Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Protein Engineering in Cyanobacterial Biotechnology: Tools and Recent Updates

Author(s): Swati Tyagi, Srabani Kar, Amit Srivastava and Pratyoosh Shukla*

Volume 25, Issue 2, 2024

Published on: 09 October, 2023

Page: [95 - 106] Pages: 12

DOI: 10.2174/1389203724666230822100104

Price: $65

Abstract

Cyanobacteria have emerged as a microbial cell factory to produce a variety of bioproducts, including peptides and proteins. Cyanobacteria stand out among other organisms due to their photoautotrophic metabolism and ability to produce a wide range of metabolites. As photoautotrophic hosts can produce industrial compounds and proteins by using minimal resources such as sunlight, atmospheric carbon dioxide, and fewer nutrients, cyanobacteria are cost-effective industrial hosts. Therefore, the use of protein engineering tools for rational protein design, and the desired modification of enzyme activity has become a desirable undertaking in cyanobacterial biology. Protein engineering can improve their biological functions as well as the stability of their intracellular proteins. This review aims to highlight the success of protein engineering in the direction of cyanobacterial biotechnology and outlines the emerging technologies, current challenges, and prospects of protein engineering in cyanobacterial biotechnology.

Graphical Abstract

[1]
Barrios-Llerena, M.E.; Chong, P.K.; Gan, C.S.; Snijders, A.P.L.; Reardon, K.F.; Wright, P.C. Shotgun proteomics of cyanobacteria—applications of experimental and data-mining techniques. Brief. Funct. Genomics, 2006, 5(2), 121-132.
[http://dx.doi.org/10.1093/bfgp/ell021] [PMID: 16772275]
[2]
Sharma, N.K.; Tiwari, S.P.; Tripathi, K.; Rai, A.K. Sustainability and cyanobacteria (blue-green algae): Facts and challenges. J. Appl. Phycol., 2011, 23(6), 1059-1081.
[http://dx.doi.org/10.1007/s10811-010-9626-3]
[3]
Vijayakumar, S.; Menakha, M. Pharmaceutical applications of cyanobacteria: A review. J. Acute. Med., 2015, 5(1), 15-23.
[http://dx.doi.org/10.1016/j.jacme.2015.02.004]
[4]
Zhang, X.; Betterle, N.; Hidalgo, M.D.; Melis, A. Recombinant protein stability in cyanobacteria. ACS Synth. Biol., 2021, 10(4), 810-825.
[http://dx.doi.org/10.1021/acssynbio.0c00610] [PMID: 33684287]
[5]
Kudo, H.; Hayashi, Y.; Arai, M. Improving hydrocarbon production by engineering cyanobacterial acyl-(acyl carrier protein) reductase. Biotechnol. Biofuels, 2019, 12(1), 291.
[http://dx.doi.org/10.1186/s13068-019-1623-4] [PMID: 31890019]
[6]
Zong, H.; Han, L.; Chen, J.; Pan, Z.; Wang, L.; Sun, R.; Ding, K.; Xie, Y.; Jiang, H.; Lu, H.; Gilly, J.; Zhang, B.; Zhu, J. Kinetics study of the natural split Npu DnaE intein in the generation of bispecific IgG antibodies. Appl. Microbiol. Biotechnol., 2022, 106(1), 161-171.
[http://dx.doi.org/10.1007/s00253-021-11707-y] [PMID: 34882254]
[7]
Han, L.; Chen, J.; Ding, K.; Zong, H.; Xie, Y.; Jiang, H.; Zhang, B.; Lu, H.; Yin, W.; Gilly, J.; Zhu, J. Efficient generation of bispecific IgG antibodies by split intein mediated protein trans-splicing system. Sci. Rep., 2017, 7(1), 8360.
[http://dx.doi.org/10.1038/s41598-017-08641-3] [PMID: 28827777]
[8]
Qamar, H.; Hussain, K.; Soni, A.; Khan, A.; Hussain, T.; Chénais, B. Cyanobacteria as natural therapeutics and pharmaceutical potential: Role in antitumor activity and as nanovectors. Molecules, 2021, 26(1), 247.
[http://dx.doi.org/10.3390/molecules26010247] [PMID: 33466486]
[9]
Srivastava, A.; Shukla, P. Cyanobacterial peptides: Metabolic potential and environmental fate. Protein Pept. Lett., 2022, 29(5), 375-378.
[http://dx.doi.org/10.2174/0929866529666220314111105] [PMID: 35289251]
[10]
Porter, J.L.; Rusli, R.A.; Ollis, D.L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem, 2016, 17(3), 197-203.
[http://dx.doi.org/10.1002/cbic.201500280] [PMID: 26661585]
[11]
Kumar, A.; Singh, S. Directed evolution: Tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol., 2013, 33(4), 365-378.
[http://dx.doi.org/10.3109/07388551.2012.716810] [PMID: 22985113]
[12]
Engqvist, M.K.M.; Rabe, K.S. Applications of protein engineering and directed evolution in plant research. Plant Physiol., 2019, 179(3), 907-917.
[http://dx.doi.org/10.1104/pp.18.01534] [PMID: 30626612]
[13]
Packer, M.S.; Liu, D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet., 2015, 16(7), 379-394.
[http://dx.doi.org/10.1038/nrg3927] [PMID: 26055155]
[14]
Pucci, F.; Schwersensky, M.; Rooman, M. Artificial intelligence challenges for predicting the impact of mutations on protein stability. Curr. Opin. Struct. Biol., 2022, 72, 161-168.
[http://dx.doi.org/10.1016/j.sbi.2021.11.001] [PMID: 34922207]
[15]
Johannes, T.W.; Zhao, H. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol., 2006, 9(3), 261-267.
[http://dx.doi.org/10.1016/j.mib.2006.03.003] [PMID: 16621678]
[16]
Li, Y. Split-inteins and their bioapplications. Biotechnol. Lett., 2015, 37(11), 2121-2137.
[http://dx.doi.org/10.1007/s10529-015-1905-2] [PMID: 26153348]
[17]
Borra, R.; Dong, D.; Elnagar, A.Y.; Woldemariam, G.A.; Camarero, J.A. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J. Am. Chem. Soc., 2012, 134(14), 6344-6353.
[http://dx.doi.org/10.1021/ja300209u] [PMID: 22404648]
[18]
Züger, S.; Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol., 2005, 23(6), 736-740.
[http://dx.doi.org/10.1038/nbt1097] [PMID: 15908942]
[19]
Busche, A.E.L.; Aranko, A.S.; Talebzadeh-Farooji, M.; Bernhard, F.; Dötsch, V.; Iwaï, H. Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew. Chem. Int. Ed., 2009, 48(33), 6128-6131.
[http://dx.doi.org/10.1002/anie.200901488] [PMID: 19591176]
[20]
Yang, J.Y.; Yang, W.Y. Site-specific two-color protein labeling for FRET studies using split inteins. J. Am. Chem. Soc., 2009, 131(33), 11644-11645.
[http://dx.doi.org/10.1021/ja9030215] [PMID: 19645470]
[21]
Ramirez, M.; Valdes, N.; Guan, D.; Chen, Z. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng. Des. Sel., 2013, 26(3), 215-223.
[http://dx.doi.org/10.1093/protein/gzs097] [PMID: 23223807]
[22]
Colyer, C.L.; Kinkade, C.S.; Viskari, P.J.; Landers, J.P. Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Anal. Bioanal. Chem., 2005, 382(3), 559-569.
[http://dx.doi.org/10.1007/s00216-004-3020-4] [PMID: 15714301]
[23]
Rouet, R.; Christ, D. Bispecific antibodies with native chain structure. Nat. Biotechnol., 2014, 32(2), 136-137.
[http://dx.doi.org/10.1038/nbt.2812] [PMID: 24509759]
[24]
Rubin-Pitel, S.B.; Cho, C.M.; Chen, W.; Zhao, H. Directed evolution tools in bioproduct and bioprocess development.Bioproc. value-added. prod. rene. res; Elsevier, 2007, pp. 49-72.
[http://dx.doi.org/10.1016/B978-044452114-9/50004-9]
[25]
Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S.T.; Zhao, H. Directed evolution: Methodologies and applications. Chem. Rev., 2021, 121(20), 12384-12444.
[http://dx.doi.org/10.1021/acs.chemrev.1c00260] [PMID: 34297541]
[26]
Kamravamanesh, D.; Kovacs, T.; Pflügl, S.; Druzhinina, I.; Kroll, P.; Lackner, M.; Herwig, C. Increased poly-β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Mutant generation and characterization. Bioresour. Technol., 2018, 266, 34-44.
[http://dx.doi.org/10.1016/j.biortech.2018.06.057] [PMID: 29957289]
[27]
Xin, Y.; Shen, C.; She, Y.; Chen, H.; Wang, C.; Wei, L.; Yoon, K.; Han, D.; Hu, Q.; Xu, J. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol. Plant, 2019, 12(4), 474-488.
[http://dx.doi.org/10.1016/j.molp.2018.12.007] [PMID: 30580039]
[28]
Cordero, B.F.; Obraztsova, I.; Couso, I.; Leon, R.; Vargas, M.A.; Rodriguez, H. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs, 2011, 9(9), 1607-1624.
[http://dx.doi.org/10.3390/md9091607] [PMID: 22131961]
[29]
de Jaeger, L.; Verbeek, R.E.M.; Draaisma, R.B.; Martens, D.E.; Springer, J.; Eggink, G.; Wijffels, R.H. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol. Biofuels, 2014, 7(1), 69.
[http://dx.doi.org/10.1186/1754-6834-7-69] [PMID: 24920957]
[30]
Doan, T.T.Y.; Obbard, J.P. Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res., 2012, 1(1), 17-21.
[http://dx.doi.org/10.1016/j.algal.2012.03.001]
[31]
Lin, P.C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci. Rep., 2017, 7(1), 17503.
[http://dx.doi.org/10.1038/s41598-017-17831-y] [PMID: 29235513]
[32]
Cirino, P.C.; Mayer, K.M.; Umeno, D. Generating mutant libraries using error-prone PCR. Directed evolution library creation. Methods Protoc., 2003, 3-9.
[33]
Dorrazehi, G.M. The catalytic activity of a DD-peptidase impairs its evolutionary conversion into a beta-lactamase; Doctoral dissertation, UCL-Université Catholique de Louvain, 2022.
[34]
Wong, T.S.; Tee, K.L.; Hauer, B.; Schwaneberg, U. Sequence saturation mutagenesis (SeSaM): A novel method for directed evolution. Nucleic Acids Res., 2004, 32(3), 26e-26.
[http://dx.doi.org/10.1093/nar/gnh028] [PMID: 14872057]
[35]
Hiraide, Y.; Yamamoto, H.; Kawajiri, Y.; Yamakawa, H.; Wada, K.; Fujita, Y. Super-activator variants of the cyanobacterial transcriptional regulator ChlR essential for tetrapyrrole biosynthesis under low oxygen conditions. Biosci. Biotechnol. Biochem., 2020, 84(3), 481-490.
[http://dx.doi.org/10.1080/09168451.2019.1687281] [PMID: 31690227]
[36]
Pattharaprachayakul, N.; Lee, H.J.; Incharoensakdi, A.; Woo, H.M. Evolutionary engineering of cyanobacteria to enhance the production of α-farnesene from CO2. J. Agric. Food Chem., 2019, 67(49), 13658-13664.
[http://dx.doi.org/10.1021/acs.jafc.9b06254] [PMID: 31755253]
[37]
Dubey, K.K.; Pramanik, A.; Yadav, J. Enzyme Engineering.Advances in Enzyme Technology; Elsevier, 2019, pp. 325-347.
[http://dx.doi.org/10.1016/B978-0-444-64114-4.00012-1]
[38]
Bloom, J.D.; Arnold, F.H. In the light of directed evolution: Pathways of adaptive protein evolution. Proc. Natl. Acad. Sci., 2009, 106(Suppl 1)(1), 9995-10000.
[http://dx.doi.org/10.1073/pnas.0901522106] [PMID: 19528653]
[39]
Smith, M.A.; Romero, P.A.; Wu, T.; Brustad, E.M.; Arnold, F.H. Chimeragenesis of distantly-related proteins by noncontiguous recombination. Protein Sci., 2013, 22(2), 231-238.
[http://dx.doi.org/10.1002/pro.2202] [PMID: 23225662]
[40]
Mezzolla, V.; D’Urso, O.; Poltronieri, P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymers, 2018, 10(8), 910.
[http://dx.doi.org/10.3390/polym10080910] [PMID: 30960835]
[41]
Tan, GY; Chen, CL; Li, L; Ge, L; Wang, L; Razaad, IM; Li, Y; Zhao, L; Mo, Y; Wang, JY Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers, 2014, 6(3), 706-754.
[42]
Sudesh, K.; Taguchi, K.; Doi, Y. Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int. J. Biol. Macromol., 2002, 30(2), 97-104.
[http://dx.doi.org/10.1016/S0141-8130(02)00010-7] [PMID: 11911900]
[43]
Khetkorn, W.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour. Technol., 2016, 214, 761-768.
[http://dx.doi.org/10.1016/j.biortech.2016.05.014] [PMID: 27213577]
[44]
Maeda, T.; Vardar, G.; Self, W.T.; Wood, T.K. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotech, 2007, 7(1), 1-12.
[http://dx.doi.org/10.1186/1472-6750-7-25]
[45]
Zheng, L.; Baumann, U.; Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res., 2004, 32(14), e115.
[http://dx.doi.org/10.1093/nar/gnh110] [PMID: 15304544]
[46]
Engqvist, M.K.M.; Nielsen, J. ANT: Software for generating and evaluating degenerate codons for natural and expanded genetic codes. ACS Synth. Biol., 2015, 4(8), 935-938.
[http://dx.doi.org/10.1021/acssynbio.5b00018] [PMID: 25901796]
[47]
Ogola, H.J.O.; Hashimoto, N.; Miyabe, S.; Ashida, H.; Ishikawa, T.; Shibata, H.; Sawa, Y. Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues. Appl. Microbiol. Biotechnol., 2010, 87(5), 1727-1736.
[http://dx.doi.org/10.1007/s00253-010-2603-6] [PMID: 20422179]
[48]
Masukawa, H.; Inoue, K.; Sakurai, H.; Wolk, C.P.; Hausinger, R.P. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl. Environ. Microbiol., 2010, 76(20), 6741-6750.
[http://dx.doi.org/10.1128/AEM.01056-10] [PMID: 20709836]
[49]
Formighieri, C.; Melis, A. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metab. Eng., 2015, 32, 116-124.
[http://dx.doi.org/10.1016/j.ymben.2015.09.010] [PMID: 26410450]
[50]
Betterle, N.; Hidalgo, M.D.; Melis, A. Cyanobacterial production of biopharmaceutical and biotherapeutic proteins. Front. Plant Sci., 2020, 11, 237.
[http://dx.doi.org/10.3389/fpls.2020.00237] [PMID: 32194609]
[51]
Chaves, J.E.; Rueda-Romero, P.; Kirst, H.; Melis, A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth. Biol., 2017, 6(12), 2281-2292.
[http://dx.doi.org/10.1021/acssynbio.7b00214] [PMID: 28858481]
[52]
Lee, H.J.; Choi, J.; Lee, S.M.; Um, Y.; Sim, S.J.; Kim, Y.; Woo, H.M. Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria. J. Agric. Food Chem., 2017, 65(6), 1087-1092.
[http://dx.doi.org/10.1021/acs.jafc.7b00002] [PMID: 28128561]
[53]
Betterle, N.; Melis, A. Heterologous leader sequences in fusion constructs enhance expression of geranyl diphosphate synthase and yield of β-phellandrene production in cyanobacteria (Synechocystis). ACS Synth. Biol., 2018, 7(3), 912-921.
[http://dx.doi.org/10.1021/acssynbio.7b00431] [PMID: 29397685]
[54]
Betterle, N.; Melis, A. Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnol. Bioeng., 2019, 116(8), 2041-2051.
[http://dx.doi.org/10.1002/bit.26988] [PMID: 30963538]
[55]
Valsami, E.A.; Psychogyiou, M.E.; Pateraki, A.; Chrysoulaki, E.; Melis, A.; Ghanotakis, D.F. Fusion constructs enhance heterologous β-phellandrene production in Synechocystis sp. PCC 6803. J. Appl. Phycol., 2020, 32(5), 2889-2902.
[http://dx.doi.org/10.1007/s10811-020-02186-1]
[56]
Lauersen, K.J.; Wichmann, J.; Baier, T.; Kampranis, S.C.; Pateraki, I.; Møller, B.L.; Kruse, O. Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metab. Eng., 2018, 49, 116-127.
[http://dx.doi.org/10.1016/j.ymben.2018.07.005] [PMID: 30017797]
[57]
Schneider, C.; Niisuke, K.; Boeglin, W.E.; Voehler, M.; Stec, D.F.; Porter, N.A.; Brash, A.R. Enzymatic synthesis of a bicyclobutane fatty acid by a hemoprotein–lipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 18941-18945.
[http://dx.doi.org/10.1073/pnas.0707148104] [PMID: 18025466]
[58]
Chaves, J.E.; Melis, A. Biotechnology of cyanobacterial isoprene production. Appl. Microbiol. Biotechnol., 2018, 102(15), 6451-6458.
[http://dx.doi.org/10.1007/s00253-018-9093-3] [PMID: 29802477]
[59]
Pramanik, S; Contreras, F; Davari, MD; Schwaneberg, U Protein engineering by efficient sequence space exploration through combination of directed evolution and computational design methodologies. Protein engineering: Tools and Applications., 2021, 153-176.
[60]
Sproles, A.E.; Fields, F.J.; Smalley, T.N.; Le, C.H.; Badary, A.; Mayfield, S.P. Recent advancements in the genetic engineering of microalgae. Algal Res., 2021, 53, 102158.
[http://dx.doi.org/10.1016/j.algal.2020.102158]
[61]
Lima, A.M.; Siqueira, A.S.; Möller, M.L.S.; Souza, R.C.; Cruz, J.N.; Lima, A.R.J.; Silva, R.C.; Aguiar, D.C.F.; Junior, J.L.S.G.V.; Gonçalves, E.C. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J. Biomol. Struct. Dyn., 2022, 40(3), 1064-1073.
[http://dx.doi.org/10.1080/07391102.2020.1821782] [PMID: 32990187]
[62]
Wijma, H.J.; Fürst, M.J.; Janssen, D.B. A computational library design protocol for rapid improvement of protein stability: FRESCO. Protein engineering. Methods Protoc., 2018, 69-85.
[63]
Fortelny, N.; Pavlidis, P.; Overall, C.M. The path of no return—Truncated protein N-termini and current ignorance of their genesis. Proteomics, 2015, 15(14), 2547-2552.
[http://dx.doi.org/10.1002/pmic.201500043] [PMID: 26010509]
[64]
Floor, R.J.; Wijma, H.J.; Colpa, D.I.; Ramos-Silva, A.; Jekel, P.A.; Szymański, W.; Janssen, D.B. Computational library design for increasing haloalkane dehalogenase stability. ChemBioChem,, 2014, 15(11), 1660-1672.
[http://dx.doi.org/10.1002/cbic.201402128]
[65]
Weinstein, J.J.; Goldenzweig, A.; Hoch, S.; Fleishman, S.J. PROSS 2: A new server for the design of stable and highly expressed protein variants. Bioinformatics, 2021, 37(1), 123-125.
[http://dx.doi.org/10.1093/bioinformatics/btaa1071] [PMID: 33367682]
[66]
Dong, F.; Zhang, M.; Ma, R.; Lu, C.; Xu, F. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA. Arch. Biochem. Biophys., 2022, 722, 109196.
[http://dx.doi.org/10.1016/j.abb.2022.109196] [PMID: 35339426]
[67]
Berland, M.; Offmann, B.; André, I.; Remaud-Siméon, M.; Charton, P. A web-based tool for rational screening of mutants libraries using ProSAR. Protein Eng. Des. Sel., 2014, 27(10), 375-381.
[http://dx.doi.org/10.1093/protein/gzu035] [PMID: 25169579]
[68]
Mckenna, A.; Dubey, S. Machine learning based predictive model for the analysis of sequence activity relationships using protein spectra and protein descriptors. J. Biomed. Inform., 2022, 128, 104016.
[http://dx.doi.org/10.1016/j.jbi.2022.104016] [PMID: 35143999]
[69]
Damián-Almazo, J.Y.; Saab-Rincón, G. Site-directed mutagenesis as applied to biocatalysts; Genetic manipulation of DNA and protein–examples from current research. InTech: Rijeka, Croatia, 2013, pp. 303-330.
[70]
Reetz, M.T.; Bocola, M.; Carballeira, J.D.; Zha, D.; Vogel, A. Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew. Chem. Int. Ed., 2005, 44(27), 4192-4196.
[http://dx.doi.org/10.1002/anie.200500767] [PMID: 15929154]
[71]
Maeda, S.; Konishi, M.; Yanagisawa, S.; Omata, T. Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol., 2014, 55(7), 1311-1324.
[http://dx.doi.org/10.1093/pcp/pcu075] [PMID: 24904028]
[72]
Vicente, J.B.; Gomes, C.M.; Wasserfallen, A.; Teixeira, M. Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem. Biophys. Res. Commun., 2002, 294(1), 82-87.
[http://dx.doi.org/10.1016/S0006-291X(02)00434-5] [PMID: 12054744]
[73]
Ducat, D.C.; Way, J.C.; Silver, P.A. Engineering cyanobacteria to generate high-value products. Trends Biotechnol., 2011, 29(2), 95-103.
[http://dx.doi.org/10.1016/j.tibtech.2010.12.003] [PMID: 21211860]
[74]
Caspi, J.; Amitai, G.; Belenkiy, O.; Pietrokovski, S. Distribution of split DnaE inteins in cyanobacteria. Mol. Microbiol., 2003, 50(5), 1569-1577.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03825.x] [PMID: 14651639]
[75]
Stevens, A.J.; Sekar, G.; Shah, N.H.; Mostafavi, A.Z.; Cowburn, D.; Muir, T.W. A promiscuous split intein with expanded protein engineering applications. Proc. Natl. Acad. Sci., 2017, 114(32), 8538-8543.
[http://dx.doi.org/10.1073/pnas.1701083114] [PMID: 28739907]
[76]
Diez-Quijada, L.; Benítez-González, M.M.; Puerto, M.; Jos, A.; Cameán, A.M. Immunotoxic effects induced by microcystins and cylindrospermopsin: A review. Toxins, 2021, 13(10), 711.
[http://dx.doi.org/10.3390/toxins13100711] [PMID: 34679003]
[77]
Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific antibodies: From research to clinical application. Front. Immunol., 2021, 12, 626616.
[http://dx.doi.org/10.3389/fimmu.2021.626616] [PMID: 34025638]
[78]
Raran-Kurussi, S.; Cherry, S.; Zhang, D.; Waugh, D.S. Removal of affinity tags with TEV protease. In heterologous gene expression in E. coli; Humana Press: New York, 2017, pp. 221-230.
[http://dx.doi.org/10.1007/978-1-4939-6887-9_14]
[79]
Parks, T.D.; Leuther, K.K.; Howard, E.D.; Johnston, S.A.; Dougherty, W.G. Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem., 1994, 216(2), 413-417.
[http://dx.doi.org/10.1006/abio.1994.1060] [PMID: 8179197]
[80]
He, Y.H.; Li, Y.M.; Chen, Y.X. Phosphorylation regulates proteolytic efficiency of TEV protease detected by a 5(6)-carboxyfluorescein-pyrene based fluorescent sensor. Talanta, 2016, 150, 340-345.
[http://dx.doi.org/10.1016/j.talanta.2015.12.028] [PMID: 26838417]
[81]
van den Berg, S.; Löfdahl, P.Å.; Härd, T.; Berglund, H. Improved solubility of TEV protease by directed evolution. J. Biotechnol., 2006, 121(3), 291-298.
[http://dx.doi.org/10.1016/j.jbiotec.2005.08.006] [PMID: 16150509]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy