Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Comprehensive Analysis of Ligand-receptor Interactions in Colon Adenocarcinoma to Identify of Tumor Microenvironment Oxidative Stress and Prognosis Model

Author(s): Jun Hu, Wenbo Zhu, Wenpeng Wang, Xin Yue, Peng Zhao and Dalu Kong*

Volume 31, Issue 30, 2024

Published on: 25 August, 2023

Page: [4912 - 4934] Pages: 23

DOI: 10.2174/0929867331666230821092346

Price: $65

Abstract

Background: Single-cell technology enables a deep study on the mechanism of cancers. This work delineated the function of ligand-receptor interaction in colon adenocarcinoma (COAD), and developed a LR pairs-based prognostic model.

Methods: For identifying important LR pairs, Single-cell RNA sequencing data of COAD was included. Unsupervised consensus clustering constructed molecular subtypes. LASSO established a prognostic model. Infiltration of 22 immune cells was evaluated by Cibersort. Enrichment score of oxidative stress related pathways was determined by SsGSEA in each patient.

Results: Forty-seven LR pairs were closely associated with the prognosis of COAD. Three molecular subtypes were differentiated according to 47 LR pairs, which displayed differential clinical features and molecular features. There were significant differences in immune T cell lytic activity among different subtypes. In clust1 with poor prognosis, significantly enriched oncogenic pathways were found, especially epithelial-mesenchymal transition (EMT). Additionally, it has been found that clust3 had significantly higher immune infiltration. A prognostic model containing eight LR pairs (PDGFB-PDGFRA, FLT4-VEGFC, CSF1R-CSF1, DLL1-NOTCH4, PDGFB-LRP1, DLL1- NOTCH3, FLT4-PDGFC, and NRP2-PGF) was established, which could effectively divide samples into low-risk and high-risk groups. Significantly higher oxidative stress was found among high-risk patients.

Conclusions: This study integrated expression data and single-cell data for demonstrating the effectiveness of LR pairs in establishing the prognostic model and constructing molecular subtypes. Prognostic LR pairs may contribute to tumorigenesis and progression in COAD. The prognostic model was the potential for predicting prognosis and guiding immunotherapy for COAD patients.

« Previous
[1]
Zhang, H.; Akman, H.O.; Smith, E.L.P.; Zhao, J.; Murphy-Ullrich, J.E.; Batuman, O.A. Cellular response to hypoxia involves signaling via Smad proteins. Blood, 2003, 101(6), 2253-2260.
[http://dx.doi.org/10.1182/blood-2002-02-0629] [PMID: 12411310]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Ulanja, M.B.; Rishi, M.; Beutler, B.D.; Sharma, M.; Patterson, D.R.; Gullapalli, N.; Ambika, S. Colon cancer sidedness, presentation, and survival at different stages. J. Oncol., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/4315032] [PMID: 30915121]
[4]
Ahmed, M. Colon cancer: A clinician’s perspective in 2019. Gastroenterol. Res., 2020, 13(1), 1-10.
[http://dx.doi.org/10.14740/gr1239] [PMID: 32095167]
[5]
Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H., J.r. A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol., 2020, 27(12)(Suppl. 2), 87-97.
[http://dx.doi.org/10.3747/co.27.5223] [PMID: 32368178]
[6]
Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; Goldberg, M.V.; Cao, Z.A.; Ledeine, J.M.; Maglinte, G.A.; Kopetz, S.; André, T. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol., 2017, 18(9), 1182-1191.
[http://dx.doi.org/10.1016/S1470-2045(17)30422-9] [PMID: 28734759]
[7]
Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; Wong, F.; Azad, N.S.; Rucki, A.A.; Laheru, D.; Donehower, R.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Greten, T.F.; Duffy, A.G.; Ciombor, K.K.; Eyring, A.D.; Lam, B.H.; Joe, A.; Kang, S.P.; Holdhoff, M.; Danilova, L.; Cope, L.; Meyer, C.; Zhou, S.; Goldberg, R.M.; Armstrong, D.K.; Bever, K.M.; Fader, A.N.; Taube, J.; Housseau, F.; Spetzler, D.; Xiao, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Eshleman, J.R.; Vogelstein, B.; Anders, R.A.; Diaz, L.A., Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349), 409-413.
[http://dx.doi.org/10.1126/science.aan6733] [PMID: 28596308]
[8]
Frankel, T.; Lanfranca, M.P.; Zou, W. The role of tumor microenvironment in cancer immunotherapy. Adv. Exp. Med. Biol., 2017, 1036, 51-64.
[http://dx.doi.org/10.1007/978-3-319-67577-0_4] [PMID: 29275464]
[9]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[10]
Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27(45), 5904-5912.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[11]
Jahanafrooz, Z.; Mosafer, J.; Akbari, M.; Hashemzaei, M.; Mokhtarzadeh, A.; Baradaran, B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J. Cell. Physiol., 2020, 235(5), 4153-4166.
[http://dx.doi.org/10.1002/jcp.29337] [PMID: 31647128]
[12]
Schmitt, M.; Greten, F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol., 2021, 21(10), 653-667.
[http://dx.doi.org/10.1038/s41577-021-00534-x] [PMID: 33911231]
[13]
Maia, J.; Caja, S.; Strano Moraes, M.C.; Couto, N.; Costa-Silva, B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol., 2018, 6, 18.
[http://dx.doi.org/10.3389/fcell.2018.00018] [PMID: 29515996]
[14]
Chen, Z.; Yang, X.; Bi, G.; Liang, J.; Hu, Z.; Zhao, M.; Li, M.; Lu, T.; Zheng, Y.; Sui, Q.; Yang, Y.; Zhan, C.; Jiang, W.; Wang, Q.; Tan, L. Ligand-receptor interaction atlas within and between tumor cells and T cells in lung adenocarcinoma. Int. J. Biol. Sci., 2020, 16(12), 2205-2219.
[http://dx.doi.org/10.7150/ijbs.42080] [PMID: 32549766]
[15]
Liu, F.; Wang, P.; Sun, W.; Jiang, Y.; Gong, Q. Identification of ligand-receptor pairs associated with tumour characteristics in clear cell renal cell carcinoma. Front. Immunol., 2022, 13, 874056.
[http://dx.doi.org/10.3389/fimmu.2022.874056] [PMID: 35734169]
[16]
Zhang, Y.; Cedervall, J.; Hamidi, A.; Herre, M.; Viitaniemi, K.; D’Amico, G.; Miao, Z.; Unnithan, R.V.M.; Vaccaro, A.; van Hooren, L.; Georganaki, M.; Thulin, Å.; Qiao, Q.; Andrae, J.; Siegbahn, A.; Heldin, C.H.; Alitalo, K.; Betsholtz, C.; Dimberg, A.; Olsson, A.K. Platelet-specific PDGFB ablation impairs tumor vessel integrity and promotes metastasis. Cancer Res., 2020, 80(16), 3345-3358.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3533] [PMID: 32586981]
[17]
Gribov, A.; Sill, M.; Lück, S.; Rücker, F.; Döhner, K.; Bullinger, L.; Benner, A.; Unwin, A. SEURAT: Visual analytics for the integrated analysis of microarray data. BMC Med. Genomics, 2010, 3(1), 21.
[http://dx.doi.org/10.1186/1755-8794-3-21] [PMID: 20525257]
[18]
Ooki, A.; Osumi, H.; Chin, K.; Watanabe, M.; Yamaguchi, K. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther. Adv. Med. Oncol., 2023, 15, 17588359221138377.
[http://dx.doi.org/10.1177/17588359221138377] [PMID: 36872946]
[19]
Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc., 2020, 15(4), 1484-1506.
[http://dx.doi.org/10.1038/s41596-020-0292-x] [PMID: 32103204]
[20]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[21]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[22]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[23]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[24]
Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[25]
Blanche, P.; Dartigues, J.F.; Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med., 2013, 32(30), 5381-5397.
[http://dx.doi.org/10.1002/sim.5958] [PMID: 24027076]
[26]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830.e14.
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[27]
Danilova, L.; Ho, W.J.; Zhu, Q.; Vithayathil, T.; De Jesus-Acosta, A.; Azad, N.S.; Laheru, D.A.; Fertig, E.J.; Anders, R.; Jaffee, E.M.; Yarchoan, M. Programmed cell death ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol. Res., 2019, 7(6), 886-895.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0822] [PMID: 31043417]
[28]
Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015, 160(1-2), 48-61.
[http://dx.doi.org/10.1016/j.cell.2014.12.033] [PMID: 25594174]
[29]
Masiero, M.; Simões, F.C.; Han, H.D.; Snell, C.; Peterkin, T.; Bridges, E.; Mangala, L.S.; Wu, S.Y.Y.; Pradeep, S.; Li, D.; Han, C.; Dalton, H.; Lopez-Berestein, G.; Tuynman, J.B.; Mortensen, N.; Li, J.L.; Patient, R.; Sood, A.K.; Banham, A.H.; Harris, A.L.; Buffa, F.M. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell, 2013, 24(2), 229-241.
[http://dx.doi.org/10.1016/j.ccr.2013.06.004] [PMID: 23871637]
[30]
Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Dawson, N.A.; van der Heijden, M.S.; Dreicer, R.; Srinivas, S.; Retz, M.M.; Joseph, R.W.; Drakaki, A.; Vaishampayan, U.N.; Sridhar, S.S.; Quinn, D.I.; Durán, I.; Shaffer, D.R.; Eigl, B.J.; Grivas, P.D.; Yu, E.Y.; Li, S.; Kadel, E.E., III; Boyd, Z.; Bourgon, R.; Hegde, P.S.; Mariathasan, S.; Thåström, A.; Abidoye, O.O.; Fine, G.D.; Bajorin, D.F. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet, 2017, 389(10064), 67-76.
[http://dx.doi.org/10.1016/S0140-6736(16)32455-2] [PMID: 27939400]
[31]
Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; Seja, E.; Lomeli, S.; Kong, X.; Kelley, M.C.; Sosman, J.A.; Johnson, D.B.; Ribas, A.; Lo, R.S. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 2016, 165(1), 35-44.
[http://dx.doi.org/10.1016/j.cell.2016.02.065] [PMID: 26997480]
[32]
Wu, W.; Dong, J.; Lv, Y.; Chang, D. Cuproptosis-Related genes in the prognosis of colorectal cancer and their correlation with the tumor microenvironment. Front. Genet., 2022, 13, 984158.
[http://dx.doi.org/10.3389/fgene.2022.984158] [PMID: 36246586]
[33]
Yang, Y.; Feng, M.; Bai, L.; Liao, W.; Zhou, K.; Zhang, M.; Wu, Q.; Wen, F.; Lei, W.; Zhang, P.; Zhang, N.; Huang, J.; Li, Q. Comprehensive analysis of EMT-related genes and lncRNAs in the prognosis, immunity, and drug treatment of colorectal cancer. J. Transl. Med., 2021, 19(1), 391.
[http://dx.doi.org/10.1186/s12967-021-03065-0] [PMID: 34526059]
[34]
Dai, J.J.; Fu, Y.Y.; Zhong, X.Q.; Cen, W.; Ye, M.F.; Chen, X.H.; Pan, Y.F.; Ye, L.C. Identification of senescence-related subtypes, the development of a prognosis model, and characterization of immune infiltration and gut microbiota in colorectal cancer. Front. Med., 2022, 9, 916565.
[http://dx.doi.org/10.3389/fmed.2022.916565] [PMID: 35721059]
[35]
Tong, Z.; Wang, X.; Shi, S.; Hou, T.; Gao, G.; Li, D.; Shan, Y.; Zhang, C. Development of lactate-related gene signature and prediction of overall survival and chemosensitivity in patients with colorectal cancer. Cancer Med., 2023, 12(8), 10105-10122.
[http://dx.doi.org/10.1002/cam4.5682] [PMID: 36776001]
[36]
Buechler, M.B.; Fu, W.; Turley, S.J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity, 2021, 54(5), 903-915.
[http://dx.doi.org/10.1016/j.immuni.2021.04.021] [PMID: 33979587]
[37]
Cai, H.; Zhang, Y.; Wang, J.; Gu, J. Defects in macrophage reprogramming in cancer therapy: The negative impact of PD-L1/PD-1. Front. Immunol., 2021, 12, 690869.
[http://dx.doi.org/10.3389/fimmu.2021.690869] [PMID: 34248982]
[38]
Gordon-Weeks, A.N.; Lim, S.Y.; Yuzhalin, A.E.; Jones, K.; Muschel, R. Macrophage migration inhibitory factor: A key cytokine and therapeutic target in colon cancer. Cytokine Growth Factor Rev., 2015, 26(4), 451-461.
[http://dx.doi.org/10.1016/j.cytogfr.2015.03.002] [PMID: 25882738]
[39]
Nishihira, J.; Ishibashi, T.; Fukushima, T.; Sun, B.; Sato, Y.; Todo, S. Macrophage migration inhibitory factor (MIF): Its potential role in tumor growth and tumor-associated angiogenesis. Ann. N. Y. Acad. Sci., 2003, 995(1), 171-182.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb03220.x] [PMID: 12814949]
[40]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[41]
Ortmann, B.; Druker, J.; Rocha, S. Cell cycle progression in response to oxygen levels. Cell. Mol. Life Sci., 2014, 71(18), 3569-3582.
[http://dx.doi.org/10.1007/s00018-014-1645-9] [PMID: 24858415]
[42]
Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front. Oncol., 2020, 10, 486.
[http://dx.doi.org/10.3389/fonc.2020.00486] [PMID: 32322559]
[43]
Li, Y.; Patel, S.P.; Roszik, J.; Qin, Y. Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: New approaches for combinational immunotherapy. Front. Immunol., 2018, 9, 1591.
[http://dx.doi.org/10.3389/fimmu.2018.01591] [PMID: 30061885]
[44]
Huber, M.A.; Azoitei, N.; Baumann, B.; Grünert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.; Wirth, T. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest., 2004, 114(4), 569-581.
[http://dx.doi.org/10.1172/JCI200421358] [PMID: 15314694]
[45]
Cheng, Z.X.; Sun, B.; Wang, S.J.; Gao, Y.; Zhang, Y.M.; Zhou, H.X.; Jia, G.; Wang, Y.W.; Kong, R.; Pan, S.H.; Xue, D.B.; Jiang, H.C.; Bai, X.W. Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS One, 2011, 6(8), e23752.
[http://dx.doi.org/10.1371/journal.pone.0023752] [PMID: 21887310]
[46]
Kim, T.W.; Hong, H.K.; Lee, C.; Kim, S.; Lee, W.Y.; Yun, S.H.; Kim, H.C.; Huh, J.W.; Park, Y.A.; Joung, J.G.; Park, W.Y.; Cho, Y.B. The role of PDGFRA as a therapeutic target in young colorectal cancer patients. J. Transl. Med., 2021, 19(1), 446.
[http://dx.doi.org/10.1186/s12967-021-03088-7] [PMID: 34702313]
[47]
Joukov, V.; Pajusola, K.; Kaipainen, A.; Chilov, D.; Lahtinen, I.; Kukk, E.; Saksela, O.; Kalkkinen, N.; Alitalo, K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J., 1996, 15(2), 290-298.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00359.x] [PMID: 8617204]
[48]
Ma, L.; Li, W.; Zhang, Y.; Qi, L.; Zhao, Q.; Li, N.; Lu, Y.; Zhang, L.; Zhou, F.; Wu, Y.; He, Y.; Yu, H.; He, Y.; Wei, B.; Wang, H. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy, 2022, 18(6), 1385-1400.
[http://dx.doi.org/10.1080/15548627.2021.1985338] [PMID: 34632918]
[49]
Khromova, N.; Kopnin, P.; Rybko, V.; Kopnin, B.P. Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene, 2012, 31(11), 1389-1397.
[http://dx.doi.org/10.1038/onc.2011.330] [PMID: 21804602]
[50]
Martins, S.F.; Garcia, E.A.; Luz, M.A.; Pardal, F.; Rodrigues, M.; Filho, A.L. Clinicopathological correlation and prognostic significance of VEGF-A, VEGF-C, VEGFR-2 and VEGFR-3 expression in colorectal cancer. Cancer Genomics Proteomics, 2013, 10(2), 55-67.
[PMID: 23603341]
[51]
Stanley, E.R.; Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol., 2014, 6(6), a021857.
[http://dx.doi.org/10.1101/cshperspect.a021857] [PMID: 24890514]
[52]
Cannarile, M.A.; Weisser, M.; Jacob, W.; Jegg, A.M.; Ries, C.H.; Rüttinger, D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer, 2017, 5(1), 53.
[http://dx.doi.org/10.1186/s40425-017-0257-y] [PMID: 28716061]
[53]
Fischer-Zirnsak, B.; Segebrecht, L.; Schubach, M.; Charles, P.; Alderman, E.; Brown, K.; Cadieux-Dion, M.; Cartwright, T.; Chen, Y.; Costin, C.; Fehr, S.; Fitzgerald, K.M.; Fleming, E.; Foss, K.; Ha, T.; Hildebrand, G.; Horn, D.; Liu, S.; Marco, E.J.; McDonald, M.; McWalter, K.; Race, S.; Rush, E.T.; Si, Y.; Saunders, C.; Slavotinek, A.; Stockler-Ipsiroglu, S.; Telegrafi, A.; Thiffault, I.; Torti, E.; Tsai, A.C.; Wang, X.; Zafar, M.; Keren, B.; Kornak, U.; Boerkoel, C.F.; Mirzaa, G.; Ehmke, N. Haploinsufficiency of the notch ligand DLL1 causes variable neurodevelopmental disorders. Am. J. Hum. Genet., 2019, 105(3), 631-639.
[http://dx.doi.org/10.1016/j.ajhg.2019.07.002] [PMID: 31353024]
[54]
Varga, J.; Nicolas, A.; Petrocelli, V.; Pesic, M.; Mahmoud, A.; Michels, B.E.; Etlioglu, E.; Yepes, D.; Häupl, B.; Ziegler, P.K.; Bankov, K.; Wild, P.J.; Wanninger, S.; Medyouf, H.; Farin, H.F.; Tejpar, S.; Oellerich, T.; Ruland, J.; Siebel, C.W.; Greten, F.R. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J. Exp. Med., 2020, 217(10), e20191515.
[http://dx.doi.org/10.1084/jem.20191515] [PMID: 32749453]
[55]
Ozawa, T.; Kazama, S.; Akiyoshi, T.; Murono, K.; Yoneyama, S.; Tanaka, T.; Tanaka, J.; Kiyomatsu, T.; Kawai, K.; Nozawa, H.; Kanazawa, T.; Yamaguchi, H.; Ishihara, S.; Sunami, E.; Kitayama, J.; Morikawa, T.; Fukayama, M.; Watanabe, T. Nuclear Notch3 expression is associated with tumor recurrence in patients with stage II and III colorectal cancer. Ann. Surg. Oncol., 2014, 21(8), 2650-2658.
[http://dx.doi.org/10.1245/s10434-014-3659-9] [PMID: 24728738]
[56]
Wu, G.; Chen, Z.; Li, J.; Ye, F.; Chen, G.; Fan, Q.; Dong, H.; Yuan, S.; Zhu, X. NOTCH4 is a novel prognostic marker that correlates with colorectal cancer progression and prognosis. J. Cancer, 2018, 9(13), 2374-2379.
[http://dx.doi.org/10.7150/jca.26359] [PMID: 30026833]
[57]
Shaik, J.P.; Alanazi, I.O.; Pathan, A.A.K.; Parine, N.R.; Almadi, M.A.; Azzam, N.A.; Aljebreen, A.M.; Alharbi, O.; Alanazi, M.S.; Khan, Z. Frequent activation of notch signaling pathway in colorectal cancers and its implication in patient survival outcome. J. Oncol., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/6768942] [PMID: 32211044]
[58]
Katoh, M.; Katoh, M. Precision medicine for human cancers with notch signaling dysregulation (Review). Int. J. Mol. Med., 2020, 45(2), 279-297.
[PMID: 31894255]
[59]
Loukinova, E.; Ranganathan, S.; Kuznetsov, S.; Gorlatova, N.; Migliorini, M.M.; Loukinov, D.; Ulery, P.G.; Mikhailenko, I.; Lawrence, D.A.; Strickland, D.K. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF. J. Biol. Chem., 2002, 277(18), 15499-15506.
[http://dx.doi.org/10.1074/jbc.M200427200] [PMID: 11854294]
[60]
Vania, L.; Morris, G.; Otgaar, T.C.; Bignoux, M.J.; Bernert, M.; Burns, J.; Gabathuse, A.; Singh, E.; Ferreira, E.; Weiss, S.F.T. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin. Ther. Pat., 2019, 29(12), 987-1009.
[http://dx.doi.org/10.1080/13543776.2019.1693543] [PMID: 31722579]
[61]
Yoon, H.; Tang, C.M.; Banerjee, S.; Yebra, M.; Noh, S.; Burgoyne, A.M.; Torre, J.D.; Siena, M.D.; Liu, M.; Klug, L.R.; Choi, Y.Y.; Hosseini, M.; Delgado, A.L.; Wang, Z.; French, R.P.; Lowy, A.; DeMatteo, R.P.; Heinrich, M.C.; Molinolo, A.A.; Gutkind, J.S.; Harismendy, O.; Sicklick, J.K. Cancer-associated fibroblast secretion of PDGFC promotes gastrointestinal stromal tumor growth and metastasis. Oncogene, 2021, 40(11), 1957-1973.
[http://dx.doi.org/10.1038/s41388-021-01685-w] [PMID: 33603171]
[62]
Yang, Y.; Ma, Y.; Yan, S.; Wang, P.; Hu, J.; Chen, S.; Zhu, J.; Wang, J.; Chen, G.; Liu, Y. CAF promotes chemoresistance through NRP2 in gastric cancer. Gastric Cancer, 2022, 25(3), 503-514.
[http://dx.doi.org/10.1007/s10120-021-01270-w] [PMID: 34826008]
[63]
Polavaram, N.S.; Dutta, S.; Islam, R.; Bag, A.K.; Roy, S.; Poitz, D.; Karnes, J.; Hofbauer, L.C.; Kohli, M.; Costello, B.A.; Jimenez, R.; Batra, S.K.; Teply, B.A.; Muders, M.H.; Datta, K. Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Res., 2021, 9(1), 24.
[http://dx.doi.org/10.1038/s41413-021-00136-2] [PMID: 33990538]
[64]
Aoki, S.; Inoue, K.; Klein, S.; Halvorsen, S.; Chen, J.; Matsui, A.; Nikmaneshi, M.R.; Kitahara, S.; Hato, T.; Chen, X.; Kawakubo, K.; Nia, H.T.; Chen, I.; Schanne, D.H.; Mamessier, E.; Shigeta, K.; Kikuchi, H.; Ramjiawan, R.R.; Schmidt, T.C.E.; Iwasaki, M.; Yau, T.; Hong, T.S.; Quaas, A.; Plum, P.S.; Dima, S.; Popescu, I.; Bardeesy, N.; Munn, L.L.; Borad, M.J.; Sassi, S.; Jain, R.K.; Zhu, A.X.; Duda, D.G. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut, 2022, 71(1), 185-193.
[http://dx.doi.org/10.1136/gutjnl-2020-322493] [PMID: 33431577]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy