Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Rational Design and Synthesis of Novel Benzimidazole Derivatives as Potential β-Glucosidase Inhibitors

Author(s): Xu Liu, Ge Sun, Fengxing Li, Xia Feng, Tongguan Jia, Cheng Luo, Shijie Chen and Hua Chen*

Volume 21, Issue 13, 2024

Published on: 26 September, 2023

Page: [2674 - 2683] Pages: 10

DOI: 10.2174/1570180820666230822141514

Price: $65

Abstract

Background: β-Glucosidase has a variety of biological functions. A structural model for a potential β-glucosidase inhibitor has been proposed in the studies.

Objective: A series f new diaryl derivatives linked through benzimidazole have been randomly and rationally designed, synthesized, and evaluated for their inhibitory activities against β-glucosidase (almond). The proposed structural model provides a new strategy for the design of potent β-glucosidase inhibitors.

Methods: According to the model, a series of benzimidazole derivatives were designed and synthesized, and their inhibitory activity, Ki value, inhibitory type, and binding mode analysis (PDB ID: 2J7C) on β- glucosidase (almond) were evaluated.

Results: Two compounds 7b and 7d were the best inhibitors with IC50 values of 7.86 μM and 3.52 μM, respectively. Their Ki values were calculated to be 9.91 μM and 5.81 μM, respectively.

Conclusion: The SAR analysis suggested that such benzimidazole derivatives might bind to the active site of β-glucosidase mainly through hydrogen bonds on o-trihydroxyphenol; the additional phenyl ring on the other side towards the solvent-exposed region played a very important role in improving their inhibitory activity against β-glucosidase.

[1]
Febbraio, F.; Ionata, E.; Marcolongo, L. Forty years of study on the thermostable β‐glycosidase from S. solfataricus: Production, biochemical characterization and biotechnological applications. Biotechnol. Appl. Biochem., 2020, 67(4), 602-618.
[http://dx.doi.org/10.1002/bab.1982] [PMID: 32621790]
[2]
Martínez-Bailén, M.; Jiménez-Ortega, E.; Carmona, A.T.; Robina, I.; Sanz-Aparicio, J.; Talens-Perales, D.; Polaina, J.; Matassini, C.; Cardona, F.; Moreno-Vargas, A.J. Structural basis of the inhibition of GH1 β-glucosidases by multivalent pyrrolidine iminosugars. Bioorg. Chem., 2019, 89, 103026.
[http://dx.doi.org/10.1016/j.bioorg.2019.103026] [PMID: 31226649]
[3]
Futerman, A.H.; van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol., 2004, 5(7), 554-565.
[http://dx.doi.org/10.1038/nrm1423] [PMID: 15232573]
[4]
Matassini, C.; Warren, J.; Wang, B.; Goti, A.; Cardona, F.; Morrone, A.; Bols, M. Imino‐ and Azasugar protonation inside human acid β‐glucosidase, the enzyme that is defective in gaucher disease. Angew. Chem. Int. Ed., 2020, 59(26), 10466-10469.
[http://dx.doi.org/10.1002/anie.202002850] [PMID: 32191378]
[5]
Kato, A.; Nakagome, I.; Kanekiyo, U.; Lu, T.T.; Li, Y.X.; Yoshimura, K.; Kishida, M.; Shinzawa, K.; Yoshida, T.; Tanaka, N.; Jia, Y.M.; Nash, R.J.; Fleet, G.W.J.; Yu, C.Y. 5- C -Branched Deoxynojirimycin: Strategy for designing a 1-Deoxynojirimycin-based pharmacological chaperone with a nanomolar affinity for pompe disease. J. Med. Chem., 2022, 65(3), 2329-2341.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01673] [PMID: 35072486]
[6]
Wang, J.Z.; Cheng, B.; Kato, A.; Kise, M.; Shimadate, Y.; Jia, Y.M.; Li, Y.X.; Fleet, G.W.J.; Yu, C.Y. Design, synthesis and glycosidase inhibition of C-4 branched LAB and DAB derivatives. Eur. J. Med. Chem., 2022, 233, 114230.
[http://dx.doi.org/10.1016/j.ejmech.2022.114230] [PMID: 35255314]
[7]
Clemente, F.; Matassini, C.; Giachetti, S.; Goti, A.; Morrone, A.; Martínez-Bailén, M.; Orta, S.; Merino, P.; Cardona, F. Piperidine Azasugars Bearing Lipophilic Chains: Stereoselective Synthesis and Biological Activity as Inhibitors of Glucocerebrosidase (GCase). J. Org. Chem., 2021, 86(18), 12745-12761.
[http://dx.doi.org/10.1021/acs.joc.1c01308] [PMID: 34469155]
[8]
Zhang, Y.; Zhu, K.; Miao, X.; Hu, X.; Wang, T. Identification of β -glucosidase 1 as a biomarker and its high expression in hepatocellular carcinoma is associated with resistance to chemotherapy drugs. Biomarkers, 2016, 21(3), 249-256.
[http://dx.doi.org/10.3109/1354750X.2015.1134662] [PMID: 26849828]
[9]
Zhou, X.; Huang, Z.; Yang, H.; Jiang, Y.; Wei, W.; Li, Q.; Mo, Q.; Liu, J. β-Glucosidase inhibition sensitizes breast cancer to chemotherapy. Biomed. Pharmacother., 2017, 91, 504-509.
[http://dx.doi.org/10.1016/j.biopha.2017.04.113] [PMID: 28478274]
[10]
Compain, P.; Martin, O.R. Iminosugars: From Synthesis to Therapeutic Applications; Wiley, 2007.
[11]
Gloster, T.M.; Davies, G.J. Glycosidase inhibition: Assessing mimicry of the transition state. Org. Biomol. Chem., 2010, 8(2), 305-320.
[http://dx.doi.org/10.1039/B915870G] [PMID: 20066263]
[12]
Stutz, A.E. Iminosugars as glycosidase inhibitors, Nojirimycin and Beyond; Wiley-VCH, 1999.
[13]
Mousavifar, L.; Roy, R. Recent development in the design of small ‘drug-like’ and nanoscale glycomimetics against Escherichia coli infections. Drug Discov. Today, 2021, 26(9), 2124-2137.
[http://dx.doi.org/10.1016/j.drudis.2021.02.025] [PMID: 33667654]
[14]
Panday, N.; Canac, Y.; Vasella, A. Very strong inhibition of glucosidases byC(2)-substituted tetrahydroimidazopyridines. Helv. Chim. Acta, 2000, 83(1), 58-79.
[http://dx.doi.org/10.1002/(SICI)1522-2675(20000119)83:1<58::AID-HLCA58>3.0.CO;2-K]
[15]
Li, T.; Guo, L.; Zhang, Y.; Wang, J.; Zhang, Z.; Li, J.; Zhang, W.; Lin, J.; Zhao, W.; Wang, P.G. Structure–activity relationships in a series of C2-substituted gluco-configured tetrahydroimidazopyridines as β-glucosidase inhibitors. Bioorg. Med. Chem., 2011, 19(7), 2136-2144.
[http://dx.doi.org/10.1016/j.bmc.2011.02.043] [PMID: 21420868]
[16]
Dubost, E.; Tschamber, T.; Streith, J. Increasing the inhibitory potency of l-arabino-imidazolo-[1,2]-piperidinose towards β-d-glucosidase and β-d-galactosidase. Tetrahedron Lett., 2003, 44(18), 3667-3670.
[http://dx.doi.org/10.1016/S0040-4039(03)00696-8]
[17]
Simone, M.I.; Wood, A.; Campkin, D.; Kiefel, M.J.; Houston, T.A. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur. J. Med. Chem., 2022, 235, 114282.
[http://dx.doi.org/10.1016/j.ejmech.2022.114282] [PMID: 35367706]
[18]
Gloster, T.M.; Roberts, S.; Perugino, G.; Rossi, M.; Moracci, M.; Panday, N.; Terinek, M.; Vasella, A.; Davies, G.J. Structural, kinetic, and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors. Biochemistry, 2006, 45(39), 11879-11884.
[http://dx.doi.org/10.1021/bi060973x] [PMID: 17002288]
[19]
Yan, L.; Lui, H.; Sun, J.; Gao, L.; Lu, X.; Li, X.; Chen, H. Synthesis of tricyclic benzimidazole-iminosugars as potential glycosidase inhibitors via a Mitsunobu reaction. Carbohydr. Res., 2019, 485, 107807.
[http://dx.doi.org/10.1016/j.carres.2019.107807] [PMID: 31520817]
[20]
Liu, X.; Li, F.; Su, L.; Wang, M.; Jia, T.; Xu, X.; Li, X.; Wei, C.; Luo, C.; Chen, S.; Chen, H. Design and synthesis of novel benzimidazole-iminosugars linked a substituted phenyl group and their inhibitory activities against β-glucosidase. Bioorg. Chem., 2022, 127, 106016.
[http://dx.doi.org/10.1016/j.bioorg.2022.106016] [PMID: 35841671]
[21]
Kato, A.; Nakagome, I.; Kise, M.; Yoshimura, K.; Tanaka, N.; Nash, R.J.; Fleet, G.W.J.; Kobayashi, Y.; Ikeda, H.; Okada, T.; Toyooka, N. Design and pharmacological chaperone effects of N -(4′-Phenylbutyl)-DAB derivatives targeting the lipophilic pocket of lysosomal acid α-glucosidase. J. Med. Chem., 2023, 66(13), 9023-9039.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00637] [PMID: 37314161]
[22]
Karade, S.S.; Franco, E.J.; Rojas, A.C.; Hanrahan, K.C.; Kolesnikov, A.; Yu, W.; MacKerell, A.D., Jr; Hill, D.C.; Weber, D.J.; Brown, A.N.; Treston, A.M.; Mariuzza, R.A. Structure-based design of potent iminosugar inhibitors of endoplasmic reticulum α-glucosidase I with Anti-SARS-CoV-2 activity. J. Med. Chem., 2023, 66(4), 2744-2760.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01750] [PMID: 36762932]
[23]
Adegboye, A.A.; Khan, K.M.; Salar, U.; Aboaba, S.A. Kanwal; Chigurupati, S.; Fatima, I.; Taha, M.; Wadood, A.; Mohammad, J.I.; Khan, H.; Perveen, S. 2-Aryl benzimidazoles: Synthesis, in vitro α-amylase inhibitory activity, and molecular docking study. Eur. J. Med. Chem., 2018, 150, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.011] [PMID: 29533872]
[24]
Özil, M.; Emirik, M.; Beldüz, A.; Ülker, S. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorg. Med. Chem., 2016, 24(21), 5103-5114.
[http://dx.doi.org/10.1016/j.bmc.2016.08.024] [PMID: 27576293]
[25]
Yoshino, M.; Murakami, K. A graphical method for determining inhibition constants. J. Enzyme Inhib. Med. Chem., 2009, 24(6), 1288-1290.
[http://dx.doi.org/10.3109/14756360902829766] [PMID: 19912063]
[26]
Li, P.; Ma, X.H.; Dong, Y.M.; Jin, L.; Chen, J. α-Glucosidase immobilization on polydopamine-coated cellulose filter paper and enzyme inhibitor screening. Anal. Biochem., 2020, 605, 113832.
[http://dx.doi.org/10.1016/j.ab.2020.113832] [PMID: 32717184]
[27]
Glide, version 6.9, Schrödinger, LLC, New York, NY., 2015.
[28]
Maestro, version 10.4, Schrödinger, LLC, New York, NY. 2015.
[29]
Gloster, T.M.; Meloncelli, P.; Stick, R.V.; Zechel, D.; Vasella, A.; Davies, G.J. Glycosidase inhibition: An assessment of the binding of 18 putative transition-state mimics. J. Am. Chem. Soc., 2007, 129(8), 2345-2354.
[http://dx.doi.org/10.1021/ja066961g] [PMID: 17279749]

© 2025 Bentham Science Publishers | Privacy Policy