Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

BH3 Mimetic Peptides: An Effective Strategy to Complement Anticancer Therapy

Author(s): Sundra Dhakshinamurthy Saraswathy, Arumugam Mirunalini, Kandasamy Karthikeyan and Kumpati Premkumar*

Volume 24, Issue 10, 2023

Published on: 06 September, 2023

Page: [853 - 864] Pages: 12

DOI: 10.2174/1389203724666230822100131

Price: $65

Abstract

Apoptosis, a natural process of programmed cell death, is a promising therapeutic target as the disruption of apoptosis evolves in many diseases including cancer. Several pieces of evidence indicate that errors in apoptotic pathways result in the imbalance between cell proliferation and death, allowing cells with genetic abnormalities to survive. The intrinsic and extrinsic pathways of apoptosis utilize different caspases to execute the event of cell death through the cleavage of hundreds of proteins. Proteins from the Bcl-2 family, a pivotal component of the mitochondrial apoptosis pathway, activate the death signal either directly or indirectly involving mitochondrial translocation of Bax/Bak, which are recognized critical elements in defective apoptosis. The majority of chemotherapeutic drugs destroy cancer cells by activating the apoptotic machinery via Bcl-2/Bax-dependent process and failure of which leads to an intrinsic chemoresistance. Recent insights into the dynamic action of pro-survival Bcl-2 proteins in cancer pathogenesis and resistance has set the stage for the development of small molecules as Bcl-2 antagonist and modulators of apoptosis. The BH3-only proteins are vital inducers of the mitochondrial apoptosis mechanism that operate either by assuming the functional activity of the proapoptotic Bcl-2 family members or by impeding the antiapoptotic Bcl-2 proteins. Based on the structural interaction studies between the proapoptotic and anti-apoptotic proteins, several synthetic peptides have been designed to functionally mimic the BH3 domain, targeting directly the pro-survival Bcl-2 proteins. The “BH3-peptide mimetics” a novel class of Bcl-2 protein antagonists essentially play an important role in the treatment of malignancies as they are predicted to persuade non-receptor mediated programmed cell death. This review summarizes the most promising BH3-peptide mimetic compounds that function as selective antagonists of Bcl-2 proteins and would be effective in treating various cancers.

Graphical Abstract

[1]
Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 2021, 125, 73-120.
[http://dx.doi.org/10.1016/bs.apcsb.2021.01.003] [PMID: 33931145]
[2]
Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer, 2015, 112(6), 957-962.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[3]
Tait, S.W.G.; Green, D.R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a008706.
[http://dx.doi.org/10.1101/cshperspect.a008706] [PMID: 24003207]
[4]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[5]
Siddiqui, W.A.; Ahad, A.; Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol., 2015, 89(3), 289-317.
[http://dx.doi.org/10.1007/s00204-014-1448-7] [PMID: 25618543]
[6]
Elkholi, R.; Renault, T.T.; Serasinghe, M.N.; Chipuk, J.E. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab., 2014, 2(1), 16.
[http://dx.doi.org/10.1186/2049-3002-2-16] [PMID: 25621172]
[7]
Pfeffer, C.; Singh, A. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[8]
Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[http://dx.doi.org/10.1038/sj.onc.1210220] [PMID: 17322918]
[9]
Willis, SN; Fletcher, JI; Kaufmann, T; van Delft, MF; Chen, L; Czabotar, PE; Ierino, H; Lee, EF; Fairlie, WD; Bouillet, P; Strasser, A Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007, 315(5813), 856-859.
[http://dx.doi.org/10.1126/science.1133289]
[10]
Leibowitz, B.; Yu, J. Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol. Ther., 2010, 9(6), 417-422.
[http://dx.doi.org/10.4161/cbt.9.6.11392] [PMID: 20190564]
[11]
Delbridge, A.R.D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ., 2015, 22(7), 1071-1080.
[http://dx.doi.org/10.1038/cdd.2015.50] [PMID: 25952548]
[12]
Merino, D.; Kelly, G.L.; Lessene, G.; Wei, A.H.; Roberts, A.W.; Strasser, A. BH3-mimetic drugs: Blazing the trail for new cancer medicines. Cancer Cell, 2018, 34(6), 879-891.
[http://dx.doi.org/10.1016/j.ccell.2018.11.004] [PMID: 30537511]
[13]
Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Shigekawa, M.; Iwase, K.; Hosui, A.; Miyagi, T.; Tatsumi, T.; Ishida, H.; Li, W.; Kanto, T.; Hiramatsu, N.; Hayashi, N. The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology, 2010, 52(4), 1310-1321.
[http://dx.doi.org/10.1002/hep.23836] [PMID: 20799354]
[14]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[15]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25(1), 27-36.
[http://dx.doi.org/10.1038/cdd.2017.161] [PMID: 29099483]
[16]
Strasser, A.; Cory, S.; Adams, J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J., 2011, 30(18), 3667-3683.
[http://dx.doi.org/10.1038/emboj.2011.307] [PMID: 21863020]
[17]
Ichim, G.; Tait, S.W.G. A fate worse than death: Apoptosis as an oncogenic process. Nat. Rev. Cancer, 2016, 16(8), 539-548.
[http://dx.doi.org/10.1038/nrc.2016.58] [PMID: 27364482]
[18]
Brady, C.A.; Jiang, D.; Mello, S.S.; Johnson, T.M.; Jarvis, L.A.; Kozak, M.M.; Broz, D.K.; Basak, S.; Park, E.J.; McLaughlin, M.E.; Karnezis, A.N.; Attardi, L.D. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell, 2011, 145(4), 571-583.
[http://dx.doi.org/10.1016/j.cell.2011.03.035] [PMID: 21565614]
[19]
Metcalfe, A.D.; Gilmore, A.; Klinowska, T.; Oliver, J.; Valentijn, A.J.; Brown, R.; Ross, A.; MacGregor, G.; Hickman, J.A.; Streuli, C.H. Developmental regulation of Bcl-2 family protein expression in the involuting mammary gland. J. Cell Sci., 1999, 112(11), 1771-1783.
[http://dx.doi.org/10.1242/jcs.112.11.1771] [PMID: 10318769]
[20]
Korkolopoulou, P.; Saetta, A.A.; Levidou, G.; Gigelou, F.; Lazaris, A.; Thymara, I.; Scliri, M.; Bousboukea, K.; Michalopoulos, N.V.; Apostolikas, N.; Konstantinidou, A.; Tzivras, M.; Patsouris, E. c-FLIP expression in colorectal carcinomas: Association with Fas/FasL expression and prognostic implications. Histopathology, 2007, 51(2), 150-156.
[http://dx.doi.org/10.1111/j.1365-2559.2007.02723.x] [PMID: 17559541]
[21]
Plati, J.; Bucur, O.; Khosravi-Far, R. Dysregulation of apoptotic signaling in cancer: Molecular mechanisms and therapeutic opportunities. J. Cell. Biochem., 2008, 104(4), 1124-1149.
[http://dx.doi.org/10.1002/jcb.21707] [PMID: 18459149]
[22]
Mogi, A; Kuwano, H. s TP53 mutations in nonsmall cell lung cancer. J. Biomed. Biotechnol., 2011, 2011, 583929.
[http://dx.doi.org/10.1155/2011/583929]
[23]
Adams, J.; Cory, S. Bcl-2-regulated apoptosis: Mechanism and therapeutic potential. Curr. Opin. Immunol., 2007, 19(5), 488-496.
[http://dx.doi.org/10.1016/j.coi.2007.05.004] [PMID: 17629468]
[24]
Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ., 2018, 25(1), 65-80.
[http://dx.doi.org/10.1038/cdd.2017.186] [PMID: 29149100]
[25]
Ghiotto, F.; Fais, F.; Tenca, C.; Tomati, V.; Morabito, F.; Casciaro, S.; Mumot, A.; Zoppoli, G.; Ciccone, E.; Parodi, S.; Bruno, S. Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic. Cancer Biol. Ther., 2009, 8(3), 263-271.
[http://dx.doi.org/10.4161/cbt.8.3.7424] [PMID: 19164937]
[26]
Gavathiotis, E.; Reyna, D.E.; Davis, M.L.; Bird, G.H.; Walensky, L.D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell, 2010, 40(3), 481-492.
[http://dx.doi.org/10.1016/j.molcel.2010.10.019] [PMID: 21070973]
[27]
Shkreta, L.; Michelle, L.; Toutant, J.; Tremblay, M.L.; Chabot, B. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem., 2011, 286(1), 331-340.
[http://dx.doi.org/10.1074/jbc.M110.162644] [PMID: 20980256]
[28]
Hanahan, D; Weinberg, RA Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-74.
[29]
Kapoor, I.; Bodo, J.; Hill, B.T.; Hsi, E.D.; Almasan, A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis., 2020, 11(11), 941.
[http://dx.doi.org/10.1038/s41419-020-03144-y] [PMID: 33139702]
[30]
Abulwerdi, F.; Liao, C.; Liu, M.; Azmi, A.S.; Aboukameel, A.; Mady, A.S.A.; Gulappa, T.; Cierpicki, T.; Owens, S.; Zhang, T.; Sun, D.; Stuckey, J.A.; Mohammad, R.M.; Nikolovska-Coleska, Z. A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol. Cancer Ther., 2014, 13(3), 565-575.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0767] [PMID: 24019208]
[31]
Ali, A.M.; Atmaj, J.; Van Oosterwijk, N.; Groves, M.R.; Dömling, A. Stapled peptides inhibitors: A new window for target drug discovery. Comput. Struct. Biotechnol. J., 2019, 17, 263-281.
[http://dx.doi.org/10.1016/j.csbj.2019.01.012] [PMID: 30867891]
[32]
D’Aguanno, S.; Del Bufalo, D. Inhibition of anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: Current overview in cancer. Cells, 2020, 9(5), 1287.
[http://dx.doi.org/10.3390/cells9051287] [PMID: 32455818]
[33]
Li, X.; Chen, S.; Zhang, W.D.; Hu, H.G. Stapled helical peptides bearing different anchoring residues. Chem. Rev., 2020, 120(18), 10079-10144.
[http://dx.doi.org/10.1021/acs.chemrev.0c00532] [PMID: 32794722]
[34]
Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; Wong, S.; Dunbar, M.; Zhu, M.; Desai, M.B.; Cerri, E.; Heitner Enschede, S.; Humerickhouse, R.A.; Wierda, W.G.; Seymour, J.F. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2016, 374(4), 311-322.
[http://dx.doi.org/10.1056/NEJMoa1513257] [PMID: 26639348]
[35]
Haq, R.; Yokoyama, S.; Hawryluk, E.B.; Jönsson, G.B.; Frederick, D.T.; McHenry, K.; Porter, D.; Tran, T.N.; Love, K.T.; Langer, R.; Anderson, D.G.; Garraway, L.A.; Duncan, L.M.; Morton, D.L.; Hoon, D.S.B.; Wargo, J.A.; Song, J.S.; Fisher, D.E. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc. Natl. Acad. Sci., 2013, 110(11), 4321-4326.
[http://dx.doi.org/10.1073/pnas.1205575110] [PMID: 23447565]
[36]
Leverson, J.D.; Zhang, H.; Chen, J.; Tahir, S.K.; Phillips, D.C.; Xue, J.; Nimmer, P.; Jin, S.; Smith, M.; Xiao, Y.; Kovar, P.; Tanaka, A.; Bruncko, M.; Sheppard, G.S.; Wang, L.; Gierke, S.; Kategaya, L.; Anderson, D.J.; Wong, C.; Eastham-Anderson, J.; Ludlam, M.J.C.; Sampath, D.; Fairbrother, W.J.; Wertz, I.; Rosenberg, S.H.; Tse, C.; Elmore, S.W.; Souers, A.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 2015, 6(1), e1590.
[http://dx.doi.org/10.1038/cddis.2014.561] [PMID: 25590800]
[37]
Adams, C.M.; Clark-Garvey, S.; Porcu, P.; Eischen, C.M. Targeting the Bcl-2 family in B cell lymphoma. Front. Oncol., 2019, 8, 636.
[http://dx.doi.org/10.3389/fonc.2018.00636] [PMID: 30671383]
[38]
Renault, T.T.; Chipuk, J.E. Death upon a kiss: Mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis. Chem. Biol., 2014, 21(1), 114-123.
[http://dx.doi.org/10.1016/j.chembiol.2013.10.009] [PMID: 24269152]
[39]
Reed, J.C. Bcl-2 on the brink of breakthroughs in cancer treatment. Cell Death Differ., 2018, 25(1), 3-6.
[http://dx.doi.org/10.1038/cdd.2017.188] [PMID: 29227986]
[40]
Vogler, M. BCL2A1: The underdog in the BCL2 family. Cell Death Differ., 2012, 19(1), 67-74.
[http://dx.doi.org/10.1038/cdd.2011.158] [PMID: 22075983]
[41]
Kalkavan, H.; Green, D.R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ., 2018, 25(1), 46-55.
[http://dx.doi.org/10.1038/cdd.2017.179] [PMID: 29053143]
[42]
Delbridge, A.R.D.; Grabow, S.; Strasser, A.; Vaux, D.L. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer, 2016, 16(2), 99-109.
[http://dx.doi.org/10.1038/nrc.2015.17] [PMID: 26822577]
[43]
Vo, TT; Letai, A BH3-only proteins and their effects on cancer. Adv. Exp. Med. Biol., 2010, 687, 49-63.
[http://dx.doi.org/10.1007/978-1-4419-6706-0_3]
[44]
Huang, K.; O’Neill, K.L.; Li, J.; Zhou, W.; Han, N.; Pang, X.; Wu, W.; Struble, L.; Borgstahl, G.; Liu, Z.; Zhang, L.; Luo, X. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res., 2019, 29(11), 942-952.
[http://dx.doi.org/10.1038/s41422-019-0231-y] [PMID: 31551537]
[45]
Kuwana, T.; Mackey, M.R.; Perkins, G.; Ellisman, M.H.; Latterich, M.; Schneiter, R.; Green, D.R.; Newmeyer, D.D. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 2002, 111(3), 331-342.
[http://dx.doi.org/10.1016/S0092-8674(02)01036-X] [PMID: 12419244]
[46]
Hinds, M.G.; Smits, C.; Fredericks-Short, R.; Risk, J.M.; Bailey, M.; Huang, D.C.S.; Day, C.L. Bim, Bad and Bmf: Intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ., 2007, 14(1), 128-136.
[http://dx.doi.org/10.1038/sj.cdd.4401934] [PMID: 16645638]
[47]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[48]
Soini, Y.; Pääkkö, P.; Lehto, V-P. Histopathological evaluation of apoptosis in cancer. Am. J. Pathol., 1998, 153(4), 1041-1053.
[http://dx.doi.org/10.1016/S0002-9440(10)65649-0] [PMID: 9777936]
[49]
Wuillème-Toumi, S.; Robillard, N.; Gomez, P.; Moreau, P.; Le Gouill, S.; Avet-Loiseau, H.; Harousseau, J-L.; Amiot, M.; Bataille, R. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia, 2005, 19(7), 1248-1252.
[http://dx.doi.org/10.1038/sj.leu.2403784] [PMID: 15902294]
[50]
Zhang, S.; Link, A.J. Bcl-2 family interactome analysis using bacterial surface display. Integr. Biol., 2011, 3(8), 823-831.
[http://dx.doi.org/10.1039/c1ib00023c] [PMID: 21713285]
[51]
Conage-Pough, J.E.; Boise, L.H. Phosphorylation alters Bim-mediated Mcl-1 stabilization and priming. FEBS J., 2018, 285(14), 2626-2640.
[http://dx.doi.org/10.1111/febs.14505] [PMID: 29775995]
[52]
Pang, X.; Zhang, J.; Lopez, H.; Wang, Y.; Li, W.; O’Neill, K.L.; Evans, J.J.D.; George, N.M.; Long, J.; Chen, Y.; Luo, X. The carboxyl-terminal tail of Noxa protein regulates the stability of Noxa and Mcl-1. J. Biol. Chem., 2014, 289(25), 17802-17811.
[http://dx.doi.org/10.1074/jbc.M114.548172] [PMID: 24811167]
[53]
Fogha, J.; Marekha, B.; De Giorgi, M.; Voisin-Chiret, A.S.; Rault, S.; Bureau, R.; Sopkova-de Oliveira, S.J. Toward understanding Mcl-1 promiscuous and specific binding mode. J. Chem. Inf. Model., 2017, 57(11), 2885-2895.
[http://dx.doi.org/10.1021/acs.jcim.7b00396] [PMID: 29016132]
[54]
Jafarlou, M.; Shanehbandi, D.; Dehghan, P.; Mansoori, B.; Othman, F.; Baradaran, B. Enhancement of chemosensitivity by simultaneously silencing of Mcl-1 and Survivin genes using small interfering RNA in human myelomonocytic leukaemia. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1792-1798.
[PMID: 29113504]
[55]
Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting MCL-1 in cancer: Current status and perspectives. J. Hematol. Oncol., 2021, 14(1), 67.
[http://dx.doi.org/10.1186/s13045-021-01079-1] [PMID: 33883020]
[56]
Scherr, A.L.; Gdynia, G.; Salou, M.; Radhakrishnan, P.; Duglova, K.; Heller, A.; Keim, S.; Kautz, N.; Jassowicz, A.; Elssner, C.; He, Y.W.; Jaeger, D.; Heikenwalder, M.; Schneider, M.; Weber, A.; Roth, W.; Schulze-Bergkamen, H.; Koehler, B.C. Bcl-xL is an oncogenic driver in colorectal cancer. Cell Death Dis., 2016, 7(8), e2342.
[http://dx.doi.org/10.1038/cddis.2016.233] [PMID: 27537525]
[57]
Shimizu, S.; Takehara, T.; Hikita, H.; Kodama, T.; Miyagi, T.; Hosui, A.; Tatsumi, T.; Ishida, H.; Noda, T.; Nagano, H.; Doki, Y.; Mori, M.; Hayashi, N. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol., 2010, 52(5), 698-704.
[http://dx.doi.org/10.1016/j.jhep.2009.12.024] [PMID: 20347499]
[58]
Chen, Y.; Cao, Y.; Yang, D.; Li, K.; Wang, Z.; Zhu, J.; Bunjhoo, H.; Xiong, S.; Xu, Y.; Xiong, W. Increase of the therapeutic effect on non-small-cell lung cancer cells with combination treatment of shRNA against Cyclin D1 and Bcl-xL in vitro. Exp. Ther. Med., 2012, 3(2), 255-260.
[http://dx.doi.org/10.3892/etm.2011.381] [PMID: 22969878]
[59]
Shangary, S.; Johnson, D.E. Peptides derived from BH3 domains of Bcl-2 family members: A comparative analysis of inhibition of Bcl-2, Bcl-x(L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry, 2002, 41(30), 9485-9495.
[http://dx.doi.org/10.1021/bi025605h] [PMID: 12135371]
[60]
Shangary, S.; Oliver, C.L.; Tillman, T.S.; Cascio, M.; Johnson, D.E. Sequence and helicity requirements for the proapoptotic activity of Bax BH3 peptides. Mol. Cancer Ther., 2004, 3(11), 1343-1354.
[http://dx.doi.org/10.1158/1535-7163.1343.3.11] [PMID: 15542773]
[61]
Letai, A.; Bassik, M.C.; Walensky, L.D.; Sorcinelli, M.D.; Weiler, S.; Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2(3), 183-192.
[http://dx.doi.org/10.1016/S1535-6108(02)00127-7] [PMID: 12242151]
[62]
Chen, L.; Willis, S.N.; Wei, A.; Smith, B.J.; Fletcher, J.I.; Hinds, M.G.; Colman, P.M.; Day, C.L.; Adams, J.M.; Huang, D.C.S. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell, 2005, 17(3), 393-403.
[http://dx.doi.org/10.1016/j.molcel.2004.12.030] [PMID: 15694340]
[63]
Kuwana, T.; Bouchier-Hayes, L.; Chipuk, J.E.; Bonzon, C.; Sullivan, B.A.; Green, D.R.; Newmeyer, D.D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell, 2005, 17(4), 525-535.
[http://dx.doi.org/10.1016/j.molcel.2005.02.003] [PMID: 15721256]
[64]
Wei, M.C.; Lindsten, T.; Mootha, V.K.; Weiler, S.; Gross, A.; Ashiya, M.; Thompson, C.B.; Korsmeyer, S.J. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev., 2000, 14(16), 2060-2071.
[http://dx.doi.org/10.1101/gad.14.16.2060] [PMID: 10950869]
[65]
Wei, M.C.; Zong, W.X.; Cheng, E.H.Y.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.; MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517), 727-730.
[http://dx.doi.org/10.1126/science.1059108] [PMID: 11326099]
[66]
Jürgensmeier, J.M.; Xie, Z.; Deveraux, Q.; Ellerby, L.; Bredesen, D.; Reed, J.C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci., 1998, 95(9), 4997-5002.
[http://dx.doi.org/10.1073/pnas.95.9.4997] [PMID: 9560217]
[67]
Yang, E.; Zha, J.; Jockel, J.; Boise, L.H.; Thompson, C.B.; Korsmeyer, S.J. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death. Cell, 1995, 80(2), 285-291.
[http://dx.doi.org/10.1016/0092-8674(95)90411-5] [PMID: 7834748]
[68]
Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000, 102(1), 33-42.
[http://dx.doi.org/10.1016/S0092-8674(00)00008-8] [PMID: 10929711]
[69]
Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, 2020, 395(10229), 1078-1088.
[http://dx.doi.org/10.1016/S0140-6736(20)30164-1] [PMID: 32222192]
[70]
Chen, H.; Zhan, M.; Liu, J.; Liu, Z.; Shen, M.; Yang, F.; Kang, Y.; Yin, F.; Li, Z. Structure-based design, optimization, and evaluation of potent stabilized peptide inhibitors disrupting MTDH and SND1 interaction. J. Med. Chem., 2022, 65(18), 12188-12199.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00862] [PMID: 36044768]
[71]
LaBelle, J.L.; Katz, S.G.; Bird, G.H.; Gavathiotis, E.; Stewart, M.L.; Lawrence, C.; Fisher, J.K.; Godes, M.; Pitter, K.; Kung, A.L.; Walensky, L.D. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J. Clin. Invest., 2012, 122(6), 2018-2031.
[http://dx.doi.org/10.1172/JCI46231] [PMID: 22622039]
[72]
Garner, T.P.; Lopez, A.; Reyna, D.E.; Spitz, A.Z.; Gavathiotis, E. Progress in targeting the BCL-2 family of proteins. Curr. Opin. Chem. Biol., 2017, 39, 133-142.
[http://dx.doi.org/10.1016/j.cbpa.2017.06.014] [PMID: 28735187]
[73]
Robin, A.Y.; Krishna Kumar, K.; Westphal, D.; Wardak, A.Z.; Thompson, G.V.; Dewson, G.; Colman, P.M.; Czabotar, P.E. Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Cell Death Dis., 2015, 6(7), e1809.
[http://dx.doi.org/10.1038/cddis.2015.141] [PMID: 26158515]
[74]
Garner, T.P.; Reyna, D.E.; Priyadarshi, A.; Chen, H.C.; Li, S.; Wu, Y.; Ganesan, Y.T.; Malashkevich, V.N.; Cheng, E.H.; Gavathiotis, E. An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol. Cell, 2016, 63(3), 485-497.
[http://dx.doi.org/10.1016/j.molcel.2016.06.010] [PMID: 27425408]
[75]
Hadji, A.; Schmitt, G.K.; Schnorenberg, M.R.; Roach, L.; Hickey, C.M.; Leak, L.B.; Tirrell, M.V.; LaBelle, J.L. Preferential targeting of MCL-1 by a hydrocarbon-stapled BIM BH3 peptide. Oncotarget, 2019, 10(58), 6219-6233.
[http://dx.doi.org/10.18632/oncotarget.27262] [PMID: 31692812]
[76]
Lee, E.F.; Czabotar, P.E.; van Delft, M.F.; Michalak, E.M.; Boyle, M.J.; Willis, S.N.; Puthalakath, H.; Bouillet, P.; Colman, P.M.; Huang, D.C.S.; Fairlie, W.D. A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J. Cell Biol., 2008, 180(2), 341-355.
[http://dx.doi.org/10.1083/jcb.200708096] [PMID: 18209102]
[77]
Stewart, M.L.; Fire, E.; Keating, A.E.; Walensky, L.D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol., 2010, 6(8), 595-601.
[http://dx.doi.org/10.1038/nchembio.391] [PMID: 20562877]
[78]
Respondek, M.; Beberok, A.; Rzepka, Z.; Rok, J.; Wrześniok, D. MIM1 induces COLO829 melanoma cell death through mitochondrial membrane breakdown, GSH depletion, and DNA damage. Fundam. Clin. Pharmacol., 2020, 34(1), 20-31.
[http://dx.doi.org/10.1111/fcp.12503] [PMID: 31410885]
[79]
Kritzer, J.A. The secret of MIM: A novel, MCL-1-specific small molecule. Chem. Biol., 2012, 19(9), 1082-1083.
[http://dx.doi.org/10.1016/j.chembiol.2012.08.016] [PMID: 22999875]
[80]
Cui, J.; Ogasawara, Y.; Kurata, I.; Matoba, K.; Fujioka, Y.; Noda, N.N.; Shibasaki, M.; Watanabe, T. Targeting the ATG5-ATG16L1 protein-protein interaction with a hydrocarbon-stapled peptide derived from ATG16L1 for autophagy inhibition. J. Am. Chem. Soc., 2022, 144(38), 17671-17679.
[http://dx.doi.org/10.1021/jacs.2c07648] [PMID: 36107218]
[81]
Klener, P.; Sovilj, D.; Renesova, N.; Andera, L. BH3 mimetics in hematologic malignancies. Int. J. Mol. Sci., 2021, 22(18), 10157.
[http://dx.doi.org/10.3390/ijms221810157] [PMID: 34576319]
[82]
Elkholi, R.; Floros, K.V.; Chipuk, J.E. The role of BH3-only proteins in tumor cell development, signaling, and treatment. Genes Cancer, 2011, 2(5), 523-537.
[http://dx.doi.org/10.1177/1947601911417177] [PMID: 21901166]
[83]
Croce, C.M.; Reed, J.C. Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res., 2016, 76(20), 5914-5920.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1248] [PMID: 27694602]
[84]
Hartman, M.L.; Gajos-Michniewicz, A.; Talaj, J.A.; Mielczarek-Lewandowska, A.; Czyz, M. BH3 mimetics potentiate pro-apoptotic activity of encorafenib in BRAFV600E melanoma cells. Cancer Lett., 2021, 499, 122-136.
[http://dx.doi.org/10.1016/j.canlet.2020.11.036] [PMID: 33259900]
[85]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681.
[http://dx.doi.org/10.1038/nature03579] [PMID: 15902208]
[86]
Ramesh, P.; Medema, J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Apoptosis, 2020, 25(5-6), 305-320.
[http://dx.doi.org/10.1007/s10495-020-01601-9] [PMID: 32335811]
[87]
Wolter, K.G.; Wang, S.J.; Henson, B.S.; Wang, S.; Griffith, K.A.; Kumar, B.; Chen, J.; Carey, T.E.; Bradford, C.R.; D’Silva, N.J. (-)-gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. Neoplasia, 2006, 8(3), 163-172.
[http://dx.doi.org/10.1593/neo.05691] [PMID: 16611409]
[88]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[89]
Wei, J.; Kitada, S.; Stebbins, J.L.; Placzek, W.; Zhai, D.; Wu, B.; Rega, M.F.; Zhang, Z.; Cellitti, J.; Yang, L.; Dahl, R.; Reed, J.C.; Pellecchia, M. Synthesis and biological evaluation of Apogossypolone derivatives as pan-active inhibitors of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J. Med. Chem., 2010, 53(22), 8000-8011.
[http://dx.doi.org/10.1021/jm100746q] [PMID: 21033669]
[90]
Joudeh, J.; Claxton, D. Obatoclax mesylate: Pharmacology and potential for therapy of hematological neoplasms. Expert Opin. Investig. Drugs, 2012, 21(3), 363-373.
[http://dx.doi.org/10.1517/13543784.2012.652302] [PMID: 22324354]
[91]
Xu, L.; Yang, D.; Wang, S.; Tang, W.; Liu, M.; Davis, M.; Chen, J.; Rae, J.M.; Lawrence, T.; Lippman, M.E. (−)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Mol. Cancer Ther., 2005, 4(2), 197-205.
[http://dx.doi.org/10.1158/1535-7163.197.4.2] [PMID: 15713891]
[92]
Meng, Y.; Tang, W.; Dai, Y.; Wu, X.; Liu, M.; Ji, Q.; Ji, M.; Pienta, K.; Lawrence, T.; Xu, L. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol. Cancer Ther., 2008, 7(7), 2192-2202.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0333] [PMID: 18645028]
[93]
Dash, R.; Azab, B.; Quinn, B.A.; Shen, X.; Wang, X.Y.; Das, S.K.; Rahmani, M.; Wei, J.; Hedvat, M.; Dent, P.; Dmitriev, I.P.; Curiel, D.T.; Grant, S.; Wu, B.; Stebbins, J.L.; Pellecchia, M.; Reed, J.C.; Sarkar, D.; Fisher, P.B. Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to mda -7/IL-24–mediated toxicity. Proc. Natl. Acad. Sci., 2011, 108(21), 8785-8790.
[http://dx.doi.org/10.1073/pnas.1100769108] [PMID: 21555592]
[94]
Lian, J.; Ni, Z.; Dai, X.; Su, C.; Smith, A.R.; Xu, L.; He, F. Sorafenib sensitizes (-)-gossypol-induced growth suppression in androgen-independent prostate cancer cells via Mcl-1 inhibition and Bak activation. Mol. Cancer Ther., 2012, 11(2), 416-426.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0559] [PMID: 22188816]
[95]
Santer, F.R.; Erb, H.H.H.; Oh, S.J.; Handle, F.; Feiersinger, G.E.; Luef, B.; Bu, H.; Schäfer, G.; Ploner, C.; Egger, M.; Rane, J.K.; Maitland, N.J.; Klocker, H.; Eder, I.E.; Culig, Z. Mechanistic rationale for MCL1 inhibition during androgen deprivation therapy. Oncotarget, 2015, 6(8), 6105-6122.
[http://dx.doi.org/10.18632/oncotarget.3368] [PMID: 25749045]
[96]
Ishida, S.; Akiyama, H.; Umezawa, Y.; Okada, K.; Nogami, A.; Oshikawa, G.; Nagao, T.; Miura, O. Mechanisms for mTORC1 activation and synergistic induction of apoptosis by ruxolitinib and BH3 mimetics or autophagy inhibitors in JAK2-V617F-expressing leukemic cells including newly established PVTL-2. Oncotarget, 2018, 9(42), 26834-26851.
[http://dx.doi.org/10.18632/oncotarget.25515] [PMID: 29928488]
[97]
Kim, Y.J.; Tsang, T.; Anderson, G.R.; Posimo, J.M.; Brady, D.C. Inhibition of BCL2 family members increases the efficacy of copper chelation in BRAFV600E-driven melanoma. Cancer Res., 2020, 80(7), 1387-1400.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1784] [PMID: 32005716]
[98]
Melo, G.; Silva, C.A.B.; Hague, A.; Parkinson, E.K.; Rivero, E.R.C. Anticancer effects of putative and validated BH3-mimetic drugs in head and neck squamous cell carcinomas: An overview of current knowledge. Oral Oncol., 2022, 132, 105979.
[http://dx.doi.org/10.1016/j.oraloncology.2022.105979] [PMID: 35816876]
[99]
Pandit, B.; Gartel, A.L. New potential anti-cancer agents synergize with bortezomib and ABT-737 against prostate cancer. Prostate, 2010, 70(8), 825-833.
[http://dx.doi.org/10.1002/pros.21116] [PMID: 20058240]
[100]
Yamaguchi, R.; Janssen, E.; Perkins, G.; Ellisman, M.; Kitada, S.; Reed, J.C. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One, 2011, 6(9), e24102.
[http://dx.doi.org/10.1371/journal.pone.0024102] [PMID: 21949692]
[101]
Yin, S.; Dong, Y.; Li, J.; Fan, L.; Wang, L.; Lu, J.; Vang, O.; Hu, H. Methylseleninic acid potentiates multiple types of cancer cells to ABT-737-induced apoptosis by targeting Mcl-1 and Bad. Apoptosis, 2012, 17(4), 388-399.
[http://dx.doi.org/10.1007/s10495-011-0687-9] [PMID: 22179721]
[102]
Tong, J.; Yin, S.; Dong, Y.; Guo, X.; Fan, L.; Ye, M.; Hu, H. Pseudolaric acid B induces caspase-dependent apoptosis and autophagic cell death in prostate cancer cells. Phytother. Res., 2013, 27(6), 885-891.
[http://dx.doi.org/10.1002/ptr.4808] [PMID: 22903438]
[103]
Tamaki, H.; Harashima, N.; Hiraki, M.; Arichi, N.; Nishimura, N.; Shiina, H.; Naora, K.; Harada, M. Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget, 2014, 5(22), 11399-11412.
[http://dx.doi.org/10.18632/oncotarget.2550] [PMID: 25333266]
[104]
Wang, C.; Huang, S.B.; Yang, M.C.; Lin, Y.T.; Chu, I.H.; Shen, Y.N.; Chiu, Y.H.; Hung, S.H.; Kang, L.; Hong, Y.R.; Chen, C.H. Combining paclitaxel with ABT-263 has a synergistic effect on paclitaxel resistant prostate cancer cells. PLoS One, 2015, 10(3), e0120913.
[http://dx.doi.org/10.1371/journal.pone.0120913] [PMID: 25811469]
[105]
Karpel-Massler, G.; Horst, B.A.; Shu, C.; Chau, L.; Tsujiuchi, T.; Bruce, J.N.; Canoll, P.; Greene, L.A.; Angelastro, J.M.; Siegelin, M.D. A synthetic cell-penetrating dominant-negative ATF5 peptide exerts anticancer activity against a broad spectrum of treatment-resistant cancers. Clin. Cancer Res., 2016, 22(18), 4698-4711.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2827] [PMID: 27126996]
[106]
Lian, B.S.X.; Yek, A.E.H.; Shuvas, H.; Abdul Rahman, S.F.; Muniandy, K.; Mohana-Kumaran, N. Synergistic anti-proliferative effects of combination of ABT-263 and MCL-1 selective inhibitor A-1210477 on cervical cancer cell lines. BMC Res. Notes, 2018, 11(1), 197.
[http://dx.doi.org/10.1186/s13104-018-3302-0] [PMID: 29580266]
[107]
Zhan, Y.; Wang, Y.; Qi, M.; Liang, P.; Ma, Y.; Li, T.; Li, H.; Dai, C.; An, Z.; Qi, Y.; Wu, H.; Shao, H. BH3 mimetic ABT-263 enhances the anticancer effects of apigenin in tumor cells with activating EGFR mutation. Cell Biosci., 2019, 9(1), 60.
[http://dx.doi.org/10.1186/s13578-019-0322-y] [PMID: 31367332]
[108]
Masilamani, A.P.; Dettmer-Monaco, V.; Monaco, G.; Cathomen, T.; Kuckuck, I.; Schultze-Seemann, S.; Huber, N.; Wolf, P. An Anti-PSMA Immunotoxin Reduces Mcl-1 and Bcl2A1 and specifically induces in combination with the bad-like BH3 Mimetic ABT-737 apoptosis in prostate cancer cells. Cancers, 2020, 12(6), 1648.
[http://dx.doi.org/10.3390/cancers12061648] [PMID: 32580291]
[109]
Quezada, M.J.; Picco, M.E.; Villanueva, M.B.; Castro, M.V.; Barbero, G.; Fernández, N.B.; Illescas, E.; Lopez-Bergami, P. BCL2L10 is overexpressed in melanoma downstream of STAT3 and promotes cisplatin and ABT-737 resistance. Cancers, 2020, 13(1), 78.
[http://dx.doi.org/10.3390/cancers13010078] [PMID: 33396645]
[110]
Tutusaus, A.; Cucarull, B.; Rider, P.; Cuño, C.; de Frutos, P.G.; Boix, L.; Marí, M.; Morales, A. Mitochondrial damage, revealed as key factor in cabozantinib efficacy against hepatocellular carcinoma, is potentiated by the BH3-mimetic navitoclax. J. Hepatol., 2022, 77, S652.
[http://dx.doi.org/10.1016/S0168-8278(22)01620-8]
[111]
Yang, S.; Mao, Y.; Zhang, H.; Xu, Y.; An, J.; Huang, Z. The chemical biology of apoptosis: Revisited after 17 years. Eur. J. Med. Chem., 2019, 177, 63-75.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.019] [PMID: 31129454]
[112]
Zhang, Q.; Riley-Gillis, B.; Han, L.; Jia, Y.; Lodi, A.; Zhang, H.; Ganesan, S.; Pan, R.; Konoplev, S.N.; Sweeney, S.R.; Ryan, J.A.; Jitkova, Y.; Dunner, K., Jr; Grosskurth, S.E.; Vijay, P.; Ghosh, S.; Lu, C.; Ma, W.; Kurtz, S.; Ruvolo, V.R.; Ma, H.; Weng, C.C.; Ramage, C.L.; Baran, N.; Shi, C.; Cai, T.; Davis, R.E.; Battula, V.L.; Mi, Y.; Wang, J.; DiNardo, C.D.; Andreeff, M.; Tyner, J.W.; Schimmer, A.; Letai, A.; Padua, R.A.; Bueso-Ramos, C.E.; Tiziani, S.; Leverson, J.; Popovic, R.; Konopleva, M. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduct. Target. Ther., 2022, 7(1), 51.
[http://dx.doi.org/10.1038/s41392-021-00870-3] [PMID: 35185150]
[113]
Yecies, D.; Carlson, N.E.; Deng, J.; Letai, A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood, 2010, 115(16), 3304-3313.
[http://dx.doi.org/10.1182/blood-2009-07-233304] [PMID: 20197552]
[114]
Besbes, S.; Mirshahi, M.; Pocard, M.; Billard, C. New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget, 2015, 6(15), 12862-12871.
[http://dx.doi.org/10.18632/oncotarget.3868] [PMID: 25970783]
[115]
Sharma, A.; Boise, L.; Shanmugam, M. Cancer metabolism and the evasion of apoptotic cell death. Cancers, 2019, 11(8), 1144.
[http://dx.doi.org/10.3390/cancers11081144] [PMID: 31405035]
[116]
Arai, S.; Jonas, O.; Whitman, M.A.; Corey, E.; Balk, S.P.; Chen, S. Tyrosine kinase inhibitors increase MCL1 degradation and in combination with BCLXL/BCL2 inhibitors drive prostate cancer apoptosis. Clin. Cancer Res., 2018, 24(21), 5458-5470.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0549] [PMID: 30021909]
[117]
Mukherjee, N.; Strosnider, A.; Vagher, B.; Lambert, K.A.; Slaven, S.; Robinson, W.A.; Amato, C.M.; Couts, K.L.; Bemis, J.G.T.; Turner, J.A.; Norris, D.A.; Shellman, Y.G. BH3 mimetics induce apoptosis independent of DRP-1 in melanoma. Cell Death Dis., 2018, 9(9), 907.
[http://dx.doi.org/10.1038/s41419-018-0932-z] [PMID: 30185782]
[118]
Tien Vo, T.T.; Vo, Q.C.; Tuan, V.P.; Wee, Y.; Cheng, H.C.; Lee, I.T. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol., 2021, 46, 102124.
[http://dx.doi.org/10.1016/j.redox.2021.102124] [PMID: 34507160]
[119]
Chaudhry, G.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol., 2022, 13, 842376.
[http://dx.doi.org/10.3389/fphar.2022.842376] [PMID: 36034846]
[120]
Tagscherer, K.E.; Fassl, A.; Campos, B.; Farhadi, M.; Kraemer, A.; Böck, B.C.; Macher-Goeppinger, S.; Radlwimmer, B.; Wiestler, O.D.; Herold-Mende, C.; Roth, W. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene, 2008, 27(52), 6646-6656.
[http://dx.doi.org/10.1038/onc.2008.259] [PMID: 18663354]
[121]
Gao, Y.; Koide, K. Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem. Biol., 2013, 8(5), 895-900.
[http://dx.doi.org/10.1021/cb300602j] [PMID: 23485022]
[122]
Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis., 2019, 10(3), 177.
[http://dx.doi.org/10.1038/s41419-019-1407-6] [PMID: 30792387]
[123]
Fresquet, V.; Rieger, M.; Carolis, C.; García-Barchino, M.J.; Martinez-Climent, J.A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood, 2014, 123(26), 4111-4119.
[http://dx.doi.org/10.1182/blood-2014-03-560284] [PMID: 24786774]
[124]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging , 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[125]
Quinn, B.A.; Dash, R.; Azab, B.; Sarkar, S.; Das, S.K.; Kumar, S.; Oyesanya, R.A.; Dasgupta, S.; Dent, P.; Grant, S.; Rahmani, M.; Curiel, D.T.; Dmitriev, I.; Hedvat, M.; Wei, J.; Wu, B.; Stebbins, J.L.; Reed, J.C.; Pellecchia, M.; Sarkar, D.; Fisher, P.B. Targeting Mcl-1 for the therapy of cancer. Expert Opin. Investig. Drugs, 2011, 20(10), 1397-1411.
[http://dx.doi.org/10.1517/13543784.2011.609167] [PMID: 21851287]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy