Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

FBLN5 was Regulated by PRDM9, and Promoted Senescence and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells

Author(s): Mengyao Zhao, Rong Rong, Chen Zhang, Haoqing Yang, Xiao Han, Zhipeng Fan*, Ying Zheng* and Jianpeng Zhang*

Volume 19, Issue 3, 2024

Published on: 19 September, 2023

Page: [417 - 425] Pages: 9

DOI: 10.2174/1574888X18666230822100054

Price: $65

conference banner
Abstract

Objectives: Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear.

Methods: Senescence was assessed using β-galactosidase and Enzyme-linked immunosorbent assay (ELISA). Osteogenic differentiation potential of hPDLSCs was measured through Alkaline phosphatase (ALP) activity assay and Alizarin red detection, while gene expression levels were evaluated using western blot and RT-qPCR analysis.

Results: FBLN5 overexpression promoted the osteogenic differentiation and senescence of hPDLSCs. FBLN5 knockdown inhibited the osteogenic differentiation and senescence of hPDLSCs. Knockdown of PRDM9 decreased the expression of FBLN5 in hPDLSCs and inhibited senescence of hPDLSCs. Additionally, both FBLN5 and PRDM9 promoted the expression of phosphorylated p38 MAPK, Erk1/2 and JNK. The p38 MAPK pathway inhibitor SB203580 and the Erk1/2 pathway inhibitor PD98059 have the same effects on inhibiting the osteogenic differentiation and senescence of hPDLSCs. The JNK pathway inhibitor SP600125 reduced the senescence of hPDLSCs.

Conclusion: FBLN5 promoted senescence and osteogenic differentiation of hPDLSCs via activation of the MAPK signaling pathway. FBLN5 was positively targeted by PRDM9, which also activated the MAPK signaling pathway.

« Previous
Graphical Abstract

[1]
Ouchi T, Nakagawa T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen Ther 2020; 14: 72-8.
[http://dx.doi.org/10.1016/j.reth.2019.12.011] [PMID: 31970269]
[2]
Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med 2019; 13(2): 152-9.
[http://dx.doi.org/10.1007/s11684-018-0628-x] [PMID: 29971640]
[3]
Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: Regenerative potency in periodontium. Stem Cells Dev 2019; 28(15): 974-85.
[http://dx.doi.org/10.1089/scd.2019.0031] [PMID: 31215350]
[4]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[5]
Park JC, Kim JM, Jung IH, et al. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J Clin Periodontol 2011; 38(8): 721-31.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01716.x] [PMID: 21449989]
[6]
Ninomiya T, Hiraga T, Hosoya A, et al. Enhanced bone-forming activity of side population cells in the periodontal ligament. Cell Transplant 2014; 23(6): 691-701.
[http://dx.doi.org/10.3727/096368913X663587] [PMID: 23394738]
[7]
Vandana KL, Shalini HS. Direct application of autologous periodontal ligament stem cell niche in treatment of periodontal osseous defects: A randomized controlled trial. J Indian Soc Periodontol 2018; 22(6): 503-12.
[http://dx.doi.org/10.4103/jisp.jisp_92_18] [PMID: 30631229]
[8]
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 2018; 19(9): 594-610.
[http://dx.doi.org/10.1038/s41580-018-0020-3] [PMID: 29858605]
[9]
Xu XY, Li X, Wang J, He XT, Sun HH, Chen FM. Concise review: Periodontal tissue regeneration using stem cells: Strategies and translational considerations. Stem Cells Transl Med 2019; 8(4): 392-403.
[http://dx.doi.org/10.1002/sctm.18-0181] [PMID: 30585445]
[10]
Zhang J, An Y, Gao LN, Zhang YJ, Jin Y, Chen FM. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials 2012; 33(29): 6974-86.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.032] [PMID: 22789721]
[11]
Racz GZ, Kadar K, Foldes A, et al. Immunomodulatory and potential therapeutic role of mesenchymal stem cells in periodontitis. J Physiol Pharmacol 2014; 65(3): 327-39.
[12]
Wu RX, Bi CS, Yu Y, Zhang LL, Chen FM. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater 2015; 22: 70-82.
[http://dx.doi.org/10.1016/j.actbio.2015.04.024] [PMID: 25922305]
[13]
Zhu X, Chen Z, Shen W, et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6(1): 245.
[http://dx.doi.org/10.1038/s41392-021-00646-9] [PMID: 34176928]
[14]
Casamassimi A, Rienzo M, Di Zazzo E, et al. Multifaceted role of PRDM proteins in human cancer. Int J Mol Sci 2020; 21(7): 2648.
[http://dx.doi.org/10.3390/ijms21072648] [PMID: 32290321]
[15]
Zhang J, Zhang C, Yang H, Han X, Fan Z, Hou B. Depletion of PRDM9 enhances proliferation, migration and chemotaxis potentials in human periodontal ligament stem cells. Connect Tissue Res 2020; 61(5): 498-508.
[http://dx.doi.org/10.1080/03008207.2019.1620224] [PMID: 31096797]
[16]
Zhang JP, Yang HQ, Yan Y, Hou BX. Depletion of PRDM9 inhibited the osteogenic differentiation potential of periodontal ligament stem cells. Chung Hua Kou Chiang Hsueh Tsa Chih 2019; 54(12): 841-6.
[PMID: 31874485]
[17]
Hamner J, Florian-Rodriguez M, Acevedo J, Shi H, Word RA. Protease inhibition improves healing of the vaginal wall after obstetrical injury: Results from a preclinical animal model. Sci Rep 2020; 10(1): 6358.
[http://dx.doi.org/10.1038/s41598-020-63031-6] [PMID: 32286390]
[18]
Li R, Wu H, Jiang H, et al. FBLN5 is targeted by microRNA 27a 3p and suppresses tumorigenesis and progression in high grade serous ovarian carcinoma. Oncol Rep 2020; 44(5): 2143-51.
[http://dx.doi.org/10.3892/or.2020.7749] [PMID: 32901854]
[19]
Lomas AC, Mellody KT, Freeman LJ, Bax DV, Shuttleworth CA, Kielty CM. Fibulin-5 binds human smooth-muscle cells through α5β1 and α4β1 integrins, but does not support receptor activation. Biochem J 2007; 405(3): 417-28.
[http://dx.doi.org/10.1042/BJ20070400] [PMID: 17472576]
[20]
Boraldi F, Annovi G, Tiozzo R, Sommer P, Quaglino D. Comparison of ex vivo and in vitro human fibroblast ageing models. Mech Ageing Dev 2010; 131(10): 625-35.
[http://dx.doi.org/10.1016/j.mad.2010.08.008] [PMID: 20816692]
[21]
Gao JB, Lin L, Men XQ, et al. Fibulin-5 protects the extracellular matrix of chondrocytes by inhibiting the Wnt/β-catenin signaling pathway and relieves osteoarthritis. Eur Rev Med Pharmacol Sci 2020; 24(10): 5249-58.
[PMID: 32495858]
[22]
Hou X, Li H, Zhang C, Wang J, Li X, Li X. Overexpression of Fibulin-5 attenuates burn-induced inflammation via TRPV1/CGRP pathway. Exp Cell Res 2017; 357(2): 320-7.
[http://dx.doi.org/10.1016/j.yexcr.2017.05.029] [PMID: 28602628]
[23]
Amano S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp Dermatol 2016; 25(S3): 14-9.
[http://dx.doi.org/10.1111/exd.13085] [PMID: 27539897]
[24]
Stone EM, Braun TA, Russell SR, et al. Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 2004; 351(4): 346-53.
[http://dx.doi.org/10.1056/NEJMoa040833] [PMID: 15269314]
[25]
Cao Y, Wang L, Yang H, et al. Epiregulin promotes the migration and chemotaxis ability of adipose‐derived mesenchymal stem cells via mitogen‐activated protein kinase signaling pathways. J Cell Biochem 2018; 119(10): 8450-9.
[http://dx.doi.org/10.1002/jcb.27069] [PMID: 30011072]
[26]
Liu H, Han X, Yang H, et al. GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connect Tissue Res 2021; 62(3): 325-36.
[http://dx.doi.org/10.1080/03008207.2020.1736054] [PMID: 32151168]
[27]
Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7(3): 335-43.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00377.x] [PMID: 18248663]
[28]
Mohamad Kamal NS, Safuan S, Shamsuddin S, Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol 2020; 99(6): 151108.
[http://dx.doi.org/10.1016/j.ejcb.2020.151108] [PMID: 32800277]
[29]
Chakravarti D, LaBella KA, DePinho RA. Telomeres: History, health, and hallmarks of aging. Cell 2021; 184(2): 306-22.
[http://dx.doi.org/10.1016/j.cell.2020.12.028] [PMID: 33450206]
[30]
Liebl MC, Hofmann TG. The role of p53 signaling in colorectal cancer. Cancers 2021; 13(9): 2125.
[http://dx.doi.org/10.3390/cancers13092125] [PMID: 33924934]
[31]
Martin N, Beach D, Gil J. Ageing as developmental decay: Insights from p16INK4a. Trends Mol Med 2014; 20(12): 667-74.
[http://dx.doi.org/10.1016/j.molmed.2014.09.008] [PMID: 25277993]
[32]
He D, Wu H, Xiang J, et al. Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nat Commun 2020; 11(1): 37.
[http://dx.doi.org/10.1038/s41467-019-13911-x] [PMID: 31896747]
[33]
Liu H, Ho PWL, Leung CT, et al. Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 R1441G mice. Autophagy 2021; 17(10): 3196-220.
[http://dx.doi.org/10.1080/15548627.2020.1850008] [PMID: 33300446]
[34]
Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells 2019; 8(11): 1383.
[http://dx.doi.org/10.3390/cells8111383] [PMID: 31689891]
[35]
Suh Y, Park SC. Differential activation of mitogen-activated protein kinases by methyl methanesulfonate in the kidney of young and old rats. Mutat Res Genet Toxicol Environ Mutagen 2001; 497(1-2): 11-8.
[http://dx.doi.org/10.1016/S1383-5718(01)00207-8] [PMID: 11525903]
[36]
Li X, Zheng Y, Zheng Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther 2018; 9(1): 232.
[http://dx.doi.org/10.1186/s13287-018-0976-0] [PMID: 30170617]
[37]
Wei K, Xie Y, Chen T, et al. ERK1/2 signaling mediated naringin-induced osteogenic differentiation of immortalized human periodontal ligament stem cells. Biochem Biophys Res Commun 2017; 489(3): 319-25.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.130] [PMID: 28554841]
[38]
Hu M, Xing L, Zhang L, et al. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell 2022; 21(2): e13551.
[http://dx.doi.org/10.1111/acel.13551] [PMID: 35032339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy