Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

EZH2-regulated PARP-1 Expression is a Likely Mechanism for the Chemoresistance of Gliomas to Temozolomide

Author(s): Qiang Liang, Bing Wang, Chenran Zhang, Chaoli Song, Junyu Wang, Wei Sun, Lei Jiang* and Jing Lin*

Volume 24, Issue 3, 2024

Published on: 25 August, 2023

Page: [328 - 339] Pages: 12

DOI: 10.2174/1568009623666230818151830

Price: $65

Abstract

Background: Chemoresistance in gliomas accounts for the major cause of tumor progress and recurrence during comprehensive treatment with alkylating agents including temozolomide (TMZ). The oncogenic role of Enhancer of zeste homolog 2 (EZH2) has been identified in many solid malignancies including gliomas, though the accurate effect of EZH2 on chemotherapy resistance of gliomas has been elusive.

Objective: To elucidate the role of EHZ2 on TMZ resistance of gliomas and the molecular mechanisms.

Methods: Immunohistochemistry (IHC) and Reverse transcription-quantitative (RT-q) PCR, and western blot assay were performed for expressional analysis. Cell Counting Kit-8 (CCK-8) assay was applied to determine the TMZ sensitivity. EZH2-silencing lentivirus was generated for mechanic study.

Results: EZH2 was overexpressed in gliomas both at the transcriptional and protein levels. EZH2 level in glioma cell lines was positively correlated with resistance to TMZ, represented by the 50% inhibition rate (IC50). Moreover, there was increased TMZ sensitivity in EZH2-inhibited glioma cells than in the control cells. Furthermore, we determined that PARP1 was a common molecule among the downregulated DNA repair proteins in both U251 and U87 glioma cell lines after EZH2 inhibition. Specifically, we observed a spontaneous increase of PARP1 expression with TMZ treatment and interestingly, the increase of PARP1 could be also reduced by EZH2 inhibition in the glioma cells. Finally, combined treatment with lentivirus-induced EZH2 inhibition and a PARP1 inhibitor dramatically enhanced TMZ cytotoxicity compared with either one alone.

Conclusion: EZH2-PARP-1 signaling axis is possibly responsible for the chemoresistance of gliomas to TMZ. Simultaneously inhibiting these two genes may improve the outcome of TMZ chemotherapy.

Graphical Abstract

[1]
Molinaro, A.M.; Taylor, J.W.; Wiencke, J.K.; Wrensch, M.R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol., 2019, 15(7), 405-417.
[http://dx.doi.org/10.1038/s41582-019-0220-2] [PMID: 31227792]
[2]
Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D.W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol., 2021, 23(8), 1231-1251.
[http://dx.doi.org/10.1093/neuonc/noab106] [PMID: 34185076]
[3]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[4]
Qiu, G.Z.; Jin, M.Z.; Dai, J.X.; Sun, W.; Feng, J.H.; Jin, W.L. Reprogramming of the tumor in the hypoxic niche: The emerging concept and associated therapeutic strategies. Trends Pharmacol. Sci., 2017, 38(8), 669-686.
[http://dx.doi.org/10.1016/j.tips.2017.05.002] [PMID: 28602395]
[5]
Viré, E.; Brenner, C.; Deplus, R.; Blanchon, L.; Fraga, M.; Didelot, C.; Morey, L.; Van Eynde, A.; Bernard, D.; Vanderwinden, J.M.; Bollen, M.; Esteller, M.; Di Croce, L.; de Launoit, Y.; Fuks, F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439(7078), 871-874.
[http://dx.doi.org/10.1038/nature04431] [PMID: 16357870]
[6]
Tan, J.; Yan, Y.; Wang, X.; Jiang, Y.; Xu, H.E. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol. Sin., 2014, 35(2), 161-174.
[http://dx.doi.org/10.1038/aps.2013.161] [PMID: 24362326]
[7]
Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol., 2020, 13(1), 104.
[http://dx.doi.org/10.1186/s13045-020-00937-8] [PMID: 32723346]
[8]
Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in cancer. Nat. Med., 2016, 22(2), 128-134.
[http://dx.doi.org/10.1038/nm.4036] [PMID: 26845405]
[9]
Orzan, F.; Pellegatta, S.; Poliani, P.L.; Pisati, F.; Caldera, V.; Menghi, F.; Kapetis, D.; Marras, C.; Schiffer, D.; Finocchiaro, G. Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol. Appl. Neurobiol., 2011, 37(4), 381-394.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01132.x] [PMID: 20946108]
[10]
Wu, Z.; Wang, Q.; Wang, L.; Li, G.; Liu, H.; Fan, F.; Li, Z.; Li, Y.; Tu, Y. Combined aberrant expression of Bmi1 and EZH2 is predictive of poor prognosis in glioma patients. J. Neurol. Sci., 2013, 335(1-2), 191-196.
[http://dx.doi.org/10.1016/j.jns.2013.09.030] [PMID: 24139839]
[11]
Zhang, R.; Wang, R.; Chang, H.; Wu, F.; Liu, C.; Deng, D.; Fan, W. Downregulation of Ezh2 expression by RNA interference induces cell cycle arrest in the G0/G1 phase and apoptosis in U87 human glioma cells. Oncol. Rep., 2012, 28(6), 2278-2284.
[http://dx.doi.org/10.3892/or.2012.2033] [PMID: 22992977]
[12]
Zhai, X.; Li, L.; Zhou, Y.; Ji, W.; Chen, H.; Xiao, H.; Liang, P. EZH2 regulates the malignancy of human glioblastoma cells via modulation of Twist mRNA stability. Eur. J. Pharmacol., 2021, 904, 174177.
[http://dx.doi.org/10.1016/j.ejphar.2021.174177] [PMID: 34015321]
[13]
Yuan, D.H.; Zhao, J.; Shao, G.F.; Circular, R.N.A. Circular RNA TTBK2 promotes the development of human glioma cells via miR-520b/EZH2 axis. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(24), 10886-10898.
[PMID: 31858557]
[14]
Paskeh, M.D.A.; Mehrabi, A.; Gholami, M.H.; Zabolian, A.; Ranjbar, E.; Saleki, H.; Ranjbar, A.; Hashemi, M.; Ertas, Y.N.; Hushmandi, K.; Mirzaei, S.; Ashrafizadeh, M.; Zarrabi, A.; Samarghandian, S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed. Pharmacother., 2022, 146, 112532.
[http://dx.doi.org/10.1016/j.biopha.2021.112532] [PMID: 34906772]
[15]
Deng, Y.; Cheng, L.; Lv, Z.; Zhu, H.; Meng, X. lncRNA SNHG7 promotes cell proliferation in glioma by acting as a competing endogenous RNA and sponging miR 138 5p to regulate EZH2 expression. Oncol. Lett., 2021, 22(1), 565.
[http://dx.doi.org/10.3892/ol.2021.12826] [PMID: 34113393]
[16]
Happold, C.; Roth, P.; Wick, W.; Schmidt, N.; Florea, A.M.; Silginer, M.; Reifenberger, G.; Weller, M. Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. J. Neurochem., 2012, 122(2), 444-455.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07781.x] [PMID: 22564186]
[17]
Lu, C.; Shervington, A. Chemoresistance in gliomas. Mol. Cell. Biochem., 2008, 312(1-2), 71-80.
[http://dx.doi.org/10.1007/s11010-008-9722-8] [PMID: 18259841]
[18]
Lin, J.; Ji, A.; Qiu, G.; Feng, H.; Li, J.; Li, S.; Zou, Y.; Cui, Y.; Song, C.; He, H.; Lu, Y. FBW 7 is associated with prognosis, inhibits malignancies and enhances temozolomide sensitivity in glioblastoma cells. Cancer Sci., 2018, 109(4), 1001-1011.
[http://dx.doi.org/10.1111/cas.13528] [PMID: 29427543]
[19]
Nagel, Z.D.; Kitange, G.J.; Gupta, S.K.; Joughin, B.A.; Chaim, I.A.; Mazzucato, P.; Lauffenburger, D.A.; Sarkaria, J.N.; Samson, L.D. DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme. Cancer Res., 2017, 77(1), 198-206.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1151] [PMID: 27793847]
[20]
Lin, J.; Zuo, J.; Cui, Y.; Song, C.; Wu, X.; Feng, H.; Li, J.; Li, S.; Xu, Q.; Wei, W.; Qiu, G.; He, H. Characterizing the molecular mechanisms of acquired temozolomide resistance in the U251 glioblastoma cell line by protein microarray. Oncol. Rep., 2018, 39(5), 2333-2341.
[http://dx.doi.org/10.3892/or.2018.6322] [PMID: 29565460]
[21]
Morey, L.; Helin, K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci., 2010, 35(6), 323-332.
[http://dx.doi.org/10.1016/j.tibs.2010.02.009] [PMID: 20346678]
[22]
Samaržija, I. Tomljanović M.; Novak Kujundžić R.; Trošelj, K.G. EZH2 inhibition and cisplatin as a combination anticancer therapy: An overview of preclinical studies. Cancers, 2022, 14(19), 4761.
[http://dx.doi.org/10.3390/cancers14194761] [PMID: 36230683]
[23]
Wen, Y.; Hou, Y.; Yi, X.; Sun, S.; Guo, J.; He, X.; Li, T.; Cai, J.; Wang, Z. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics, 2021, 11(4), 1795-1813.
[http://dx.doi.org/10.7150/thno.48101] [PMID: 33408782]
[24]
Kempf, J.M.; Weser, S.; Bartoschek, M.D.; Metzeler, K.H.; Vick, B.; Herold, T.; Völse, K.; Mattes, R.; Scholz, M.; Wange, L.E.; Festini, M.; Ugur, E.; Roas, M.; Weigert, O.; Bultmann, S.; Leonhardt, H.; Schotta, G.; Hiddemann, W.; Jeremias, I.; Spiekermann, K. Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Sci. Rep., 2021, 11(1), 5838.
[http://dx.doi.org/10.1038/s41598-021-84708-6] [PMID: 33712646]
[25]
Zhao, Z.; Liu, Y.; He, H.; Chen, X.; Chen, J.; Lu, Y.C. Candidate genes influencing sensitivity and resistance of human glioblastoma to Semustine. Brain Res. Bull., 2011, 86(3-4), 189-194.
[http://dx.doi.org/10.1016/j.brainresbull.2011.07.010] [PMID: 21807073]
[26]
Zhang, J.; Stevens, M.F.G.; Laughton, C.A.; Madhusudan, S.; Bradshaw, T.D. Acquired resistance to temozolomide in glioma cell lines: Molecular mechanisms and potential translational applications. Oncology, 2010, 78(2), 103-114.
[http://dx.doi.org/10.1159/000306139] [PMID: 20357518]
[27]
Fan, T.Y.; Wang, H.; Xiang, P.; Liu, Y.W.; Li, H.Z.; Lei, B.X.; Yu, M.; Qi, S.T. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int. J. Clin. Exp. Pathol., 2014, 7(10), 6662-6670.
[PMID: 25400745]
[28]
Pascal, J.M. The comings and goings of PARP-1 in response to DNA damage. DNA Repair, 2018, 71, 177-182.
[http://dx.doi.org/10.1016/j.dnarep.2018.08.022] [PMID: 30177435]
[29]
Han, B.; Meng, X.; Wu, P.; Li, Z.; Li, S.; Zhang, Y.; Zha, C.; Ye, Q.; Jiang, C.; Cai, J.; Jiang, T. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics, 2020, 10(7), 3351-3365.
[http://dx.doi.org/10.7150/thno.41219] [PMID: 32194873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy