Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

New Promising Routes in Peptic Ulcers: Toll-like Receptors and Semaphorins

Author(s): Teresa V. Jacob and Gaurav M. Doshi*

Volume 24, Issue 8, 2024

Published on: 26 January, 2024

Page: [865 - 878] Pages: 14

DOI: 10.2174/1871530323666230821102718

Price: $65

Abstract

Peptic ulcers (PU) are one of the commonest yet problematic diseases found to be existing in the majority of the population. Today, drugs from a wide range of therapeutic classes are available for the management of the disease. Still, the complications of the condition are difficult to tackle and the side effect profile is quite a concern. The literature indicates that Toll-like receptors (TLRs) and Semaphorins (SEMAs) have been under study for their various pharmacological actions over the past few decades. Both these signalling pathways are found to regulate immunological and inflammatory responses. Moreover, receptors and signalling molecules from the family of TLRs and SEMAs are found to have bacterial recognition and antibacterial properties which are essential in eradicating Helicobacter pylori (H. pylori), one of the major causative agents of PU. Our understanding of SEMAs, a class of proteins involved in cell signalling, is relatively less developed compared to TLRs, another class of proteins involved in the immune response. SEMAs and TLRs play different roles in biological processes, with SEMAs primarily involved in guiding cell migration and axon guidance during development, while TLRs are responsible for recognizing pathogens and initiating an immune response. Here, in this review, we will discuss in detail the signalling cascade of TLRs and SEMAs and thereby understand its association with PU for future therapeutic targeting. The review also aims at providing an overview of the study that has been into exploring the role of these signalling pathways in the management of PU.

Next »
Graphical Abstract

[1]
Manu, P.; Rogozea, L.M.; Sandor, V.; Dumitraşcu, D.L. Pharmacological management of peptic ulcer: A century of expert opinions in cecil textbook of medicine. Am. J. Ther., 2021, 28(5), e552-e559.
[http://dx.doi.org/10.1097/MJT.0000000000001439] [PMID: 34469923]
[2]
Sugano, K.; Howden, C.W. Editorial: The never-ending story— Helicobacter pylori and peptic ulcer disease. Aliment. Pharmacol. Ther., 2021, 54(10), 1350-1351.
[http://dx.doi.org/10.1111/apt.16617] [PMID: 34699099]
[3]
Zhan, L.; Zheng, J.; Meng, J.; Fu, D.; Pang, L.; Ji, C. Toll-like receptor 4 deficiency alleviates lipopolysaccharide-induced intestinal barrier dysfunction. Biomed. Pharmacother., 2022, 155, 113778.
[http://dx.doi.org/10.1016/j.biopha.2022.113778] [PMID: 36271559]
[4]
Zamyatina, A.; Heine, H. Lipopolysaccharide recognition in the crossroads of TLR4 and Caspase-4/11 mediated inflammatory pathways. Front. Immunol., 2020, 11, 585146.
[http://dx.doi.org/10.3389/fimmu.2020.585146] [PMID: 33329561]
[5]
Lu, Y.; Li, X.; Liu, S.; Zhang, Y.; Zhang, D. Toll-like receptors and inflammatory bowel disease. Front. Immunol., 2018, 9, 72.
[http://dx.doi.org/10.3389/fimmu.2018.00072] [PMID: 29441063]
[6]
Spiljar, M.; Merkler, D.; Trajkovski, M. The immune system bridges the gut microbiota with systemic energy homeostasis: Focus on TLRs, mucosal barrier, and SCFAs. Front. Immunol., 2017, 8, 1353.
[http://dx.doi.org/10.3389/fimmu.2017.01353] [PMID: 29163467]
[7]
Bica, C.; Tirpe, A.; Nutu, A.; Ciocan, C.; Chira, S.; Gurzau, E.S.; Braicu, C.; Berindan-Neagoe, I. Emerging roles and mechanisms of semaphorins activity in cancer. Life. Sci., 2023, 318, 121499.
[http://dx.doi.org/10.1016/j.lfs.2023.121499] [PMID: 36775114]
[8]
Zheng, Y.; Jiang, F.; Wang, C.; Dong, M.; Wang, C.; Yan, E.; Wang, Y.; Zhu, Z.; Xiong, X.; Ding, X.; Ye, J.; He, Y.; Zhang, H.; Zhou, J.; Zhang, W.; Wu, Y.; Song, X. Regulation of Semaphorin3A in the process of cutaneous wound healing. Cell. Death. Differ., 2022, 29(10), 1941-1954.
[http://dx.doi.org/10.1038/s41418-022-00981-6] [PMID: 35347234]
[9]
El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent., 2019, 43(1), 187.
[http://dx.doi.org/10.1186/s42269-019-0227-2]
[10]
Gay, N.J.; Symmons, M.F.; Gangloff, M.; Bryant, C.E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol., 2014, 14(8), 546-558.
[http://dx.doi.org/10.1038/nri3713] [PMID: 25060580]
[11]
Sellge, G.; Kufer, T.A. PRR-signaling pathways: Learning from microbial tactics. Semin. Immunol., 2015, 27(2), 75-84.
[http://dx.doi.org/10.1016/j.smim.2015.03.009] [PMID: 25911384]
[12]
Gao, W.; Xiong, Y.; Li, Q.; Yang, H. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: A journey from molecular to nano therapeutics. Front. Physiol., 2017, 8, 508.
[http://dx.doi.org/10.3389/fphys.2017.00508] [PMID: 28769820]
[13]
Singh, K.; Kant, S.; Singh, V.K.; Agrawal, N.K.; Gupta, S.K.; Singh, K. Toll-like receptor 4 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in type 2 diabetes patients. Mol. Vis., 2014, 20, 704-713.
[PMID: 24883015]
[14]
Wang, Y.; Song, E.; Bai, B.; Vanhoutte, P.M. Toll-like receptors mediating vascular malfunction: Lessons from receptor subtypes. Pharmacol. Ther., 2016, 158, 91-100.
[http://dx.doi.org/10.1016/j.pharmthera.2015.12.005] [PMID: 26702901]
[15]
Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; Akira, S. A Toll-like receptor recognizes bacterial DNA. Nature., 2000, 408(6813), 740-745.
[http://dx.doi.org/10.1038/35047123] [PMID: 11130078]
[16]
Murad, S. Toll-like receptor 4 in inflammation and angiogenesis: A double-edged sword. Front. Immunol., 2014, 5, 313.
[http://dx.doi.org/10.3389/fimmu.2014.00313] [PMID: 25071774]
[17]
Hoebe, K.; Du, X.; Georgel, P.; Janssen, E.; Tabeta, K.; Kim, S.O.; Goode, J.; Lin, P.; Mann, N.; Mudd, S.; Crozat, K.; Sovath, S.; Han, J.; Beutler, B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature., 2003, 424(6950), 743-748.
[http://dx.doi.org/10.1038/nature01889] [PMID: 12872135]
[18]
Ayres, J.S.; Schneider, D.S. Tolerance of infections. Annu. Rev. Immunol., 2012, 30(1), 271-294.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075030] [PMID: 22224770]
[19]
Zhang, Y.; Liang, C. Innate recognition of microbial-derived signals in immunity and inflammation. Sci. China. Life. Sci., 2016, 59(12), 1210-1217.
[http://dx.doi.org/10.1007/s11427-016-0325-6] [PMID: 27888386]
[20]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[21]
Burns, K.; Janssens, S.; Brissoni, B.; Olivos, N.; Beyaert, R.; Tschopp, J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med., 2003, 197(2), 263-268.
[http://dx.doi.org/10.1084/jem.20021790] [PMID: 12538665]
[22]
Bernard, N.J.; O’Neill, L.A. Mal, more than a bridge to MyD88. IUBMB Life., 2013, 65(9), 777-786.
[http://dx.doi.org/10.1002/iub.1201] [PMID: 23983209]
[23]
Mansell, A.; Brint, E.; Gould, J.A.; O’Neill, L.A.; Hertzog, P.J. Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-kappaB activation by toll-like receptor (TLR)-2 and TLR4. J. Biol. Chem., 2004, 279(36), 37227-37230.
[http://dx.doi.org/10.1074/jbc.C400289200] [PMID: 15247281]
[24]
Cusson-Hermance, N.; Khurana, S.; Lee, T.H.; Fitzgerald, K.A.; Kelliher, M.A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem., 2005, 280(44), 36560-36566.
[http://dx.doi.org/10.1074/jbc.M506831200] [PMID: 16115877]
[25]
Bryant, C.E.; Symmons, M.; Gay, N.J. Toll-like receptor signalling through macromolecular protein complexes. Mol. Immunol., 2015, 63(2), 162-165.
[http://dx.doi.org/10.1016/j.molimm.2014.06.033] [PMID: 25081091]
[26]
McGettrick, A.F.; Brint, E.K.; Palsson-McDermott, E.M.; Rowe, D.C.; Golenbock, D.T.; Gay, N.J.; Fitzgerald, K.A.; O’Neill, L.A.J. Trif-related adapter molecule is phosphorylated by PKCε during Toll-like receptor 4 signaling. Proc. Natl. Acad. Sci., 2006, 103(24), 9196-9201.
[http://dx.doi.org/10.1073/pnas.0600462103] [PMID: 16757566]
[27]
Couillault, C.; Pujol, N.; Reboul, J.; Sabatier, L.; Guichou, J.F.; Kohara, Y.; Ewbank, J.J. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol., 2004, 5(5), 488-494.
[http://dx.doi.org/10.1038/ni1060] [PMID: 15048112]
[28]
Troutman, T.D.; Hu, W.; Fulenchek, S.; Yamazaki, T.; Kurosaki, T.; Bazan, J.F.; Pasare, C. Role for B-cell adapter for PI3K (BCAP) as a signaling adapter linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. Proc. Natl. Acad. Sci., 2012, 109(1), 273-278.
[http://dx.doi.org/10.1073/pnas.1118579109] [PMID: 22187460]
[29]
Deguine, J.; Barton, G.M. MyD88: A central player in innate immune signaling. F1000Prime Rep., 2014, 6, 97.
[http://dx.doi.org/10.12703/P6-97] [PMID: 25580251]
[30]
Janssens, S.; Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell, 2003, 11(2), 293-302.
[http://dx.doi.org/10.1016/S1097-2765(03)00053-4] [PMID: 12620219]
[31]
Lin, S.C.; Lo, Y.C.; Wu, H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature, 2010, 465(7300), 885-890.
[http://dx.doi.org/10.1038/nature09121] [PMID: 20485341]
[32]
Lomaga, M.A.; Yeh, W.C.; Sarosi, I.; Duncan, G.S.; Furlonger, C.; Ho, A.; Morony, S.; Capparelli, C.; Van, G.; Kaufman, S.; van der Heiden, A.; Itie, A.; Wakeham, A.; Khoo, W.; Sasaki, T.; Cao, Z.; Penninger, J.M.; Paige, C.J.; Lacey, D.L.; Dunstan, C.R.; Boyle, W.J.; Goeddel, D.V.; Mak, T.W. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev., 1999, 13(8), 1015-1024.
[http://dx.doi.org/10.1101/gad.13.8.1015] [PMID: 10215628]
[33]
Deng, L.; Wang, C.; Spencer, E.; Yang, L.; Braun, A.; You, J.; Slaughter, C.; Pickart, C.; Chen, Z.J. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell., 2000, 103(2), 351-361.
[http://dx.doi.org/10.1016/S0092-8674(00)00126-4] [PMID: 11057907]
[34]
Wang, C.; Deng, L.; Hong, M.; Akkaraju, G.R.; Inoue, J.; Chen, Z.J. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412(6844), 346-351.
[http://dx.doi.org/10.1038/35085597] [PMID: 11460167]
[35]
Chen, Z.J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev., 2012, 246(1), 95-106.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01108.x] [PMID: 22435549]
[36]
Ajibade, A.A.; Wang, H.Y.; Wang, R.F. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol., 2013, 34(7), 307-316.
[http://dx.doi.org/10.1016/j.it.2013.03.007] [PMID: 23664135]
[37]
Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol., 2014, 5, 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[38]
Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell, 2006, 124(4), 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[39]
Yamamoto, M.; Takeda, K. Current views of toll-like receptor signaling pathways. Gastroenterol. Res. Pract., 2010, 2010, 1-8.
[http://dx.doi.org/10.1155/2010/240365] [PMID: 21197425]
[40]
Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 4(11), a011254-a011254.
[http://dx.doi.org/10.1101/cshperspect.a011254] [PMID: 23125017]
[41]
Ori, D.; Kato, H.; Sanjo, H.; Tartey, S.; Mino, T.; Akira, S.; Takeuchi, O. Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. J. Immunol., 2013, 190(8), 4037-4045.
[http://dx.doi.org/10.4049/jimmunol.1300173] [PMID: 23509369]
[42]
Häcker, H.; Tseng, P.H.; Karin, M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat. Rev. Immunol., 2011, 11(7), 457-468.
[http://dx.doi.org/10.1038/nri2998] [PMID: 21660053]
[43]
Chang, M.; Jin, W.; Sun, S.C. Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat. Immunol., 2009, 10(10), 1089-1095.
[http://dx.doi.org/10.1038/ni.1777] [PMID: 19734906]
[44]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[45]
Kawasaki, T.; Takemura, N.; Standley, D.M.; Akira, S.; Kawai, T. The second messenger phosphatidylinositol-5-phosphate facilitates antiviral innate immune signaling. Cell Host Microbe, 2013, 14(2), 148-158.
[http://dx.doi.org/10.1016/j.chom.2013.07.011] [PMID: 23954154]
[46]
He, W.; Jiang, M. TLR4 rs4986790 polymorphism confers risk to Helicobacter pylori infection in Zhejiang, China and its enlightenment to nursing care. J. Clin. Lab. Anal., 2022, 36(6), e24453.
[http://dx.doi.org/10.1002/jcla.24453] [PMID: 35500224]
[47]
Lam, S.Y.; Mommersteeg, M.C.; Yu, B.; Broer, L.; Spaander, M.C.W.; Frost, F.; Weiss, S.; Völzke, H.; Lerch, M.M.; Schöttker, B.; Zhang, Y.; Stocker, H.; Brenner, H.; Levy, D.; Hwang, S.J.; Wood, A.C.; Rich, S.S.; Rotter, J.I.; Taylor, K.D.; Tracy, R.P.; Kabagambe, E.K.; Leja, M.; Klovins, J.; Peculis, R.; Rudzite, D.; Nikitina-Zake, L.; Skenders, G.; Rovite, V.; Uitterlinden, A.; Kuipers, E.J.; Fuhler, G.M.; Homuth, G.; Peppelenbosch, M.P. Toll-like receptor 1 locus re-examined in a genome-wide association study update on anti-Helicobacter pylori IgG titers. Gastroenterology, 2022, 162(6), 1705-1715.
[http://dx.doi.org/10.1053/j.gastro.2022.01.011] [PMID: 35031300]
[48]
Kalkanli, T.S.; Kirkik, D.; Tanoglu, A.; Kahraman, R.; Ozturk, K.; Esen, M.F.; Coskunpinar, M.E.; Cagiltay, E. Polymorphisms in Toll-like receptors 1, 2, 5, and 10 are associated with predisposition to Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol., 2020, 32(9), 1141-1146.
[http://dx.doi.org/10.1097/MEG.0000000000001797] [PMID: 32541244]
[49]
AL-Eitan, L.; Almomani, F.A.; Al-Khatib, S.M.; Aljamal, H.A.; Al-Qusami, M.N.; Aljamal, R.A. Association of toll-like receptor 4, 5 and 10 polymorphisms with Helicobacter pylori -positive peptic ulcer disease in a center in Jordan. Ann. Saudi Med., 2021, 41(4), 206-215.
[http://dx.doi.org/10.5144/0256-4947.2021.206] [PMID: 34420402]
[50]
Cadamuro, A.C.T.; Rossi, A.F.T.; Biselli-Périco, M.J.; Fucuta, P.P.; Do Vale, E.P.B.M.; Acayaba, R.; Leite, K.R.M.; Goloni-Bertollo, E.M.; Silva, A.E. Effect of Helicobacter pylori eradication on TLR2 and TLR4 expression in patients with gastric lesions. Mediators Inflamm., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/481972] [PMID: 25873761]
[51]
Jang, A.R.; Kang, M.J.; Shin, J.I.; Kwon, S.W.; Park, J.Y.; Ahn, J.H.; Lee, T-S.; Kim, D-Y.; Choi, B-G.; Seo, M-W.; Yang, S-J.; Shin, M-K.; Park, J-H. Unveiling the crucial role of type IV secretion system and motility of Helicobacter pylori in IL-1β production via NLRP3 inflammasome activation in neutrophils. Front. Immunol., 2020, 11, 1121.
[http://dx.doi.org/10.3389/fimmu.2020.01121]
[52]
Loganathan, R.; Nazeer, M.; Goda, V.; Devaraju, P.; Ali, M.; Karunakaran, P.; Jayaraman, M. Genetic variants of TLR4 and TLR9 are risk factors for chronic Helicobacter pylori infection in South Indian Tamils. Hum. Immunol., 2017, 78(2), 216-220.
[http://dx.doi.org/10.1016/j.humimm.2016.12.002] [PMID: 27993530]
[53]
Pohjanen, V.M.; Koivurova, O.P.; Huhta, H.; Helminen, O.; Mäkinen, J.M.; Karhukorpi, J.M. Toll-like receptor 4 wild type homozygozity of polymorphisms +896 and +1196 is associated with high gastrin serum levels and peptic ulcer risk. PLoS One, 2015, 10(7), e0131553.
[54]
Nadatani, Y.; Watanabe, T.; Tanigawa, T.; Machida, H.; Okazaki, H.; Yamagami, H.; Watanabe, K.; Tominaga, K.; Fujiwara, Y.; Arakawa, T. High mobility group box 1 promotes small intestinal damage induced by nonsteroidal anti-inflammatory drugs through Toll-like receptor 4. Am. J. Pathol., 2012, 181(1), 98-110.
[http://dx.doi.org/10.1016/j.ajpath.2012.03.039] [PMID: 22634181]
[55]
Forstnerič, V.; Ivičak-Kocjan, K.; Plaper, T.; Jerala, R.; Benčina, M. The role of the C-terminal D0 domain of flagellin in activation of Toll like receptor 5. Blanke SR, editor. PLoS Pathog, 2017, 13(8), e1006574.
[56]
Pachathundikandi, S.K.; Tegtmeyer, N.; Arnold, I.C.; Lind, J.; Neddermann, M.; Falkeis-Veits, C.; Chattopadhyay, S.; Brönstrup, M.; Tegge, W.; Hong, M.; Sticht, H.; Vieth, M.; Müller, A.; Backert, S. T4SS-dependent TLR5 activation by Helicobacter pylori infection. Nat. Commun., 2019, 10(1), 5717.
[http://dx.doi.org/10.1038/s41467-019-13506-6] [PMID: 31844047]
[57]
Wang, X-Y.; Qin, X-R.; Wu, J.; Yao, X-Y.; Huang, J. Helicobacter pylori DNA promotes cellular proliferation, migration, and invasion of gastric cancer by activating toll-like receptor 9. Saudi J. Gastroenterol., 2019, 25(3), 181-187.
[http://dx.doi.org/10.4103/sjg.SJG_309_18] [PMID: 30618438]
[58]
Trejo-de, L.O.A.; Torres, J.; Sánchez-Zauco, N.; Pérez-Rodríguez, M.; Camorlinga-Ponce, M.; Flores-Luna, L. Polymorphisms in TLR9 but not in TLR5 increase the risk for duodenal ulcer and alter cytokine expression in the gastric mucosa. Innate Immun., 2015, 21(7), 706-713.
[59]
Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.F. Toll-like receptor signaling and its role in cell-mediated immunity. Front. Immunol., 2022, 13, 812774.
[http://dx.doi.org/10.3389/fimmu.2022.812774] [PMID: 35309296]
[60]
Tam, J.S.Y.; Coller, J.K.; Hughes, P.A.; Prestidge, C.A.; Bowen, J.M. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian J. Gastroenterol., 2021, 40(1), 5-21.
[http://dx.doi.org/10.1007/s12664-020-01114-y] [PMID: 33666891]
[61]
Schink, A.; Neumann, J.; Leifke, A.L.; Ziegler, K.; Fröhlich-Nowoisky, J.; Cremer, C. Screening of herbal extracts for TLR2- and TLR4-dependent anti-inflammatory effects. Ojcius DM, editor. PLoS One., 2018, 13(10), e0203907.
[62]
Dai, W.; Long, L.; Wang, X.; Li, S.; Xu, H. Phytochemicals targeting Toll-like receptors 4 (TLR4) in inflammatory bowel disease. Chin. Med., 2022, 17(1), 53.
[http://dx.doi.org/10.1186/s13020-022-00611-w] [PMID: 35484567]
[63]
Kim, T.H.; Ku, S.K.; Bae, J.S. Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food Chem. Toxicol., 2012, 50(3-4), 1118-1123.
[http://dx.doi.org/10.1016/j.fct.2011.12.004] [PMID: 22178603]
[64]
Qu, Y.; Li, X.; Xu, F.; Zhao, S.; Wu, X.; Wang, Y.; Xie, J. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB Axis. Front. Immunol., 2021, 12, 679897.
[http://dx.doi.org/10.3389/fimmu.2021.679897]
[65]
Li, Q.; Hu, X.; Xuan, Y.; Ying, J.; Fei, Y.; Rong, J.; Zhang, Y.; Zhang, J.; Liu, C.; Liu, Z. Kaempferol protects ethanol-induced gastric ulcers in mice via pro-inflammatory cytokines and NO. Acta Biochim. Biophys. Sin., 2018, 50(3), 246-253.
[http://dx.doi.org/10.1093/abbs/gmy002] [PMID: 29415150]
[66]
Asad, Md.U.; Fatema, T.J.; Bishajit, S.; Yusha, A.; Rahman, Md.H. Curcumin analogues as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: A computer-based study. J. Recept. Signal Transduct. Res., 2020, 40(4), 324-338.
[67]
Tong, W.; Chen, X.; Song, X.; Chen, Y.; Jia, R.; Zou, Y. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp. Ther. Med., 2019, 19(3), 1824-1834.
[68]
Yoshida, H.; Watanabe, W.; Oomagari, H.; Tsuruta, E.; Shida, M.; Kurokawa, M. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J. Nutr. Biochem., 2013, 24(7), 1276-1284.
[http://dx.doi.org/10.1016/j.jnutbio.2012.10.003] [PMID: 23333096]
[69]
Yilma, A.N.; Singh, S.R.; Morici, L.; Dennis, V.A. Flavonoid naringenin: a potential immunomodulator for Chlamydia trachomatis inflammation. Mediators Inflamm., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/102457] [PMID: 23766556]
[70]
Zhang, T.; Yang, D.; Meng, X. Baicalin protects against gastroduodenal ulcers via the modulation of Nrf2 expression: Experimental, biochemical, and histological analyses. Pharmacol. Rep., 2017, 69(6), 1154-1158.
[http://dx.doi.org/10.1016/j.pharep.2017.07.004] [PMID: 29128794]
[71]
Luo, W.; Wang, C.Y.; Jin, L. Baicalin downregulates porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR Signaling. PLoS One, 2012, 7(12), e51008.
[72]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[73]
Hu, Q.; Peng, Z.; Li, L.; Zou, X.; Xu, L.; Gong, J.; Yi, P. The efficacy of berberine-containing quadruple therapy on Helicobacter pylori eradication in China: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2020, 10, 1694.
[http://dx.doi.org/10.3389/fphar.2019.01694] [PMID: 32116685]
[74]
Xu, X.; Zhang, L.; Zhao, Y.; Xu, B.; Qin, W.; Yan, Y.; Yin, B.; Xi, C.; Ma, L. Anti-inflammatory mechanism of berberine on lipopolysaccharide-induced IEC-18 models based on comparative transcriptomics. Mol. Med. Rep., 2020, 22(6), 5163-5180.
[http://dx.doi.org/10.3892/mmr.2020.11602] [PMID: 33174609]
[75]
Cheng, W.E.; Ying Chang, M.; Wei, J.Y.; Chen, Y.J.; Maa, M.C.; Leu, T.H. Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement. Eur. J. Pharmacol., 2015, 757, 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.013] [PMID: 25796198]
[76]
Li, C.; Ai, G.; Wang, Y.; Lu, Q.; Luo, C.; Tan, L.; Lin, G.; Liu, Y.; Li, Y.; Zeng, H.; Chen, J.; Lin, Z.; Xian, Y.; Huang, X.; Xie, J.; Su, Z. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway. Pharmacol. Res., 2020, 152, 104603.
[http://dx.doi.org/10.1016/j.phrs.2019.104603] [PMID: 31863867]
[77]
Fu, Y.; Hou, Y.; Duan, Y.; Sun, X.; Chen, S. Gastroprotective effect of an active ingredients group of Lindera reflexa Hemsl. On Ethanol-Induced gastric ulcers in Rats: Involvement of VEGFR2/ERK and TLR-2/Myd88 signaling pathway. Int. Immunopharmacol., 2022, 107, 108673.
[http://dx.doi.org/10.1016/j.intimp.2022.108673] [PMID: 35259712]
[78]
Liu, L.; Lu, K.; Xie, J.; Che, H.; Li, H.; Wancui, X. Melanin from Sepia pharaonis ink alleviates mucosal damage and reduces inflammation to prevent alcohol-induced gastric ulcers. Food Biosci., 2023, 51, 102266.
[http://dx.doi.org/10.1016/j.fbio.2022.102266]
[79]
Zhang, D.; Xiang, M.; Jiang, Y.; Wu, F.; Chen, H.; Sun, M.; Zhang, L.; Du, X.; Chen, L. The protective effect of polysaccharide SAFP from Sarcodon aspratus on water immersion and restraint stress-induced gastric ulcer and modulatory effects on gut microbiota dysbiosis. Foods., 2022, 11(11), 1567.
[http://dx.doi.org/10.3390/foods11111567] [PMID: 35681318]
[80]
Tian, B.; Zhao, Q.; Xing, H.; Xu, J.; Li, Z.; Zhu, H.; Yang, K.; Sun, P.; Cai, M. Gastroprotective effects of ganoderma lucidum polysaccharides with different molecular weights on ethanol-induced acute gastric injury in rats. Nutrients., 2022, 14(7), 1476.
[http://dx.doi.org/10.3390/nu14071476] [PMID: 35406089]
[81]
Fard, D.; Tamagnone, L. Semaphorins in health and disease. Cytokine. Growth. Factor. Rev., 2021, 57, 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.006] [PMID: 32900601]
[82]
Kolodkin, A.L.; Matthes, D.J.; O’Connor, T.P.; Patel, N.H.; Admon, A.; Bentley, D.; Goodman, C.S. Fasciclin IV: Sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron., 1992, 9(5), 831-845.
[http://dx.doi.org/10.1016/0896-6273(92)90237-8] [PMID: 1418998]
[83]
Raper, J.A.; Kapfhammer, J.R. The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron., 1990, 4(1), 21-29.
[http://dx.doi.org/10.1016/0896-6273(90)90440-Q] [PMID: 2155630]
[84]
Luo, Y.; Raible, D.; Raper, J.A. Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell, 1993, 75(2), 217-227.
[http://dx.doi.org/10.1016/0092-8674(93)80064-L] [PMID: 8402908]
[85]
Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell, 1993, 75(7), 1389-1399.
[http://dx.doi.org/10.1016/0092-8674(93)90625-Z] [PMID: 8269517]
[86]
Alto, L.T.; Terman, J.R. Semaphorins and their signaling mechanisms. Methods Mol Biol., 2017, 1493, 1-25.
[http://dx.doi.org/10.1007/978-1-4939-6448-2_1]
[87]
Gurrapu, S.; Tamagnone, L. Transmembrane semaphorins: Multimodal signaling cues in development and cancer. Cell Adhes. Migr., 2016, 10(6), 675-691.
[http://dx.doi.org/10.1080/19336918.2016.1197479] [PMID: 27295627]
[88]
Gherardi, E.; Love, C.A.; Esnouf, R.M.; Jones, E.Y. The sema domain. Curr. Opin. Struct. Biol., 2004, 14(6), 669-678.
[http://dx.doi.org/10.1016/j.sbi.2004.10.010] [PMID: 15582390]
[89]
Siebold, C.; Jones, E.Y. Structural insights into semaphorins and their receptors. Semin. Cell Dev. Biol., 2013, 24(3), 139-145.
[http://dx.doi.org/10.1016/j.semcdb.2012.11.003] [PMID: 23253452]
[90]
Love, C.A.; Harlos, K.; Mavaddat, N.; Davis, S.J.; Stuart, D.I.; Jones, E.Y.; Esnouf, R.M. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat. Struct. Mol. Biol., 2003, 10(10), 843-848.
[http://dx.doi.org/10.1038/nsb977] [PMID: 12958590]
[91]
Perälä, N.; Sariola, H.; Immonen, T. More than nervous: The emerging roles of plexins. Differentiation, 2012, 83(1), 77-91.
[http://dx.doi.org/10.1016/j.diff.2011.08.001] [PMID: 22099179]
[92]
Hota, P.K.; Buck, M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell. Mol. Life Sci., 2012, 69(22), 3765-3805.
[http://dx.doi.org/10.1007/s00018-012-1019-0] [PMID: 22744749]
[93]
Janssen, B.J.C.; Malinauskas, T.; Weir, G.A.; Cader, M.Z.; Siebold, C.; Jones, E.Y. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat. Struct. Mol. Biol., 2012, 19(12), 1293-1299.
[http://dx.doi.org/10.1038/nsmb.2416] [PMID: 23104057]
[94]
Tong, Y.; Hota, P.K.; Penachioni, J.Y.; Hamaneh, M.B.; Kim, S.; Alviani, R.S.; Shen, L.; He, H.; Tempel, W.; Tamagnone, L.; Park, H.W.; Buck, M. Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. J. Biol. Chem., 2009, 284(51), 35962-35972.
[http://dx.doi.org/10.1074/jbc.M109.056275] [PMID: 19843518]
[95]
Kolodkin, A.L.; Levengood, D.V.; Rowe, E.G.; Tai, Y.T.; Giger, R.J.; Ginty, D.D. Neuropilin is a semaphorin III receptor. Cell, 1997, 90(4), 753-762.
[http://dx.doi.org/10.1016/S0092-8674(00)80535-8] [PMID: 9288754]
[96]
Chen, H.; Chédotal, A.; He, Z.; Goodman, C.S.; Tessier-Lavigne, M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron, 1997, 19(3), 547-559.
[http://dx.doi.org/10.1016/S0896-6273(00)80371-2] [PMID: 9331348]
[97]
Gu, C.; Yoshida, Y.; Livet, J.; Reimert, D.V.; Mann, F.; Merte, J. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science., 1979, 307(5707), 265-268.
[98]
Delgoffe, G.M.; Woo, S.R.; Turnis, M.E.; Gravano, D.M.; Guy, C.; Overacre, A.E.; Bettini, M.L.; Vogel, P.; Finkelstein, D.; Bonnevier, J.; Workman, C.J.; Vignali, D.A.A. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature, 2013, 501(7466), 252-256.
[http://dx.doi.org/10.1038/nature12428] [PMID: 23913274]
[99]
Kumanogoh, A.; Watanabe, C.; Lee, I.; Wang, X.; Shi, W.; Araki, H.; Hirata, H.; Iwahori, K.; Uchida, J.; Yasui, T.; Matsumoto, M.; Yoshida, K.; Yakura, H.; Pan, C.; Parnes, J.R.; Kikutani, H. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: A novel mechanism for regulating B cell signaling. Immunity, 2000, 13(5), 621-631.
[http://dx.doi.org/10.1016/S1074-7613(00)00062-5] [PMID: 11114375]
[100]
Kumanogoh, A.; Marukawa, S.; Suzuki, K.; Takegahara, N.; Watanabe, C.; Ch’ng, E.; Ishida, I.; Fujimura, H.; Sakoda, S.; Yoshida, K.; Kikutani, H. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature, 2002, 419(6907), 629-633.
[http://dx.doi.org/10.1038/nature01037] [PMID: 12374982]
[101]
Jeroen Pasterkamp, R.; Peschon, J.J.; Spriggs, M.K.; Kolodkin, A.L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature, 2003, 424(6947), 398-405.
[http://dx.doi.org/10.1038/nature01790] [PMID: 12879062]
[102]
Cho, J.Y.; Chak, K.; Andreone, B.J.; Wooley, J.R.; Kolodkin, A.L. The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev., 2012, 26(19), 2222-2235.
[http://dx.doi.org/10.1101/gad.193136.112] [PMID: 23028146]
[103]
Sharma, A.; Verhaagen, J.; Harvey, A.R. Receptor complexes for each of the Class 3 Semaphorins. Front. Cell. Neurosci., 2012, 6, 28.
[http://dx.doi.org/10.3389/fncel.2012.00028] [PMID: 22783168]
[104]
Swiercz, J.M.; Worzfeld, T.; Offermanns, S. ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1. J. Biol. Chem., 2008, 283(4), 1893-1901.
[http://dx.doi.org/10.1074/jbc.M706822200] [PMID: 18025083]
[105]
Toyofuku, T.; Zhang, H.; Kumanogoh, A.; Takegahara, N.; Suto, F.; Kamei, J.; Aoki, K.; Yabuki, M.; Hori, M.; Fujisawa, H.; Kikutani, H. Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev., 2004, 18(4), 435-447.
[http://dx.doi.org/10.1101/gad.1167304] [PMID: 14977921]
[106]
Zhou, Y.; Gunput, R.A.F.; Pasterkamp, R.J. Semaphorin signaling: Progress made and promises ahead. Trends Biochem. Sci., 2008, 33(4), 161-170.
[http://dx.doi.org/10.1016/j.tibs.2008.01.006] [PMID: 18374575]
[107]
Jongbloets, B.C.; Pasterkamp, R.J. Semaphorin signalling during development. Development, 2014, 141(17), 3292-3297.
[http://dx.doi.org/10.1242/dev.105544] [PMID: 25139851]
[108]
Battistini, C.; Tamagnone, L. Transmembrane semaphorins, forward and reverse signaling: have a look both ways. Cell. Mol. Life Sci., 2016, 73(8), 1609-1622.
[http://dx.doi.org/10.1007/s00018-016-2137-x] [PMID: 26794845]
[109]
Comoglio, P.M.; Tamagnone, L.; Giordano, S. Invasive growth: A two-way street for semaphorin signalling. Nat. Cell Biol., 2004, 6(12), 1155-1157.
[http://dx.doi.org/10.1038/ncb1204-1155] [PMID: 15573094]
[110]
Cagnoni, G.; Tamagnone, L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene, 2014, 33(40), 4795-4802.
[http://dx.doi.org/10.1038/onc.2013.474] [PMID: 24213581]
[111]
Oinuma, I; Ishikawa, Y; Katoh, H; Negishi, M. The Semaphorin 4D Receptor Plexin-B1 Is a GTPase Activating Protein for R-Ras. Science., 1979, 305(5685), 862-865.
[112]
Tong, Y.; Chugha, P.; Hota, P.K.; Alviani, R.S.; Li, M.; Tempel, W.; Shen, L.; Park, H.W.; Buck, M. Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J. Biol. Chem., 2007, 282(51), 37215-37224.
[http://dx.doi.org/10.1074/jbc.M703800200] [PMID: 17916560]
[113]
Okada, T.; Sinha, S.; Esposito, I.; Schiavon, G.; López-Lago, M.A.; Su, W.; Pratilas, C.A.; Abele, C.; Hernandez, J.M.; Ohara, M.; Okada, M.; Viale, A.; Heguy, A.; Socci, N.D.; Sapino, A.; Seshan, V.E.; Long, S.; Inghirami, G.; Rosen, N.; Giancotti, F.G. The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat. Cell Biol., 2015, 17(1), 81-94.
[http://dx.doi.org/10.1038/ncb3082] [PMID: 25531777]
[114]
Swiercz, J.M.; Kuner, R.; Offermanns, S. Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J. Cell Biol., 2004, 165(6), 869-880.
[http://dx.doi.org/10.1083/jcb.200312094] [PMID: 15210733]
[115]
Eissner, G.; Kolch, W.; Scheurich, P. Ligands working as receptors: Reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev., 2004, 15(5), 353-366.
[http://dx.doi.org/10.1016/j.cytogfr.2004.03.011] [PMID: 15450251]
[116]
Eckhardt, F.; Behar, O.; Calautti, E.; Yonezawa, K.; Nishimoto, I.; Fishman, M.C. A novel transmembrane semaphorin can bind c-src. Mol. Cell. Neurosci., 1997, 9(5-6), 409-419.
[http://dx.doi.org/10.1006/mcne.1997.0644] [PMID: 9361278]
[117]
Burkhardt, C.; Müller, M.; Badde, A.; Garner, C.C.; Gundelfinger, E.D.; Püschel, A.W. Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif. FEBS Lett., 2005, 579(17), 3821-3828.
[http://dx.doi.org/10.1016/j.febslet.2005.05.079] [PMID: 15978582]
[118]
Inagaki, S.; Ohoka, Y.; Sugimoto, H.; Fujioka, S.; Amazaki, M.; Kurinami, H.; Miyazaki, N.; Tohyama, M.; Furuyama, T. Sema4c, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. J. Biol. Chem., 2001, 276(12), 9174-9181.
[http://dx.doi.org/10.1074/jbc.M009051200] [PMID: 11134026]
[119]
Nishide, M.; Kumanogoh, A. The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat. Rev. Rheumatol., 2018, 14(1), 19-31.
[http://dx.doi.org/10.1038/nrrheum.2017.201] [PMID: 29213125]
[120]
Mastrantonio, R.; You, H.; Tamagnone, L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics., 2021, 11(7), 3262-3277.
[http://dx.doi.org/10.7150/thno.54023] [PMID: 33537086]
[121]
Kumanogoh, A.; Kikutani, H. Roles of the semaphorin family in immune regulation. Adv. Immunol., 2003, 81, 173-198.
[122]
Iragavarapu-Charyulu, V.; Wojcikiewicz, E.; Urdaneta, A. Semaphorins in angiogenesis and autoimmune diseases: Therapeutic targets? Front. Immunol., 2020, 11, 346.
[http://dx.doi.org/10.3389/fimmu.2020.00346] [PMID: 32210960]
[123]
Meda, C.; Molla, F.; De Pizzol, M.; Regano, D.; Maione, F.; Capano, S.; Locati, M.; Mantovani, A.; Latini, R.; Bussolino, F.; Giraudo, E. Semaphorin 4A exerts a proangiogenic effect by enhancing vascular endothelial growth factor-A expression in macrophages. J. Immunol., 2012, 188(8), 4081-4092.
[http://dx.doi.org/10.4049/jimmunol.1101435] [PMID: 22442441]
[124]
Nishide, M.; Nojima, S.; Ito, D.; Takamatsu, H.; Koyama, S.; Kang, S.; Kimura, T.; Morimoto, K.; Hosokawa, T.; Hayama, Y.; Kinehara, Y.; Kato, Y.; Nakatani, T.; Nakanishi, Y.; Tsuda, T.; Park, J.H.; Hirano, T.; Shima, Y.; Narazaki, M.; Morii, E.; Kumanogoh, A. Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis. Ann. Rheum. Dis., 2017, 76(8), 1440-1448.
[http://dx.doi.org/10.1136/annrheumdis-2016-210706] [PMID: 28416516]
[125]
Morote-Garcia, J.C.; Napiwotzky, D.; Köhler, D.; Rosenberger, P. Endothelial Semaphorin 7A promotes neutrophil migration during hypoxia. Proc. Natl. Acad. Sci., 2012, 109(35), 14146-14151.
[http://dx.doi.org/10.1073/pnas.1202165109] [PMID: 22891341]
[126]
Peng, X.; Moore, M.; Mathur, A.; Zhou, Y.; Sun, H.; Gan, Y.; Herazo-Maya, J.D.; Kaminski, N.; Hu, X.; Pan, H.; Ryu, C.; Osafo-Addo, A.; Homer, R.J.; Feghali-Bostwick, C.; Fares, W.H.; Gulati, M.; Hu, B.; Lee, C.G.; Elias, J.A.; Herzog, E.L. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis. FASEB. J., 2016, 30(12), 4056-4070.
[http://dx.doi.org/10.1096/fj.201600373R] [PMID: 27609773]
[127]
Roney, K.E.; O’Connor, B.P.; Wen, H.; Holl, E.K.; Guthrie, E.H.; Davis, B.K. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation. PLoS One, 2011, 6(9), e24795.
[128]
Zhou, X.; Wahane, S.; Friedl, M.S.; Kluge, M.; Friedel, C.C.; Avrampou, K.; Zachariou, V.; Guo, L.; Zhang, B.; He, X.; Friedel, R.H.; Zou, H. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat. Neurosci., 2020, 23(3), 337-350.
[http://dx.doi.org/10.1038/s41593-020-0597-7] [PMID: 32112058]
[129]
Zhu, L.; Bergmeier, W.; Wu, J.; Jiang, H.; Stalker, T.J.; Cieslak, M.; Fan, R.; Boumsell, L.; Kumanogoh, A.; Kikutani, H.; Tamagnone, L.; Wagner, D.D.; Milla, M.E.; Brass, L.F. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc. Natl. Acad. Sci., 2007, 104(5), 1621-1626.
[http://dx.doi.org/10.1073/pnas.0606344104] [PMID: 17244710]
[130]
Xu, R.; Höß, C.; Swiercz, J.M.; Brandt, D.T.; Lutz, V.; Petersen, N.; Li, R.; Zhao, D.; Oleksy, A.; Creigh-Pulatmen, T.; Trokter, M.; Fedorova, M.; Atzberger, A.; Strandby, R.B.; Olsen, A.A.; Achiam, M.P.; Matthews, D.; Huber, M.; Gröne, H.J.; Offermanns, S.; Worzfeld, T. A semaphorin-plexin-Rasal1 signaling pathway inhibits gastrin expression and protects against peptic ulcers. Sci. Transl. Med., 2022, 14(654), eabf1922.
[http://dx.doi.org/10.1126/scitranslmed.abf1922] [PMID: 35857828]
[131]
Angelopoulou, E.; Piperi, C. Emerging role of plexins signaling in glioma progression and therapy. Cancer. Lett., 2018, 414, 81-87.
[http://dx.doi.org/10.1016/j.canlet.2017.11.010] [PMID: 29133239]
[132]
Jiao, B.; Liu, S.; Tan, X.; Lu, P.; Wang, D.; Xu, H. Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases. Biomed. Pharmacother., 2021, 137, 111329.
[http://dx.doi.org/10.1016/j.biopha.2021.111329] [PMID: 33545660]
[133]
Wang, Z.; Wei, Y. SEMA3D plays a critical role in peptic ulcer disease-related carcinogenesis induced by H. pylori infection. Int J Gen Med, 2022, 15, 1239-1260.
[134]
Choi, Y.I.; Duke-Cohan, J.S.; Ahmed, W.B.; Handley, M.A.; Mann, F.; Epstein, J.A.; Clayton, L.K.; Reinherz, E.L. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. Immunity., 2008, 29(6), 888-898.
[http://dx.doi.org/10.1016/j.immuni.2008.10.008] [PMID: 19027330]
[135]
Gaddis, D.E.; Padgett, L.E.; Wu, R.; Hedrick, C.C. Neuropilin-1 expression on CD4 T cells is atherogenic and facilitates T cell migration to the aorta in atherosclerosis. J. Immunol., 2019, 203(12), 3237-3246.
[http://dx.doi.org/10.4049/jimmunol.1900245] [PMID: 31740486]
[136]
Aghajanian, H.; Choi, C.; Ho, V.C.; Gupta, M.; Singh, M.K.; Epstein, J.A. Semaphorin 3d and semaphorin 3e direct endothelial motility through distinct molecular signaling pathways. J. Biol. Chem., 2014, 289(26), 17971-17979.
[http://dx.doi.org/10.1074/jbc.M113.544833] [PMID: 24825896]
[137]
Kao, J.Y.; Zhang, M.; Miller, M.J.; Mills, J.C.; Wang, B.; Liu, M.; Eaton, K.A.; Zou, W.; Berndt, B.E.; Cole, T.S.; Takeuchi, T.; Owyang, S.Y.; Luther, J. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology., 2010, 138(3), 1046-1054.
[http://dx.doi.org/10.1053/j.gastro.2009.11.043] [PMID: 19931266]
[138]
Dai, X.; Okon, I.; Liu, Z.; Wu, Y.; Zhu, H.; Song, P.; Zou, M.H. A novel role for myeloid cell-specific neuropilin 1 in mitigating sepsis. FASEB J., 2017, 31(7), 2881-2892.
[http://dx.doi.org/10.1096/fj.201601238R] [PMID: 28325756]
[139]
Kanth, S.M.; Gairhe, S.; Torabi-Parizi, P. The role of semaphorins and their receptors in innate immune responses and clinical diseases of acute inflammation. Front. Immunol., 2021, 12, 672441.
[http://dx.doi.org/10.3389/fimmu.2021.672441] [PMID: 34012455]
[140]
Avouac, J.; Pezet, S.; Vandebeuque, E.; Orvain, C.; Gonzalez, V.; Marin, G.; Mouterde, G.; Daïen, C.; Allanore, Y. Semaphorins: From angiogenesis to inflammation in rheumatoid arthritis. Arthritis. Rheumatol., 2021, 73(9), 1579-1588.
[http://dx.doi.org/10.1002/art.41701] [PMID: 33605067]
[141]
Watterston, C.; Halabi, R.; McFarlane, S.; Childs, S.J. Endothelial semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet., 2021, 17(8), e1009769.
[142]
Zhang, H.; Vreeken, D.; Junaid, A.; Wang, G.; Sol, W.M.P.J.; de Bruin, R.G.; van Zonneveld, A.J.; van Gils, J.M. Endothelial semaphorin 3F maintains endothelial barrier function and inhibits monocyte migration. Int. J. Mol. Sci., 2020, 21(4), 1471.
[http://dx.doi.org/10.3390/ijms21041471] [PMID: 32098168]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy