Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Marine Bacteria: A Source of Novel Bioactive Natural Products

In Press, (this is not the final "Version of Record"). Available online 21 August, 2023
Author(s): Xiangru Zha, Rong Ji and Songlin Zhou*
Published on: 21 August, 2023

DOI: 10.2174/0929867331666230821102521

Price: $95

Abstract

Marine natural products have great pharmacological potential due to their unique and diverse chemical structures. The marine bacterial biodiversity and the unique marine environment lead to a high level of complexity and ecological interaction among marine species. This results in the production of metabolic pathways and adaptation mechanisms that are different from those of terrestrial organisms, which has drawn significant attention from researchers in the field of natural medicine. This review provides an analysis of the distribution and frequency of keywords in the literature on marine bacterial natural products as well as an overview of the new natural products isolated from the secondary metabolites of marine bacteria in recent years. Finally, it discusses the current research hotspots in this field and speculates on future directions and limitations.

[1]
Deng, L.J.; Qi, M.; Li, N.; Lei, Y.H.; Zhang, D.M.; Chen, J.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J. Leukoc. Biol., 2020, 108(2), 493-508.
[http://dx.doi.org/10.1002/JLB.3MR0320-444R] [PMID: 32678943]
[2]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[3]
Daniel, R. The soil metagenome – a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol., 2004, 15(3), 199-204.
[http://dx.doi.org/10.1016/j.copbio.2004.04.005] [PMID: 15193327]
[4]
Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol., 2010, 3(5), 544-563.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00179.x] [PMID: 21255352]
[5]
Song, C.; Yang, J.; Zhang, M.; Ding, G.; Jia, C.; Qin, J.; Guo, L. Marine natural products: The important resource of biological insecticide. Chem. Biodivers., 2021, 18(5), e2001020.
[http://dx.doi.org/10.1002/cbdv.202001020] [PMID: 33855815]
[6]
Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem., 2021, 35, 116058.
[http://dx.doi.org/10.1016/j.bmc.2021.116058] [PMID: 33588288]
[7]
Moghaddam, A.J.; Jautzus, T.; Alanjary, M.; Beemelmanns, C. Recent highlights of biosynthetic studies on marine natural products. Org. Biomol. Chem., 2021, 19(1), 123-140.
[http://dx.doi.org/10.1039/D0OB01677B] [PMID: 33216100]
[8]
Stincone, P.; Brandelli, A. Marine bacteria as source of antimicrobial compounds. Crit. Rev. Biotechnol., 2020, 40(3), 306-319.
[http://dx.doi.org/10.1080/07388551.2019.1710457] [PMID: 31992085]
[9]
Parkes, R.J.; Cragg, B.A.; Bale, S.J.; Getlifff, J.M.; Goodman, K.; Rochelle, P.A.; Fry, J.C.; Weightman, A.J.; Harvey, S.M. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 1994, 371(6496), 410-413.
[http://dx.doi.org/10.1038/371410a0]
[10]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[http://dx.doi.org/10.1158/1535-7163.333.4.2] [PMID: 15713904]
[11]
Armstrong, E.; Yan, L.; Boyd, K.G.; Wright, P.C.; Burgess, J.G. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 2001, 461(1/3), 37-40.
[http://dx.doi.org/10.1023/A:1012756913566]
[12]
Zheng, L.; Han, X.; Chen, H.; Lin, W.; Yan, X. Marine bacteria associated with marine macroorganisms: The potential antimicrobial resources. Ann. Microbiol., 2005, 55(2), 119-124.
[13]
Zakaria, N.N.; Convey, P.; Gomez-Fuentes, C.; Zulkharnain, A.; Sabri, S.; Shaharuddin, N.A.; Ahmad, S.A. Oil bioremediation in the marine environment of antarctica: A review and bibliometric keyword cluster analysis. Microorganisms, 2021, 9(2), 419.
[http://dx.doi.org/10.3390/microorganisms9020419] [PMID: 33671443]
[14]
Venkatesan, M.I.; Ruth, E.; Kaplan, I.R. Triterpenols from sediments of Santa Monica Basin, Southern California Bight, U.S.A. Org. Geochem., 1990, 16(4-6), 1015-1024.
[http://dx.doi.org/10.1016/0146-6380(90)90138-P]
[15]
Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 2016, 80(1), 1-43.
[http://dx.doi.org/10.1128/MMBR.00019-15] [PMID: 26609051]
[16]
Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. Biotechnol., 2020, 104(1), 67-76.
[http://dx.doi.org/10.1007/s00253-019-10227-0] [PMID: 31773207]
[17]
Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev. Res., 2019, 80(1), 24-27.
[http://dx.doi.org/10.1002/ddr.21482] [PMID: 30370576]
[18]
Lu, S.; Wang, J.; Sheng, R.; Fang, Y.; Guo, R. Novel bioactive polyketides isolated from marine Actinomycetes: An update review from 2013 to 2019. Chem. Biodivers., 2020, 17(12), e2000562.
[http://dx.doi.org/10.1002/cbdv.202000562] [PMID: 33206470]
[19]
Yang, L.J.; Peng, X.Y.; Zhang, Y.H.; Liu, Z.Q.; Li, X.; Gu, Y.C.; Shao, C.L.; Han, Z.; Wang, C.Y. Antimicrobial and antioxidant polyketides from a deep-sea-derived fungus Aspergillus versicolor SH0105. Mar. Drugs, 2020, 18(12), 636.
[http://dx.doi.org/10.3390/md18120636] [PMID: 33322355]
[20]
Tang, M.; Hu, X.; Wang, Y.; Yao, X.; Zhang, W.; Yu, C.; Cheng, F.; Li, J.; Fang, Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol. Res., 2021, 163, 105207.
[http://dx.doi.org/10.1016/j.phrs.2020.105207] [PMID: 32971268]
[21]
Zhao, H.; Ji, R.; Zha, X.; Xu, Z.; Lin, Y.; Zhou, S. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis. Eur. J. Pharm. Sci., 2022, 179, 106299.
[http://dx.doi.org/10.1016/j.ejps.2022.106299] [PMID: 36179970]
[22]
Chen, C.; Ren, X.; Tao, H.; Cai, W.; Chen, Y.; Luo, X.; Guo, P.; Liu, Y. Anti-inflammatory polyketides from an alga-derived fungus Aspergillus ochraceopetaliformis SCSIO 41020. Mar. Drugs, 2022, 20(5), 295.
[http://dx.doi.org/10.3390/md20050295] [PMID: 35621946]
[23]
Xie, C.L.; Chen, R.; Yang, S.; Xia, J.M.; Zhang, G.Y.; Chen, C.H.; Zhang, Y.; Yang, X.W. Nesteretal A, a novel class of cage-like polyketide from marine-derived Actinomycete Nesterenkonia halobia. Org. Lett., 2019, 21(20), 8174-8177.
[http://dx.doi.org/10.1021/acs.orglett.9b02634] [PMID: 31423796]
[24]
Wang, Z.; Wen, Z.; Liu, L.; Zhu, X.; Shen, B.; Yan, X.; Duan, Y.; Huang, Y. Yangpumicins F and G, enediyne congeners from Micromonospora yangpuensis DSM 45577. J. Nat. Prod., 2019, 82(9), 2483-2488.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00229] [PMID: 31490685]
[25]
García-Salcedo, R.; Álvarez-Álvarez, R.; Olano, C.; Cañedo, L.; Braña, A.; Méndez, C.; de la Calle, F.; Salas, J. Characterization of the jomthonic acids biosynthesis pathway and isolation of novel analogues in Streptomyces caniferus GUA-06-05-006A. Mar. Drugs, 2018, 16(8), 259.
[http://dx.doi.org/10.3390/md16080259] [PMID: 30065171]
[26]
Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23(3), 590-615.
[http://dx.doi.org/10.1128/CMR.00078-09] [PMID: 20610825]
[27]
Al-Fadhli, A.A.; Threadgill, M.D.; Mohammed, F.; Sibley, P.; Al-Ariqi, W.; Parveen, I. Macrolides from rare actinomycetes: Structures and bioactivities. Int. J. Antimicrob. Agents, 2022, 59(2), 106523.
[http://dx.doi.org/10.1016/j.ijantimicag.2022.106523] [PMID: 35041941]
[28]
Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From toxins to therapeutics. Toxins (Basel), 2021, 13(5), 347.
[http://dx.doi.org/10.3390/toxins13050347] [PMID: 34065929]
[29]
Pérez-Victoria, I.; Oves-Costales, D.; Lacret, R.; Martín, J.; Sánchez-Hidalgo, M.; Díaz, C.; Cautain, B.; Vicente, F.; Genilloud, O.; Reyes, F. Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066. Org. Biomol. Chem., 2019, 17(11), 2954-2971.
[http://dx.doi.org/10.1039/C8OB03115K] [PMID: 30806648]
[30]
Zhang, B.; Wang, K.B.; Wang, W.; Bi, S.F.; Mei, Y.N.; Deng, X.Z.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Discovery, biosynthesis, and heterologous production of streptoseomycin, an anti-microaerophilic bacteria macrodilactone. Org. Lett., 2018, 20(10), 2967-2971.
[http://dx.doi.org/10.1021/acs.orglett.8b01006] [PMID: 29697266]
[31]
Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from actinomycetes associated with marine organisms. Mar. Drugs, 2021, 19(11), 629.
[http://dx.doi.org/10.3390/md19110629] [PMID: 34822500]
[32]
Anjum, K.; Kaleem, S.; Yi, W.; Zheng, G.; Lian, X.; Zhang, Z. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar. Drugs, 2019, 17(2), 89.
[http://dx.doi.org/10.3390/md17020089] [PMID: 30717135]
[33]
Anh, C.V.; Kang, J.S.; Lee, H.S.; Trinh, P.T.H.; Heo, C.S.; Shin, H.J. New glycosylated secondary metabolites from marine-derived bacteria. Mar. Drugs, 2022, 20(7), 464.
[http://dx.doi.org/10.3390/md20070464] [PMID: 35877757]
[34]
Zhou, B.; Qin, L.L.; Ding, W.J.; Ma, Z.J. Cytotoxic indolocarbazoles alkaloids from the streptomyces sp. A65. Tetrahedron, 2018, 74(7), 726-730.
[http://dx.doi.org/10.1016/j.tet.2017.12.048]
[35]
Zheng, L.; Xu, Y.; Lin, X.; Yuan, Z.; Liu, M.; Cao, S.; Zhang, F.; Linhardt, R.J. Recent progress of marine polypeptides as anticancer agents. Recent Patents Anticancer Drug Discov., 2018, 13(4), 445-454.
[http://dx.doi.org/10.2174/1574892813666180430110033] [PMID: 29708076]
[36]
Just-Baringo, X.; Albericio, F.; Álvarez, M. Thiopeptide engineering: A multidisciplinary effort towards future drugs. Angew. Chem. Int. Ed., 2014, 53(26), 6602-6616.
[http://dx.doi.org/10.1002/anie.201307288] [PMID: 24861213]
[37]
Gogineni, V.; Hamann, M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(1), 81-196.
[http://dx.doi.org/10.1016/j.bbagen.2017.08.014] [PMID: 28844981]
[38]
Iniyan, A.M.; Sudarman, E.; Wink, J.; Kannan, R.R.; Vincent, S.G.P. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J. Antibiot. (Tokyo), 2019, 72(2), 99-105.
[http://dx.doi.org/10.1038/s41429-018-0115-2] [PMID: 30356080]
[39]
Lee, J.; Gamage, C.D.B.; Kim, G.J.; Hillman, P.F.; Lee, C.; Lee, E.Y.; Choi, H.; Kim, H.; Nam, S.J.; Fenical, W. Androsamide, a cyclic tetrapeptide from a marine Nocardiopsis sp., suppresses motility of colorectal cancer cells. J. Nat. Prod., 2020, 83(10), 3166-3172.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00815] [PMID: 32985880]
[40]
Stewart, A.K.; Ravindra, R.; Van Wagoner, R.M.; Wright, J.L.C. Metabolomics-guided discovery of microginin peptides from cultures of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod., 2018, 81(2), 349-355.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00829] [PMID: 29405714]
[41]
Wiese, J.; Abdelmohsen, U.R.; Motiei, A.; Humeida, U.H.; Imhoff, J.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorg. Med. Chem. Lett., 2018, 28(4), 558-561.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.062] [PMID: 29422389]
[42]
El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis, 2021, 26(9-10), 491-511.
[http://dx.doi.org/10.1007/s10495-021-01684-y] [PMID: 34269920]
[43]
Rudolf, J.D.; Alsup, T.A.; Xu, B.; Li, Z. Bacterial terpenome. Nat. Prod. Rep., 2021, 38(5), 905-980.
[http://dx.doi.org/10.1039/D0NP00066C] [PMID: 33169126]
[44]
Hoshino, Y.; Gaucher, E.A. On the origin of isoprenoid biosynthesis. Mol. Biol. Evol., 2018, 35(9), 2185-2197.
[http://dx.doi.org/10.1093/molbev/msy120] [PMID: 29905874]
[45]
Frank, A.; Groll, M. The methylerythritol phosphate pathway to isoprenoids. Chem. Rev., 2017, 117(8), 5675-5703.
[http://dx.doi.org/10.1021/acs.chemrev.6b00537] [PMID: 27995802]
[46]
Miziorko, H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys., 2011, 505(2), 131-143.
[http://dx.doi.org/10.1016/j.abb.2010.09.028] [PMID: 20932952]
[47]
Kuzuyama, T.; Seto, H. Diversity of the biosynthesis of the isoprene units. Nat. Prod. Rep., 2003, 20(2), 171-183.
[http://dx.doi.org/10.1039/b109860h] [PMID: 12735695]
[48]
Le, T.; Lee, E.; Lee, J.; Hong, A.; Yim, C.Y.; Yang, I.; Choi, H.; Chin, J.; Cho, S.; Ko, J.; Hwang, H.; Nam, S.J.; Fenical, W. Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid from marine-derived bacterium Saccharomonospora sp. Mar. Drugs, 2019, 17(2), 98.
[http://dx.doi.org/10.3390/md17020098] [PMID: 30717397]
[49]
Huo, L.; Hug, J.J.; Fu, C.; Bian, X.; Zhang, Y.; Müller, R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep., 2019, 36(10), 1412-1436.
[http://dx.doi.org/10.1039/C8NP00091C] [PMID: 30620035]
[50]
Walsh, C.T.; Tang, Y. Recent advances in enzymatic complexity generation: Cyclization reactions. Biochemistry, 2018, 57(22), 3087-3104.
[http://dx.doi.org/10.1021/acs.biochem.7b01161] [PMID: 29236467]
[51]
Hetrick, K.J.; van der Donk, W.A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol., 2017, 38, 36-44.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.005] [PMID: 28260651]
[52]
Dickschat, J.S. Bacterial diterpene biosynthesis. Angew. Chem. Int. Ed., 2019, 58(45), 15964-15976.
[http://dx.doi.org/10.1002/anie.201905312] [PMID: 31183935]
[53]
Dickschat, J.S. Bacterial terpene cyclases. Nat. Prod. Rep., 2016, 33(1), 87-110.
[http://dx.doi.org/10.1039/C5NP00102A] [PMID: 26563452]
[54]
Mitsuhashi, T.; Abe, I. Chimeric terpene synthases possessing both terpene cyclization and prenyltransfer activities. ChemBioChem, 2018, 19(11), 1106-1114.
[http://dx.doi.org/10.1002/cbic.201800120] [PMID: 29675947]
[55]
Minami, A.; Ozaki, T.; Liu, C.; Oikawa, H. Cyclopentane-forming di/sesterterpene synthases: Widely distributed enzymes in bacteria, fungi, and plants. Nat. Prod. Rep., 2018, 35(12), 1330-1346.
[http://dx.doi.org/10.1039/C8NP00026C] [PMID: 29855001]
[56]
Rinkel, J.; Dickschat, J.S. Characterization of micromonocyclol synthase from the marine actinomycete Micromonospora marina. Org. Lett., 2019, 21(23), 9442-9445.
[http://dx.doi.org/10.1021/acs.orglett.9b03654] [PMID: 31702158]
[57]
Ma, L.F.; Chen, M.J.; Liang, D.E.; Shi, L.M.; Ying, Y.M.; Shan, W.G.; Li, G.Q.; Zhan, Z.J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source. J. Nat. Prod., 2020, 83(5), 1641-1645.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00147] [PMID: 32367724]
[58]
Hamed, A.; Abdel-Razek, A.; Frese, M.; Stammler, H.; El-Haddad, A.; Ibrahim, T.; Sewald, N.; Shaaban, M. Terretonin N: A new meroterpenoid from Nocardiopsis sp. Molecules, 2018, 23(2), 299.
[http://dx.doi.org/10.3390/molecules23020299] [PMID: 29385078]
[59]
Carmichael, J.R.; Zhou, H.; Butler, A. A suite of asymmetric citrate siderophores isolated from a marine Shewanella species. J. Inorg. Biochem., 2019, 198, 110736.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110736] [PMID: 31203087]
[60]
MacIntyre, L.W.; Charles, M.J.; Haltli, B.A.; Marchbank, D.H.; Kerr, R.G. An ichip-domesticated sponge bacterium produces an N-acyltyrosine bearing an α-methyl substituent. Org. Lett., 2019, 21(19), 7768-7771.
[http://dx.doi.org/10.1021/acs.orglett.9b02710] [PMID: 31524403]
[61]
Lacoske, M.H.; Theodorakis, E.A. Spirotetronate polyketides as leads in drug discovery. J. Nat. Prod., 2015, 78(3), 562-575.
[http://dx.doi.org/10.1021/np500757w] [PMID: 25434976]
[62]
Gong, T.; Zhen, X.; Li, X.L.; Chen, J.J.; Chen, T.J.; Yang, J.L.; Zhu, P. Tetrocarcin Q, a new spirotetronate with a unique glycosyl group from a marine-derived actinomycete Micromonospora carbonacea LS276. Mar. Drugs, 2018, 16(2), 74.
[http://dx.doi.org/10.3390/md16020074] [PMID: 29495293]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy