chen Z-g. Vascularized strategy for tissue-engineered bone. Chinese Journal of Tissue Engineering Research 2013; 17(15): 2786.
[137]
Zhang X, Wei M, Zhu W, Han B. Combined transplantation of endothelial progenitor cells and mesenchymal stem cells into a rat model of isoproterenol-induced myocardial injury. Arch Cardiovasc Dis 2008; 101(5): 333-42.
[http://dx.doi.org/10.1016/j.acvd.2008.05.002] [PMID: 18656092]
[138]
Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005; 65(3): 321-9.
[http://dx.doi.org/10.1002/ccd.20406] [PMID: 15954106]
[139]
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 2016; 163: 94-108.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.013] [PMID: 27063403]
[140]
Mahmood TA, de Jong R, Riesle J, Langer R, van Blitterswijk CA. Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Exp Cell Res 2004; 301(2): 179-88.
[http://dx.doi.org/10.1016/j.yexcr.2004.07.027] [PMID: 15530854]
[141]
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface 2017; 14(127): 20160877.
[http://dx.doi.org/10.1098/rsif.2016.0877] [PMID: 28202590]
[142]
Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 2012; 12(10): 1347-60.
[http://dx.doi.org/10.1517/14712598.2012.707181] [PMID: 22784238]
[143]
Dean DM, Napolitano AP, Youssef J, Morgan JR. Rods, tori, and honeycombs: The directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 2007; 21(14): 4005-12.
[http://dx.doi.org/10.1096/fj.07-8710com] [PMID: 17627028]
[144]
Fukuda J, Nakazawa K. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Tissue Eng 2005; 11(7-8): 1254-62.
[http://dx.doi.org/10.1089/ten.2005.11.1254] [PMID: 16144461]
[145]
Kelm JM, Fussenegger M. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 2004; 22(4): 195-202.
[http://dx.doi.org/10.1016/j.tibtech.2004.02.002] [PMID: 15038925]
[146]
Kunz-Schughart LA, Schroeder JA, Wondrak M, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol 2006; 290(5): C1385-98.
[http://dx.doi.org/10.1152/ajpcell.00248.2005] [PMID: 16601149]
[147]
Desroches BR, Zhang P, Choi BR, et al. Functional scaffold-free 3-D cardiac microtissues: A novel model for the investigation of heart cells. Am J Physiol Heart Circ Physiol 2012; 302(10): H2031-42.
[http://dx.doi.org/10.1152/ajpheart.00743.2011] [PMID: 22427522]
[148]
Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat 1952; 86(3): 287-301.
[PMID: 12980879]
[149]
Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 2015; 360(2): 297-307.
[http://dx.doi.org/10.1007/s00441-014-2055-x] [PMID: 25749992]
[150]
Lam MT, Longaker MT. Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med 2012; 6Suppl 3. (0 3): s80-6.
[http://dx.doi.org/10.1002/term.1499]
[151]
Tunma S, Inthanon K, Chaiwong C, Pumchusak J, Wongkham W, Boonyawan D. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma. Cytotechnology 2013; 65(1): 119-34.
[http://dx.doi.org/10.1007/s10616-012-9467-9] [PMID: 22760551]
[152]
Lee JH, Han YS, Lee SH. Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol Ther 2016; 24(3): 260-7.
[http://dx.doi.org/10.4062/biomolther.2015.146] [PMID: 26869524]
[153]
Bartosh TJ, Ylöstalo JH, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci USA 2010; 107(31): 13724-9.
[http://dx.doi.org/10.1073/pnas.1008117107] [PMID: 20643923]
[154]
Traverse JH, Henry TD, Dib N, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci 2019; 4(6): 659-69.
[http://dx.doi.org/10.1016/j.jacbts.2019.07.012] [PMID: 31709316]
[155]
Serpooshan V, Zhao M, Metzler SA, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 2013; 34(36): 9048-55.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.017] [PMID: 23992980]
[156]
Liau B, Christoforou N, Leong KW, Bursac N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 2011; 32(35): 9180-7.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.050] [PMID: 21906802]
[157]
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook. Adv Drug Deliv Rev 2016; 96: 54-76.
[http://dx.doi.org/10.1016/j.addr.2015.04.021] [PMID: 25962984]
[158]
Chen J, Zhan Y, Wang Y, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater 2018; 80: 154-68.
[http://dx.doi.org/10.1016/j.actbio.2018.09.013] [PMID: 30218777]
[159]
McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res 2003; 66A(3): 586-95.
[http://dx.doi.org/10.1002/jbm.a.10504] [PMID: 12918042]
[160]
Wang Q, Wang H, Li Z, Wang Y, Wu X, Tan Y. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med 2017; 21(9): 1751-66.
[http://dx.doi.org/10.1111/jcmm.13097] [PMID: 28244640]
[161]
Carrier RL, Papadaki M, Rupnick M, et al. Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999; 64(5): 580-9.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990905)64:5<580:AID-BIT8>3.0.CO;2-X] [PMID: 10404238]
[162]
Rane AA, Chuang JS, Shah A, et al. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS One 2011; 6(6): e21571.
[http://dx.doi.org/10.1371/journal.pone.0021571] [PMID: 21731777]
[163]
Fujimoto KL, Tobita K, Guan J, et al. Placement of an elastic biodegradable cardiac patch on a subacute infarcted heart leads to cellularization with early developmental cardiomyocyte characteristics. J Card Fail 2012; 18(7): 585-95.
[http://dx.doi.org/10.1016/j.cardfail.2012.05.006] [PMID: 22748493]
[164]
D’Amore A, Yoshizumi T, Luketich SK, et al. Bi-layered polyurethane-extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016; 107: 1-14.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.039] [PMID: 27579776]
[165]
Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991; 12(3): 292-304.
[http://dx.doi.org/10.1016/0142-9612(91)90037-B] [PMID: 1649646]
[166]
Bejleri D, Streeter BW, Nachlas ALY, et al. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 2018; 7(23): 1800672.
[http://dx.doi.org/10.1002/adhm.201800672] [PMID: 30379414]
[167]
Ondeck MG, Engler AJ. Mechanical Characterization of a Dynamic and Tunable Methacrylated Hyaluronic Acid Hydrogel. J Biomech Eng 2016; 138(2): 021003.
[http://dx.doi.org/10.1115/1.4032429] [PMID: 26746491]
[168]
Curtis A, Wilkinson C. Topographical control of cells. Biomaterials 1997; 18(24): 1573-83.
[http://dx.doi.org/10.1016/S0142-9612(97)00144-0] [PMID: 9613804]
[169]
Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW. Topographical control of cell behaviour: II. Multiple grooved substrata. Development 1990; 108(4): 635-44.
[http://dx.doi.org/10.1242/dev.108.4.635] [PMID: 2387239]
[170]
Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017; 112: 264-74.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.026] [PMID: 27770630]
[171]
Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 2011; 98B(2): 379-86.
[http://dx.doi.org/10.1002/jbm.b.31862] [PMID: 21681953]
[172]
Tsang KMC, Annabi N, Ercole F, et al. Facile one-step micropatterning using photodegradable gelatin hydrogels for improved cardiomyocyte organization and alignment. Adv Funct Mater 2015; 25(6): 977-86.
[http://dx.doi.org/10.1002/adfm.201403124] [PMID: 26327819]
[173]
Bian W, Jackman CP, Bursac N. Controlling the structural and functional anisotropy of engineered cardiac tissues. Biofabrication 2014; 6(2): 024109-24109.
[http://dx.doi.org/10.1088/1758-5082/6/2/024109] [PMID: 24717534]
[174]
Zong X, Bien H, Chung C, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005; 26(26): 5330-8.
[http://dx.doi.org/10.1016/j.biomaterials.2005.01.052] [PMID: 15814131]
[175]
Neal RA, Jean A, Park H, et al. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Eng Part A 2013; 19(5-6): 793-807.
[http://dx.doi.org/10.1089/ten.tea.2012.0330] [PMID: 23190320]
[176]
Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 2018; 10(2): 025003.
[http://dx.doi.org/10.1088/1758-5090/aaa15d] [PMID: 29235444]
[177]
Antzelevitch C, Burashnikov A. Overview of basic mechanisms of cardiac arrhythmia. Card Electrophysiol Clin 2011; 3(1): 23-45.
[http://dx.doi.org/10.1016/j.ccep.2010.10.012] [PMID: 21892379]
[178]
Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat Mater 2014; 13(6): 558-69.
[http://dx.doi.org/10.1038/nmat3980] [PMID: 24845995]
[179]
Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater 2016; 41: 133-46.
[http://dx.doi.org/10.1016/j.actbio.2016.05.027] [PMID: 27212425]
[180]
Norahan MH, Amroon M, Ghahremanzadeh R, Mahmoodi M, Baheiraei N. Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering. J Biomed Mater Res A 2019; 107(1): 204-19.
[http://dx.doi.org/10.1002/jbm.a.36555] [PMID: 30371973]
[181]
Wang X, Wang L, Wu Q, et al. Chitosan/Calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces 2019; 11(1): 1449-68.
[http://dx.doi.org/10.1021/acsami.8b17754] [PMID: 30543278]
[182]
Tian B, Lieber CM. Nanowired bioelectric interfaces. Chem Rev 2019; 119(15): 9136-52.
[http://dx.doi.org/10.1021/acs.chemrev.8b00795] [PMID: 30995019]
[183]
Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 2010; 329(5993): 830-4.
[http://dx.doi.org/10.1126/science.1192033] [PMID: 20705858]
[184]
Dai X, Zhou W, Gao T, Liu J, Lieber CM. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat Nanotechnol 2016; 11(9): 776-82.
[http://dx.doi.org/10.1038/nnano.2016.96] [PMID: 27347837]
[185]
Bolonduro OA, Duffy BM, Rao AA, Black LD, Timko BP. From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Res 2020; 13(5): 1253-67.
[http://dx.doi.org/10.1007/s12274-020-2682-3]
[186]
Gao LR. Progress and mechanism of stem cell transplantation in the treatment of ischemic heart disease. J Clin Rehabil Tissue Eng Res 2007; (46): 9346-52. [in Chinese
[187]
Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 2015; 13(1): 162.
[http://dx.doi.org/10.1186/s12916-015-0399-z] [PMID: 26162993]
[188]
Kim SH, Cho JH, Lee YH, et al. Improvement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with anterior wall ST-Segment elevation myocardial infarction. Cardiovasc Drugs Ther 2018; 32(4): 329-38.
[http://dx.doi.org/10.1007/s10557-018-6804-z] [PMID: 29956042]
[189]
Florea V, Rieger AC, DiFede DL, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study). Circ Res 2017; 121(11): 1279-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311827] [PMID: 28923793]
[190]
Xu J, Xiong YY, Li Q, et al. Optimization of timing and times for administration of atorvastatin-pretreated mesenchymal stem cells in a preclinical model of acute myocardial infarction. Stem Cells Transl Med 2019; 8(10): 1068-83.
[http://dx.doi.org/10.1002/sctm.19-0013] [PMID: 31245934]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy