Abstract
Aim: The aim of this study was to prepare gelatin-nanocurcumin/nanohydroxy apatite nanofibers and test the effect of nanohydroxyapatite and nanocurcumin on the tensile strength of gelatin nanofibers. Finding the ideal bone replacement material has long been the focus of research in the field of bone regeneration. This study also aimed to assess the effect of adding nanohydroxy-apatite and nanocurcumin on the tensile strength of gelatin nanofibers in order to propose an ideal nanofiberous scaffold for bone regeneration application.
Methods: Gelatin-curcumin nanofibers were prepared using an electrospinning method with a ratio of 70% to 30% of gelatin and curcumin and 5% of hydroxyapatite.
Results: Adding curcumin to the gelatin nanofiber structure increased its tensile strength in the wet state (21.03 ± 2.17 to 28.54 ± 0.59, p < 0.0001). Besides, adding nanohydroxyapatite to the structure of gelatin nanofibers increased its tensile strength in dry (30.31 ± 0.64 to 35.79 ± 1.13, p < 0.0001) and wet conditions (28.54 ± 0.59 to 34.46 ± 0.86, p = 0.0020).
Conclusion: As adding curcumin and nanohydroxyapatite increased the tensile strength of gelatin nanofibers, it seems that these nanofibers can play a promising futuristic role in bone and dental tis-sue engineering. However, more in vitro, in vivo, and clinical studies are recommended to approve this finding.
Graphical Abstract
[http://dx.doi.org/10.54113/j.sust.2022.000018]
[http://dx.doi.org/10.1166/jbn.2014.1893] [PMID: 25992432]
[http://dx.doi.org/10.1007/s00203-023-03467-2] [PMID: 36944830]
[http://dx.doi.org/10.1038/nbt1003-1137] [PMID: 14520392]
[http://dx.doi.org/10.1002/adfm.202214726]
[http://dx.doi.org/10.3389/fsurg.2022.858240] [PMID: 36034365]
[http://dx.doi.org/10.1038/s41596-019-0271-2] [PMID: 32060491]
[http://dx.doi.org/10.1016/j.biomaterials.2005.01.047] [PMID: 15792549]
[http://dx.doi.org/10.1177/039139881003300204] [PMID: 20306435]
[http://dx.doi.org/10.3390/biomimetics7010004] [PMID: 35076470]
[http://dx.doi.org/10.1038/s41598-020-65268-7] [PMID: 32433566]
[http://dx.doi.org/10.3928/0147-7447-20020502-04] [PMID: 12038843]
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.061] [PMID: 15276359]
[http://dx.doi.org/10.1016/S0142-9612(03)00472-1] [PMID: 14580909]
[http://dx.doi.org/10.1002/polb.10532]
[http://dx.doi.org/10.1016/j.surfin.2022.101725]
[http://dx.doi.org/10.1016/j.ceramint.2015.09.101]
[http://dx.doi.org/10.1002/jbm.a.30168] [PMID: 15549783]
[http://dx.doi.org/10.1007/s00289-015-1534-x]
[http://dx.doi.org/10.1007/s00289-015-1300-0]
[http://dx.doi.org/10.1155/2018/6872753]
[http://dx.doi.org/10.1088/1361-6528/ab2e29] [PMID: 31261146]
[http://dx.doi.org/10.1016/j.msec.2020.110941] [PMID: 32409087]
[http://dx.doi.org/10.1002/adfm.200500116]
[http://dx.doi.org/10.1016/j.foodhyd.2019.105640]
[http://dx.doi.org/10.1007/s13233-010-1206-5]
[http://dx.doi.org/10.7717/peerj.3665] [PMID: 28828260]
[http://dx.doi.org/10.3390/nano12193436] [PMID: 36234564]
[http://dx.doi.org/10.1038/s41598-020-73678-w] [PMID: 33479286]