Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis

Author(s): Juhai Chen, Fengyan Xu, Xiangang Mo*, Yiju Cheng, Lan Wang, Hui Yang, Jiajing Li, Shiyue Zhang, Shuping Zhang, Nannan Li and Yang Cao

Volume 27, Issue 9, 2024

Published on: 28 September, 2023

Page: [1344 - 1357] Pages: 14

DOI: 10.2174/1386207326666230822122045

Price: $65

Abstract

Background: The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans.

Objective: This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS).

Methods: We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles.

Results: From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc.

Conclusion: A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.

Graphical Abstract

[1]
Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell, 2022, 185(10), 1630-1645.
[http://dx.doi.org/10.1016/j.cell.2022.04.004] [PMID: 35504280]
[2]
Jeevarethinam, A.; Venuraju, S.; Dumo, A.; Ruano, S.; Mehta, V.S.; Rosenthal, M.; Nair, D.; Cohen, M.; Darko, D.; Lahiri, A.; Rakhit, R. Relationship between carotid atherosclerosis and coronary artery calcification in asymptomatic diabetic patients: A prospective multicenter study. Clin. Cardiol., 2017, 40(9), 752-758.
[http://dx.doi.org/10.1002/clc.22727] [PMID: 28543093]
[3]
Bonaca, M.P.; Nault, P.; Giugliano, R.P.; Keech, A.C.; Pineda, A.L.; Kanevsky, E.; Kuder, J.; Murphy, S.A.; Jukema, J.W.; Lewis, B.S.; Tokgozoglu, L.; Somaratne, R.; Sever, P.S.; Pedersen, T.R.; Sabatine, M.S. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: Insights from the fourier trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation., 2018, 137(4), 338-350.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032235] [PMID: 29133605]
[4]
Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; Alla, F.; Alvis-Guzman, N.; Amrock, S.; Ansari, H.; Ärnlöv, J.; Asayesh, H.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Banerjee, A.; Barac, A.; Bärnighausen, T.; Barregard, L.; Bedi, N.; Belay Ketema, E.; Bennett, D.; Berhe, G.; Bhutta, Z.; Bitew, S.; Carapetis, J.; Carrero, J.J.; Malta, D.C.; Castañeda-Orjuela, C.A.; Castillo-Rivas, J.; Catalá-López, F.; Choi, J.Y.; Christensen, H.; Cirillo, M.; Cooper, L., Jr; Criqui, M.; Cundiff, D.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; Dharmaratne, S.; Dorairaj, P.; Dubey, M.; Ehrenkranz, R.; El Sayed Zaki, M.; Faraon, E.J.A.; Esteghamati, A.; Farid, T.; Farvid, M.; Feigin, V.; Ding, E.L.; Fowkes, G.; Gebrehiwot, T.; Gillum, R.; Gold, A.; Gona, P.; Gupta, R.; Habtewold, T.D.; Hafezi-Nejad, N.; Hailu, T.; Hailu, G.B.; Hankey, G.; Hassen, H.Y.; Abate, K.H.; Havmoeller, R.; Hay, S.I.; Horino, M.; Hotez, P.J.; Jacobsen, K.; James, S.; Javanbakht, M.; Jeemon, P.; John, D.; Jonas, J.; Kalkonde, Y.; Karimkhani, C.; Kasaeian, A.; Khader, Y.; Khan, A.; Khang, Y.H.; Khera, S.; Khoja, A.T.; Khubchandani, J.; Kim, D.; Kolte, D.; Kosen, S.; Krohn, K.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Larsson, A.; Linn, S.; Lopez, A.; Lotufo, P.A.; El Razek, H.M.A.; Malekzadeh, R.; Mazidi, M.; Meier, T.; Meles, K.G.; Mensah, G.; Meretoja, A.; Mezgebe, H.; Miller, T.; Mirrakhimov, E.; Mohammed, S.; Moran, A.E.; Musa, K.I.; Narula, J.; Neal, B.; Ngalesoni, F.; Nguyen, G.; Obermeyer, C.M.; Owolabi, M.; Patton, G.; Pedro, J.; Qato, D.; Qorbani, M.; Rahimi, K.; Rai, R.K.; Rawaf, S.; Ribeiro, A.; Safiri, S.; Salomon, J.A.; Santos, I.; Santric Milicevic, M.; Sartorius, B.; Schutte, A.; Sepanlou, S.; Shaikh, M.A.; Shin, M.J.; Shishehbor, M.; Shore, H.; Silva, D.A.S.; Sobngwi, E.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadele Atnafu, N.; Tesfay, F.; Thakur, J.S.; Thrift, A.; Topor-Madry, R.; Truelsen, T.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.; Vasankari, T.; Vlassov, V.; Vollset, S.E.; Wakayo, T.; Watkins, D.; Weintraub, R.; Werdecker, A.; Westerman, R.; Wiysonge, C.S.; Wolfe, C.; Workicho, A.; Xu, G.; Yano, Y.; Yip, P.; Yonemoto, N.; Younis, M.; Yu, C.; Vos, T.; Naghavi, M.; Murray, C. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol., 2017, 70(1), 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[5]
Zhao, F.; Gao, H.; Gao, Y.; Zhao, Z.; Li, J.; Ning, F.; Zhang, X.; Wang, Z.; Yu, A.; Guo, Y.; Sun, B. A correlational study on cerebral microbleeds and carotid atherosclerosis in patients with ischemic stroke. J. Stroke Cerebrovasc. Dis., 2018, 27(8), 2228-2234.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.009] [PMID: 29759940]
[6]
Vouillarmet, J; Marsot, C; Maucort-Boulch, D Vascular events and carotid atherosclerosis: A 5 year prospective cohort study in patients with type 2 diabetes and a contemporary cardiovascular prevention treatment. J. Diabetes Res., 2019, 2019, 9059761.
[http://dx.doi.org/10.1155/2019/9059761] [PMID: 31934592]
[7]
Frodermann, V.; Nahrendorf, M. Macrophages and cardiovascular health. Physiol. Rev., 2018, 98(4), 2523-2569.
[http://dx.doi.org/10.1152/physrev.00068.2017] [PMID: 30156496]
[8]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature., 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[9]
Tabas, I. 2016 Russell ross memorial lecture in vascular biology. Arterioscler. Thromb. Vasc. Biol., 2017, 37(2), 183-189.
[http://dx.doi.org/10.1161/ATVBAHA.116.308036] [PMID: 27979856]
[10]
Gerrity, R.G.; Naito, H.K.; Richardson, M.; Schwartz, C.J. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am. J. Pathol., 1979, 95(3), 775-792.
[PMID: 453335]
[11]
Swirski, F.K.; Pittet, M.J.; Kircher, M.F.; Aikawa, E.; Jaffer, F.A.; Libby, P.; Weissleder, R. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10340-10345.
[http://dx.doi.org/10.1073/pnas.0604260103] [PMID: 16801531]
[12]
Potteaux, S.; Gautier, E.L.; Hutchison, S.B.; van Rooijen, N.; Rader, D.J.; Thomas, M.J.; Sorci-Thomas, M.G.; Randolph, G.J. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe–/– mice during disease regression. J. Clin. Invest., 2011, 121(5), 2025-2036.
[http://dx.doi.org/10.1172/JCI43802] [PMID: 21505265]
[13]
Afanasieva, O.I.; Filatova, A.Y.; Arefieva, T.I.; Klesareva, E.A.; Tyurina, A.V.; Radyukhina, N.V.; Ezhov, M.V.; Pokrovsky, S.N. The association of lipoprotein(a) and circulating monocyte subsets with severe coronary atherosclerosis. J. Cardiovasc. Dev. Dis., 2021, 8(6), 63.
[http://dx.doi.org/10.3390/jcdd8060063] [PMID: 34206012]
[14]
Vogel, M.E.; Idelman, G.; Konaniah, E.S.; Zucker, S.D. Bilirubin prevents atherosclerotic lesion formation in low‐density lipoprotein receptor‐deficient mice by inhibiting endothelial VCAM‐1 and ICAM‐1 signaling. J. Am. Heart Assoc., 2017, 6(4), e004820.
[http://dx.doi.org/10.1161/JAHA.116.004820] [PMID: 28365565]
[15]
Munjal, A; Khandia, R. Atherosclerosis: Orchestrating cells and biomolecules involved in its activation and inhibition. Adv. Protein. Chem. Struct. Biol., 2020, 120, 85-122.
[http://dx.doi.org/10.1016/bs.apcsb.2019.11.002] [PMID: 32085889]
[16]
Chen, Q.; Yin, Q.; Song, J.; Liu, C.; Chen, H.; Li, S. Identification of monocyte-associated genes as predictive biomarkers of heart failure after acute myocardial infarction. BMC Med. Genomics., 2021, 14(1), 44.
[http://dx.doi.org/10.1186/s12920-021-00890-6] [PMID: 33563285]
[17]
Langfelder, P; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform., 2008, 9, 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[18]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[19]
Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive venn diagram viewer. BMC Bioinform., 2014, 15(1), 293.
[http://dx.doi.org/10.1186/1471-2105-15-293] [PMID: 25176396]
[20]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[21]
Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[22]
Huang, ML; Hung, YH; Lee, WM SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci. World J., 2014, 2014, 795624.
[http://dx.doi.org/10.1155/2014/795624] [PMID: 25295306]
[23]
Robin, X; Turck, N.; Hainard, A pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform, 2011, 2014, 795624.
[http://dx.doi.org/10.1186/1471-2105-12-77] [PMID: 21414208]
[24]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The string database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[25]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome. Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[26]
Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res., 2020, 48(W1), W244-W251.
[http://dx.doi.org/10.1093/nar/gkaa467] [PMID: 32484539]
[27]
Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10), e0206239.
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[28]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[29]
Khan, K; Kumar, V; Colombo, E Intelligent consensus predictions of bioconcentration factor of pharmaceuticals using 2D and fragment based descriptors. Environ Int., 2022, 170, 107625.
[http://dx.doi.org/10.1016/j.envint.2022.107625] [PMID: 36375281]
[30]
Niu, N.; Xu, S.; Xu, Y.; Little, P.J.; Jin, Z.G. Targeting mechanosensitive transcription factors in atherosclerosis. Trends. Pharmacol. Sci., 2019, 40(4), 253-266.
[http://dx.doi.org/10.1016/j.tips.2019.02.004] [PMID: 30826122]
[31]
Youn, S.; Park, K.K. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int. J. Mol. Sci., 2015, 16(12), 11804-11833.
[http://dx.doi.org/10.3390/ijms160511804] [PMID: 26006249]
[32]
Chen, K.C.; Hsieh, I.C.; Hsi, E.; Wang, Y.S.; Dai, C.Y.; Chou, W.W.; Juo, S.H.H. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J. Cell Sci., 2011, 124(23), 4115-4124.
[http://dx.doi.org/10.1242/jcs.092767] [PMID: 22135361]
[33]
Chen, K.C.; Liao, Y.C.; Hsieh, I.C.; Wang, Y.S.; Hu, C.Y.; Juo, S.H.H. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: Novel mechanisms for cardiovascular diseases. J. Mol. Cell. Cardiol., 2012, 52(3), 587-595.
[http://dx.doi.org/10.1016/j.yjmcc.2011.12.005] [PMID: 22226905]
[34]
Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of LncRNA ANRIL and miR‐181b on the inflammation‐relevant coronary artery disease through mediating NF‐κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075.
[http://dx.doi.org/10.1111/jcmm.13790] [PMID: 30079603]
[35]
Wang, M.; Liu, Y.; Li, C.; Zhang, Y.; Zhou, X.; Lu, C. Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. Am. J. Transl. Res., 2019, 11(3), 1827-1834.
[PMID: 30972206]
[36]
Ning, W; Ma, Y; Li, S Shared molecular mechanisms between atherosclerosis and periodontitis by analyzing the transcriptomic alterations of peripheral blood monocytes. Comput. Math. Methods. Med., 2021, 2021, 1498431.
[http://dx.doi.org/10.1155/2021/1498431] [PMID: 34899963]
[37]
Gencer, S.; Evans, B.R.; van der Vorst, E.P.C.; Döring, Y.; Weber, C. Inflammatory chemokines in atherosclerosis. Cells, 2021, 10(2), 226.
[http://dx.doi.org/10.3390/cells10020226] [PMID: 33503867]
[38]
Maurer, M.; von Stebut, E. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol., 2004, 36(10), 1882-1886.
[http://dx.doi.org/10.1016/j.biocel.2003.10.019] [PMID: 15203102]
[39]
Lutgens, E.; Faber, B.; Schapira, K.; Evelo, C.T.A.; van Haaften, R.; Heeneman, S.; Cleutjens, K.B.J.M.; Bijnens, A.P.; Beckers, L.; Porter, J.G.; Mackay, C.R.; Rennert, P.; Bailly, V.; Jarpe, M.; Dolinski, B.; Koteliansky, V.; de Fougerolles, T.; Daemen, M.J.A.P. Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: Validation using a novel monocyte chemoattractant protein monoclonal antibody. Circulation, 2005, 111(25), 3443-3452.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.510073] [PMID: 15967845]
[40]
Tacke, F.; Alvarez, D.; Kaplan, T.J.; Jakubzick, C.; Spanbroek, R.; Llodra, J.; Garin, A.; Liu, J.; Mack, M.; van Rooijen, N.; Lira, S.A.; Habenicht, A.J.; Randolph, G.J. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest., 2007, 117(1), 185-194.
[http://dx.doi.org/10.1172/JCI28549] [PMID: 17200718]
[41]
Menten, P.; Wuyts, A.; Van Damme, J. Macrophage inflammatory protein-1. Cytokine. Growth. Factor. Rev., 2002, 13(6), 455-481.
[http://dx.doi.org/10.1016/S1359-6101(02)00045-X] [PMID: 12401480]
[42]
Schirmer, S.H.; Fledderus, J.O.; van der Laan, A.M.; van der Pouw-Kraan, T.C.T.M.; Moerland, P.D.; Volger, O.L.; Baggen, J.M.; Böhm, M.; Piek, J.J.; Horrevoets, A.J.G.; van Royen, N. Suppression of inflammatory signaling in monocytes from patients with coronary artery disease. J. Mol. Cell. Cardiol., 2009, 46(2), 177-185.
[http://dx.doi.org/10.1016/j.yjmcc.2008.10.029] [PMID: 19059264]
[43]
Komissarov, A.; Potashnikova, D.; Freeman, M.L.; Gontarenko, V.; Maytesyan, D.; Lederman, M.M.; Vasilieva, E.; Margolis, L. Driving T cells to human atherosclerotic plaques: CCL3/CCR5 and CX3CL1/CX3CR1 migration axes. Eur. J. Immunol., 2021, 51(7), 1857-1859.
[http://dx.doi.org/10.1002/eji.202049004] [PMID: 33772780]
[44]
Kim, H.S.; Ullevig, S.L.; Zamora, D.; Lee, C.F.; Asmis, R. Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc. Natl. Acad. Sci. USA., 2012, 109(41), E2803-E2812.
[http://dx.doi.org/10.1073/pnas.1212596109] [PMID: 22991462]
[45]
Kim, HS; Tavakoli, S; Piefer, LA Monocytic mkp 1 is a sensor of the metabolic environment and regulates function and phenotypic fate of monocyte derived macrophages in atherosclerosis. Sci Rep., 2016, 6, 34223.
[http://dx.doi.org/10.1038/srep34223] [PMID: 27670844]
[46]
Yang, H; Wang, H; Chavan, SS High mobility group box protein 1 (HMGB1): The prototypical endogenous danger molecule. Mol. Med., 2015, 21(Suppl 1), S6-S12.
[http://dx.doi.org/10.2119/molmed.2015.00087] [PMID: 26605648]
[47]
Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature., 2002, 418(6894), 191-195.
[http://dx.doi.org/10.1038/nature00858] [PMID: 12110890]
[48]
Andrassy, M.; Volz, H.C.; Riedle, N.; Gitsioudis, G.; Seidel, C.; Laohachewin, D.; Zankl, A.R.; Kaya, Z.; Bierhaus, A.; Giannitsis, E.; Katus, H.A.; Korosoglou, G. HMGB1 as a predictor of infarct transmurality and functional recovery in patients with myocardial infarction. J. Intern. Med., 2011, 270(3), 245-253.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02369.x] [PMID: 21362071]
[49]
Giovannini, S.; Tinelli, G.; Biscetti, F.; Straface, G.; Angelini, F.; Pitocco, D.; Mucci, L.; Landolfi, R.; Flex, A. Serum high mobility group box-1 and osteoprotegerin levels are associated with peripheral arterial disease and critical limb ischemia in type 2 diabetic subjects. Cardiovasc. Diabetol., 2017, 16(1), 99.
[http://dx.doi.org/10.1186/s12933-017-0581-z] [PMID: 28789654]
[50]
Biscetti, F.; Tinelli, G.; Rando, M.M.; Nardella, E.; Cecchini, A.L.; Angelini, F.; Straface, G.; Filipponi, M.; Arena, V.; Pitocco, D.; Gasbarrini, A.; Massetti, M.; Flex, A. Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population. Cardiovasc. Diabetol., 2021, 20(1), 114.
[http://dx.doi.org/10.1186/s12933-021-01304-8] [PMID: 34044825]
[51]
Jiang, J.F.; Zhou, Z.Y.; Liu, Y.Z.; Wu, L.; Nie, B.B.; Huang, L.; Zhang, C. Role of Sp1 in atherosclerosis. Mol. Biol. Rep., 2022, 49(10), 9893-9902.
[http://dx.doi.org/10.1007/s11033-022-07516-9] [PMID: 35715606]
[52]
Zahid, M.D.K.; Rogowski, M.; Ponce, C.; Choudhury, M.; Moustaid-Moussa, N.; Rahman, S.M. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol. Cell. Biochem., 2020, 463(1-2), 211-223.
[http://dx.doi.org/10.1007/s11010-019-03642-4] [PMID: 31686316]
[53]
Kong, J.; Liu, L.; Song, L. MicroRNA miR-34a-5p inhibition restrains oxidative stress injury of macrophages by targeting MDM4. Vascular., 2022, 31(3), 608-618.
[http://dx.doi.org/10.1177/17085381211069447] [PMID: 35226569]
[54]
Xu, Y.; Xu, Y.; Zhu, Y.; Sun, H.; Juguilon, C.; Li, F.; Fan, D.; Yin, L.; Zhang, Y. Macrophage miR-34a is a key regulator of cholesterol Efflux and atherosclerosis. Mol. Ther., 2020, 28(1), 202-216.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.008] [PMID: 31604677]
[55]
Cheng, X.; Kan, P.; Ma, Z.; Wang, Y.; Song, W.; Huang, C.; Zhang, B. Exploring the potential value of miR-148b-3p, miR-151b and miR-27b-3p as biomarkers in acute ischemic stroke. Biosci. Rep., 2018, 38(6), BSR20181033.
[http://dx.doi.org/10.1042/BSR20181033] [PMID: 30361294]
[56]
Urban, M.H.; Kreibich, N.; Gleiss, A.; Funk, G.C.; Hartl, S.; Burghuber, O.C. Effects of roflumilast on arterial stiffness in COPD (ELASTIC): A randomized trial. Respirology., 2021, 26(2), 153-160.
[http://dx.doi.org/10.1111/resp.13914] [PMID: 32725799]
[57]
Tuure, L.; Hämäläinen, M.; Moilanen, E. PDE4 inhibitor rolipram inhibits the expression of microsomal prostaglandin E synthase-1 by a mechanism dependent on MAP kinase phosphatase-1. Pharmacol. Res. Perspect., 2017, 5(6), e00363.
[http://dx.doi.org/10.1002/prp2.363] [PMID: 29226622]
[58]
Haidl, H.; Schlagenhauf, A.; Krebs, A.; Plank, H.; Wonisch, W.; Fengler, V.; Fiegl, A.; Hörl, G.; Koestenberger, M.; Wagner, T.; Tafeit, E.; Cvirn, G.; Hallström, S. The anticoagulant effects of ethyl pyruvate in whole blood samples. PLoS One., 2020, 15(10), e0240541.
[http://dx.doi.org/10.1371/journal.pone.0240541] [PMID: 33035271]
[59]
Gu, HF; Li, N; Xu, ZQ Chronic unpredictable mild stress promotes atherosclerosis via HMGB1/TLR4 mediated downregulation of PPARγ/LXRα/ABCA1 in ApoE-/- Mice Mice. Front., 2019, 10, 165.
[http://dx.doi.org/10.3389/fphys.2019.00165] [PMID: 30881312]
[60]
Kelava, L.; Nemeth, D.; Hegyi, P.; Keringer, P.; Kovacs, D.K.; Balasko, M.; Solymar, M.; Pakai, E.; Rumbus, Z.; Garami, A. Dietary supplementation of transient receptor potential vanilloid-1 channel agonists reduces serum total cholesterol level: A meta-analysis of controlled human trials. Crit. Rev. Food Sci. Nutr., 2022, 62(25), 7025-7035.
[http://dx.doi.org/10.1080/10408398.2021.1910138] [PMID: 33840333]
[61]
Wang, Z; Yang, Y; Yang, H NF κB feedback control of JNK1 activation modulates TRPV1 induced increases in IL 6 and IL 8 release by human corneal epithelial cells. Mol. Vis., 2011, 17, 3137-3746.
[PMID: 22171160]
[62]
Aslan, B.; Kismali, G.; Iles, L.R.; Manyam, G.C.; Ayres, M.L.; Chen, L.S.; Gagea, M.; Bertilaccio, M.T.S.; Wierda, W.G.; Gandhi, V. Pirtobrutinib inhibits wild-type and mutant Bruton’s tyrosine kinase-mediated signaling in chronic lymphocytic leukemia. Blood Cancer J., 2022, 12(5), 80.
[http://dx.doi.org/10.1038/s41408-022-00675-9] [PMID: 35595730]
[63]
Goldmann, L.; Duan, R.; Kragh, T.; Wittmann, G.; Weber, C.; Lorenz, R.; von Hundelshausen, P.; Spannagl, M.; Siess, W. Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): A new option in HIT? Blood Adv., 2019, 3(23), 4021-4033.
[http://dx.doi.org/10.1182/bloodadvances.2019000617] [PMID: 31809536]
[64]
Santanam, N.; Parthasarathy, S. Aspirin is a substrate for paraoxonase-like activity: Implications in atherosclerosis. Atherosclerosis., 2007, 191(2), 272-275.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.05.027] [PMID: 16793048]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy