Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Glutathione Therapy in Diseases: Challenges and Potential Solutions for Therapeutic Advancement

Author(s): Hossein Tahmasebi Dehkordi and Sorayya Ghasemi*

Volume 24, Issue 10, 2024

Published on: 06 October, 2023

Page: [1219 - 1230] Pages: 12

DOI: 10.2174/1566524023666230818142831

Price: $65

Abstract

An endogenous antioxidant, reduced glutathione (GSH), is found at high concentrations in nearly all typical cells. GSH synthesis is a controlled process, and any disruption in the process of GSH synthesis could result in GSH depletion. Cellular oxidative damage results from GSH depletion. Various pathological conditions such as aging, cardiovascular disease (CVD), psychiatric disorders, neurological disorders, liver disorders, and diabetes mellitus are more affected by this stress. There are various reasons for GSH reduction, but replenishing it can help to improve this condition. However, there are challenges in this field. Low bioavailability and poor stability of GSH limit its delivery to tissues, mainly brain tissue. Today, new approaches are used for the optimal amount and efficiency of drugs and alternative substances such as GSH. The use of nano-materials and liposomes are effective methods for improving the treatment effects of GSH. The difficulties of GSH decrease and its connection to the most important associated disorders are reviewed for the first time in this essay. The other major concerns are the molecular mechanisms involved in them; the impact of treatment with replacement GSH; the signaling pathways impacted; and the issues with alternative therapies. The utilization of nano-materials and liposomes as potential new approaches to solving these issues is being considered.

[1]
Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH. Glutathione – linking cell proliferation to oxidative stress. Free Radic Biol Med 2015; 89: 1154-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.023] [PMID: 26546102]
[2]
Adeoye O, Olawumi J, Opeyemi A, Christiania O. Review on the role of glutathione on oxidative stress and infertility. JBRA Assist Reprod 2018; 22(1): 61-6.
[PMID: 29266896]
[3]
Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev 2019; 2019: 1-16.
[http://dx.doi.org/10.1155/2019/3150145] [PMID: 31281572]
[4]
Lu SC. Glutathione synthesis. Biochim Biophys Acta, Gen Subj 2013; 1830(5): 3143-53.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.008]
[5]
Teskey G, Abrahem R, Cao R. Chapter Five - Glutathione as a Marker for Human Disease. In: Makowski GS, Ed. Advances in Clinical Chemistry 87. Amsterdam: Elsevier 2018; pp. 141-59.
[6]
Bajic VP, Van Neste C, Obradovic M, et al. Glutathione “redox homeostasis” and its relation to cardiovascular disease. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/5028181] [PMID: 31210841]
[7]
Gu F, Chauhan V, Chauhan A. Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care 2015; 18(1): 89-95.
[http://dx.doi.org/10.1097/MCO.0000000000000134] [PMID: 25405315]
[8]
Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F. Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxid Med Cell Longev 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/240146] [PMID: 22701755]
[9]
Bertoni S, Albertini B, Facchini C, Prata C, Passerini N. Glutathione-loaded solid lipid microparticles as innovative delivery system for oral antioxidant therapy. Pharmaceutics 2019; 11(8): 364.
[http://dx.doi.org/10.3390/pharmaceutics11080364] [PMID: 31357663]
[10]
Almusafri F, Elamin HE, Khalaf TE, Ali A, Ben-Omran T, El-Hattab AW. Clinical and molecular characterization of 6 children with glutamate-cysteine ligase deficiency causing hemolytic anemia. Blood Cells Mol Dis 2017; 65: 73-7.
[http://dx.doi.org/10.1016/j.bcmd.2017.05.011] [PMID: 28571779]
[11]
Alqarajeh F, Abukhalaf SA, Hmeidat B, Omorodion JO, Dweikat IM. Genotype and clinical phenotype in four patients with glutathione synthetase deficiency. Meta Gene 2020; 25: 100751.
[http://dx.doi.org/10.1016/j.mgene.2020.100751]
[12]
Alborzinia H, Flórez AF, Kreth S, et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Can 2022; 3(4): 471-85.
[http://dx.doi.org/10.1038/s43018-022-00355-4] [PMID: 35484422]
[13]
Yin J, Ren W, Yang G, et al. l -Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2016; 60(1): 134-46.
[http://dx.doi.org/10.1002/mnfr.201500031] [PMID: 25929483]
[14]
Lu SC. Dysregulation of glutathione synthesis in liver disease. Liver Res 2020; 4(2): 64-73.
[http://dx.doi.org/10.1016/j.livres.2020.05.003]
[15]
Wang H, Liu H, Liu R-M. Gender difference in glutathione metabolism during aging in mice. Exp Gerontol 2003; 38(5): 507-17.
[http://dx.doi.org/10.1016/S0531-5565(03)00036-6] [PMID: 12742528]
[16]
Liu H, Wang H, Shenvi S, Hagen TM, Liu RM. Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci 2004; 1019(1): 346-9.
[http://dx.doi.org/10.1196/annals.1297.059] [PMID: 15247041]
[17]
Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009; 30(1-2): 42-59.
[http://dx.doi.org/10.1016/j.mam.2008.05.005] [PMID: 18601945]
[18]
Okouchi M, Okayama N, Steven Alexander J, Yee Aw T. NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia- induced brain endothelial cell apoptosis. Curr Neurovasc Res 2006; 3(4): 249-61.
[http://dx.doi.org/10.2174/156720206778792876] [PMID: 17109620]
[19]
Yang H, Ramani K, Xia M, et al. Dysregulation of glutathione synthesis during cholestasis in mice: Molecular mechanisms and therapeutic implications. Hepatology 2009; 49(6): 1982-91.
[http://dx.doi.org/10.1002/hep.22908] [PMID: 19399914]
[20]
Raj Rai S, Bhattacharyya C, Sarkar A, et al. Glutathione: Role in oxidative/nitrosative stress, antioxidant defense, and treatments. ChemistrySelect 2021; 6(18): 4566-90.
[http://dx.doi.org/10.1002/slct.202100773]
[21]
Fisher E, Gillam J, Upthegrove R, Aldred S, Wood SJ. Role of magnetic resonance spectroscopy in cerebral glutathione quantification for youth mental health: A systematic review. Early Interv Psychiatry 2020; 14(2): 147-62.
[http://dx.doi.org/10.1111/eip.12833] [PMID: 31148383]
[22]
Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder. Nat Rev Dis Primers 2020; 6(1): 5.
[http://dx.doi.org/10.1038/s41572-019-0138-4] [PMID: 31949163]
[23]
Bjørklund G, Tinkov AA, Hosnedlová B, et al. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020; 160: 149-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.017] [PMID: 32745763]
[24]
Bjørklund G, Doşa MD, Maes M, et al. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021; 166: 105437.
[http://dx.doi.org/10.1016/j.phrs.2021.105437] [PMID: 33493659]
[25]
Lee TM, Lee KM, Lee CY, Lee HC, Tam KW, Loh EW. Effectiveness of N -acetylcysteine in autism spectrum disorders: A meta-analysis of randomized controlled trials. Aust N Z J Psychiatry 2021; 55(2): 196-206.
[http://dx.doi.org/10.1177/0004867420952540] [PMID: 32900213]
[26]
Pangrazzi L, Balasco L, Bozzi Y. Natural antioxidants: A novel therapeutic approach to autism spectrum disorders? Antioxidants 2020; 9(12): 1186.
[http://dx.doi.org/10.3390/antiox9121186] [PMID: 33256243]
[27]
Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14(1): 123-30.
[http://dx.doi.org/10.1017/S1461145710000805] [PMID: 20633320]
[28]
Hare SM, Ford JM, Mathalon DH, et al. Salience–default mode functional network connectivity linked to positive and negative symptoms of schizophrenia. Schizophr Bull 2019; 45(4): 892-901.
[http://dx.doi.org/10.1093/schbul/sby112] [PMID: 30169884]
[29]
Kumar J, Liddle EB, Fernandes CC, et al. Glutathione and glutamate in schizophrenia: a 7T MRS study. Mol Psychiatry 2020; 25(4): 873-82.
[http://dx.doi.org/10.1038/s41380-018-0104-7] [PMID: 29934548]
[30]
Coughlin JM, Yang K, Marsman A, et al. A multimodal approach to studying the relationship between peripheral glutathione, brain glutamate, and cognition in health and in schizophrenia. Mol Psychiatry 2021; 26(7): 3502-11.
[http://dx.doi.org/10.1038/s41380-020-00901-5] [PMID: 33077854]
[31]
Palaniyappan L, Park MTM, Jeon P, et al. Is there a glutathione centered redox dysregulation subtype of schizophrenia? Antioxidants 2021; 10(11): 1703.
[http://dx.doi.org/10.3390/antiox10111703] [PMID: 34829575]
[32]
Nucifora LG, Tanaka T, Hayes LN, et al. Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry 2017; 7(8): e1215.
[http://dx.doi.org/10.1038/tp.2017.178]
[33]
Freed RD, Hollenhorst CN, Weiduschat N, et al. A pilot study of cortical glutathione in youth with depression. Psychiatry Res Neuroimaging 2017; 270: 54-60.
[http://dx.doi.org/10.1016/j.pscychresns.2017.10.001] [PMID: 29078101]
[34]
Kulak A, Cuenod M, Do KQ. Behavioral phenotyping of glutathione-deficient mice: Relevance to schizophrenia and bipolar disorder. Behav Brain Res 2012; 226(2): 563-70.
[http://dx.doi.org/10.1016/j.bbr.2011.10.020] [PMID: 22033334]
[35]
Murrough JW, Huryk KM, Mao X, et al. A pilot study of minocycline for the treatment of bipolar depression: Effects on cortical glutathione and oxidative stress in vivo. J Affect Disord 2018; 230: 56-64.
[http://dx.doi.org/10.1016/j.jad.2017.12.067] [PMID: 29407539]
[36]
Kian M, Hosseini E, Abdizadeh T, Langaee T, Khajouei A, Ghasemi S. Molecular docking and mouse modeling suggest CMKLR1 and INSR as targets for improving PCOS phenotypes by minocycline. EXCLI J 2022; 21: 400-14.
[PMID: 35368462]
[37]
Bauer IE, Green C, Colpo GD, et al. A double-blind, randomized, placebo-controlled study of aspirin and N-acetylcysteine as adjunctive treatments for bipolar depression. J Clin Psychiatry 2018; 80(1): 459.
[http://dx.doi.org/10.4088/JCP.18m12200] [PMID: 30549489]
[38]
Rekatsina M, Paladini A, Piroli A, Zis P, Pergolizzi JV, Varrassi G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv Ther 2020; 37(1): 113-39.
[http://dx.doi.org/10.1007/s12325-019-01148-5] [PMID: 31782132]
[39]
Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro models of neurodegenerative diseases. Front Cell Dev Biol 2020; 8: 328.
[http://dx.doi.org/10.3389/fcell.2020.00328] [PMID: 32528949]
[40]
Lee YM, He W, Liou YC. The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 2021; 12(1): 58.
[http://dx.doi.org/10.1038/s41419-020-03355-3] [PMID: 33431811]
[41]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[42]
Mandal PK, Shukla D, Tripathi M, Ersland L. Cognitive improvement with glutathione supplement in alzheimer’s disease: A way forward. J Alzheimers Dis 2019; 68(2): 531-5.
[http://dx.doi.org/10.3233/JAD-181054] [PMID: 30776003]
[43]
Aoyama K. Glutathione in the Brain. Int J Mol Sci 2021; 22(9): 5010.
[http://dx.doi.org/10.3390/ijms22095010] [PMID: 34065042]
[44]
McCaddon A, Hudson P, Hill D, et al. Alzheimer’s disease and total plasma aminothiols. Biol Psychiatry 2003; 53(3): 254-60.
[http://dx.doi.org/10.1016/S0006-3223(02)01451-8] [PMID: 12559659]
[45]
Zalewska A, Klimiuk A, Zięba S, et al. Salivary gland dysfunction and salivary redox imbalance in patients with Alzheimer’s disease. Sci Rep 2021; 11(1): 23904.
[http://dx.doi.org/10.1038/s41598-021-03456-9] [PMID: 34903846]
[46]
Charisis S, Ntanasi E, Yannakoulia M, et al. Plasma GSH levels and Alzheimer’s disease. A prospective approach.: Results from the HELIAD study. Free Radic Biol Med 2021; 162: 274-82.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.027] [PMID: 33099001]
[47]
Dwivedi D, Megha K, Mishra R, Mandal PK. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem Res 2020; 45(7): 1461-80.
[http://dx.doi.org/10.1007/s11064-020-03030-1] [PMID: 32297027]
[48]
Remington R, Bechtel C, Larsen D, et al. A phase II randomized clinical trial of a nutritional formulation for cognition and mood in alzheimer’s disease. J Alzheimers Dis 2015; 45(2): 395-405.
[http://dx.doi.org/10.3233/JAD-142499] [PMID: 25589719]
[49]
Medhat E, Rashed L, Abdelgwad M, Aboulhoda BE, Khalifa MM, El-Din SS. Exercise enhances the effectiveness of vitamin D therapy in rats with Alzheimer’s disease: emphasis on oxidative stress and inflammation. Metab Brain Dis 2020; 35(1): 111-20.
[http://dx.doi.org/10.1007/s11011-019-00504-2] [PMID: 31691146]
[50]
Holmay MJ, Terpstra M, Coles LD, et al. N-Acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin Neuropharmacol 2013; 36(4): 103-6.
[http://dx.doi.org/10.1097/WNF.0b013e31829ae713] [PMID: 23860343]
[51]
Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2019; 14(5): 480-96.
[http://dx.doi.org/10.1016/j.ajps.2018.09.005] [PMID: 32104476]
[52]
Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health 2021; 21(1): 401.
[http://dx.doi.org/10.1186/s12889-021-10429-0] [PMID: 33632204]
[53]
Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 2015; 71: 40-56.
[http://dx.doi.org/10.1016/j.vph.2015.03.005] [PMID: 25869516]
[54]
Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 2019; 51(12): 1-13.
[http://dx.doi.org/10.1038/s12276-019-0355-7] [PMID: 31857574]
[55]
Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 2013; 19(10): 1085-94.
[http://dx.doi.org/10.1089/ars.2012.4604] [PMID: 22443458]
[56]
Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol 2018; 9: 1668.
[http://dx.doi.org/10.3389/fphys.2018.01668] [PMID: 30564132]
[57]
Adamy C, Mulder P, Khouzami L, et al. Neutral sphingomyelinase inhibition participates to the benefits of N-acetylcysteine treatment in post-myocardial infarction failing heart rats. J Mol Cell Cardiol 2007; 43(3): 344-53.
[http://dx.doi.org/10.1016/j.yjmcc.2007.06.010] [PMID: 17707397]
[58]
van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail 2019; 21(4): 425-35.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[59]
Watanabe Y, Watanabe K, Kobayashi T, et al. Chronic depletion of glutathione exacerbates ventricular remodelling and dysfunction in the pressure-overloaded heart. Cardiovasc Res 2013; 97(2): 282-92.
[http://dx.doi.org/10.1093/cvr/cvs333] [PMID: 23129588]
[60]
Ju W, Li X, Li Z, et al. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2017; 44: 8-16.
[http://dx.doi.org/10.1016/j.jtemb.2017.04.009] [PMID: 28965605]
[61]
Li B, Sun Y, Wang JP, et al. Antioxidant N-acetylcysteine inhibits maladaptive myocyte autophagy in pressure overload induced cardiac remodeling in rats. Eur J Pharmacol 2018; 839: 47-56.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.034] [PMID: 30194941]
[62]
Torok NJ. Dysregulation of redox pathways in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 311(4): G667-74.
[http://dx.doi.org/10.1152/ajpgi.00050.2016] [PMID: 27562057]
[63]
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in glutathione content in liver diseases: An update. Antioxidants 2021; 10(3): 364.
[http://dx.doi.org/10.3390/antiox10030364] [PMID: 33670839]
[64]
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390(3): 191-214.
[http://dx.doi.org/10.1515/BC.2009.033]
[65]
Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol Sci 2020; 174(2): 159-67.
[http://dx.doi.org/10.1093/toxsci/kfaa002] [PMID: 31926003]
[66]
Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 104-9.
[http://dx.doi.org/10.2174/1570161117666190405165911] [PMID: 30961501]
[67]
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus – A comprehensive review. J Diabetes Complications 2020; 34(8): 107613.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107613] [PMID: 32505477]
[68]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[69]
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 2019; 11(3): 45-63.
[PMID: 31333808]
[70]
Ma X, Chen Z, Wang L, et al. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine. Front Pharmacol 2018; 9: 782.
[http://dx.doi.org/10.3389/fphar.2018.00782] [PMID: 30100874]
[71]
Lagman M, Ly J, Saing T, et al. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One 2015; 10(3): e0118436.
[http://dx.doi.org/10.1371/journal.pone.0118436] [PMID: 25790445]
[72]
Calabrese V, Cornelius C, Leso V, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2012; 1822(5): 729-36.
[http://dx.doi.org/10.1016/j.bbadis.2011.12.003] [PMID: 22186191]
[73]
Lutchmansingh FK, Hsu JW, Bennett FI, et al. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS One 2018; 13(6): e0198626.
[http://dx.doi.org/10.1371/journal.pone.0198626] [PMID: 29879181]
[74]
Pimson C, Chatuphonprasert W, Jarukamjorn K. Improvement of antioxidant balance in diabetes mellitus type 1 mice by glutathione supplement. Pak J Pharm Sci 2014; 27(6): 1731-7.
[PMID: 25362599]
[75]
Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20(9): 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[76]
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the cysteine redox proteome in neurodegenerative diseases. Antioxidants 2022; 11(2): 416.
[http://dx.doi.org/10.3390/antiox11020416] [PMID: 35204298]
[77]
Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 2014; 141(2): 150-9.
[http://dx.doi.org/10.1016/j.pharmthera.2013.09.006] [PMID: 24080471]
[78]
Martinez-Banaclocha MA. Potential role of N-acetyl-cysteine in the cysteine proteome in parkinson’s disease? Clin Pharmacol Ther 2020; 107(5): 1055.
[http://dx.doi.org/10.1002/cpt.1709] [PMID: 31823343]
[79]
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and dietary uses of N-acetylcysteine. Antioxidants 2019; 8(5): 111.
[http://dx.doi.org/10.3390/antiox8050111] [PMID: 31035402]
[80]
Teder K, Maddison L, Soeorg H, Meos A, Karjagin J. The pharmacokinetic profile and bioavailability of enteral n-acetylcysteine in intensive care unit. Medicina 2021; 57(11): 1218.
[81]
Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 2007; 7(4): 355-9.
[http://dx.doi.org/10.1016/j.coph.2007.04.005] [PMID: 17602868]
[82]
Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. Cerebellum 2007; 6(4): 308-14.
[http://dx.doi.org/10.1080/14734220601142878] [PMID: 17853088]
[83]
Vorselen D, Piontek MC, Roos WH, Wuite GJL. Mechanical characterization of liposomes and extracellular vesicles, a protocol. Front Mol Biosci 2020; 7: 139.
[http://dx.doi.org/10.3389/fmolb.2020.00139] [PMID: 32850949]
[84]
Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021; 176: 113851.
[http://dx.doi.org/10.1016/j.addr.2021.113851] [PMID: 34224787]
[85]
Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol 2020; 56: 101549.
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
[86]
Mojarad-Jabali S, Farshbaf M, Walker PR, et al. An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm 2021; 602: 120645.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120645] [PMID: 33915182]
[87]
Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601: 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[88]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[89]
Domján A, Manek E, Geissler E, László K. Host–guest interactions in poly (n-isopropylacrylamide) hydrogel seen by one-and two-dimensional 1H cramps solid-state NMR spectroscopy. Macromolecules 2013; 46(8): 3118-24.
[http://dx.doi.org/10.1021/ma400295a]
[90]
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv Sci 2021; 8(10): 2003937.
[http://dx.doi.org/10.1002/advs.202003937] [PMID: 34026447]
[91]
Hassan SSM, Kamel AH, Hashem HM, Bary EMA. Drug delivery systems between metal, liposome, and polymer-based nanomedicine: A review. Eur Chem Bull 2020; 9(3): 91-102.
[http://dx.doi.org/10.17628/ecb.2020.9.91-102]
[92]
Nance E. Careers in nanomedicine and drug delivery. Adv Drug Deliv Rev 2019; 144: 180-9.
[http://dx.doi.org/10.1016/j.addr.2019.06.009] [PMID: 31260712]
[93]
Manek E, Petroianu GA. Brain delivery of antidotes by polymeric nanoparticles. J Appl Toxicol 2021; 41(1): 20-32.
[http://dx.doi.org/10.1002/jat.4029] [PMID: 32666582]
[94]
Lu H, Yuan L, Yu X, Wu C, He D, Deng J. Recent advances of on-demand dissolution of hydrogel dressings. Burns Trauma 2018; 6: 35.
[http://dx.doi.org/10.1186/s41038-018-0138-8] [PMID: 30619904]
[95]
Shi H, Cheng Q, Yuan S, Ding X, Liu Y. Human serum albumin conjugated nanoparticles for pH and redox-responsive delivery of a prodrug of cisplatin. Chemistry 2015; 21(46): 16547-54.
[http://dx.doi.org/10.1002/chem.201502756] [PMID: 26405808]
[96]
Veszelka S, Meszaros M, Kiss L, et al. Biotin and glutathione targeting of solid nanoparticles to cross human brain endothelial cells. Curr Pharm Des 2017; 23(28): 4198-205.
[PMID: 28748755]
[97]
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9-10): 635-41.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[98]
Nosrati H, Tarantash M, Bochani S, et al. Glutathione (GSH) peptide conjugated magnetic nanoparticles as blood–brain barrier shuttle for MRI-monitored brain delivery of paclitaxel. ACS Biomater Sci Eng 2019; 5(4): 1677-85.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01420]
[99]
Maussang D, Rip J, van Kregten J, et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol 2016; 20: 59-69.
[http://dx.doi.org/10.1016/j.ddtec.2016.09.003] [PMID: 27986226]
[100]
Sinha R, Sinha I, Calcagnotto A, et al. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr 2018; 72(1): 105-11.
[http://dx.doi.org/10.1038/ejcn.2017.132] [PMID: 28853742]
[101]
Zeevalk GD, Bernard LP, Guilford FT. Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells. Neurochem Res 2010; 35(10): 1575-87.
[http://dx.doi.org/10.1007/s11064-010-0217-0] [PMID: 20535554]
[102]
Cui Y, Dong H, Cai X, Wang D, Li Y. Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release. ACS Appl Mater Interfaces 2012; 4(6): 3177-83.
[http://dx.doi.org/10.1021/am3005225] [PMID: 22646097]
[103]
Khanal S, Adhikari U, Rijal N, Bhattarai S, Sankar J, Bhattarai N. pH-responsive PLGA nanoparticle for controlled payload delivery of diclofenac sodium. J Funct Biomater 2016; 7(3): 21.
[http://dx.doi.org/10.3390/jfb7030021] [PMID: 27490577]
[104]
Priscyla DM, Leonardo FA, Raquel de MB. Development of a sustained-release system for nitric oxide delivery using alginate/chitosan nanoparticles. Curr Nanosci 2013; 9(1): 1-7.
[105]
Xu Z, Liu S, Kang Y, Wang M. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy. Nanoscale 2015; 7(13): 5859-68.
[http://dx.doi.org/10.1039/C5NR00297D] [PMID: 25757484]
[106]
Bosetti R, Jones SL. Cost–effectiveness of nanomedicine: Estimating the real size of nano-costs. Nanomedicine 2019; 14(11): 1367-70.
[http://dx.doi.org/10.2217/nnm-2019-0130] [PMID: 31169449]
[107]
Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J Multidiscip Healthc 2021; 14: 1711-24.
[http://dx.doi.org/10.2147/JMDH.S313968] [PMID: 34267523]
[108]
Chen L, Shi XJ, Liu H, et al. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl Psychiatry 2021; 11(1): 15.
[http://dx.doi.org/10.1038/s41398-020-01135-3] [PMID: 33414386]
[109]
Do KQ, Trabesinger AH, Kirsten-Krüger M, et al. Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12(10): 3721-8.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00229.x] [PMID: 11029642]
[110]
Lapidus KAB, Gabbay V, Mao X, et al. In vivo 1H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder. Neurosci Lett 2014; 569: 74-9.
[http://dx.doi.org/10.1016/j.neulet.2014.03.056] [PMID: 24704328]
[111]
Das TK, Javadzadeh A, Dey A, et al. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91: 94-102.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.006] [PMID: 30125624]
[112]
Chen JJ, Thiyagarajah M, Song J, et al. Altered central and blood glutathione in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Alzheimers Res Ther 2022; 14(1): 23.
[http://dx.doi.org/10.1186/s13195-022-00961-5] [PMID: 35123548]
[113]
Mandal PK, Saharan S, Tripathi M, Murari G. Brain glutathione levels--a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol Psychiatry 2015; 78(10): 702-10.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.005] [PMID: 26003861]
[114]
Pearce RKB, Owen A, Daniel S, Jenner P, Marsden CD. Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 1997; 104(6-7): 661-77.
[http://dx.doi.org/10.1007/BF01291884] [PMID: 9444566]
[115]
Weiduschat N, Mao X, Hupf J, et al. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci Lett 2014; 570: 102-7.
[http://dx.doi.org/10.1016/j.neulet.2014.04.020] [PMID: 24769125]
[116]
Choi I-Y, Lee S-P, Denney DR, Lynch SG. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 2011; 17(3): 289-96.
[http://dx.doi.org/10.1177/1352458510384010] [PMID: 20921235]
[117]
Look MP, Rockstroh JK, Rao GS, et al. Serum selenium, plasma glutathione (GSH) and erythrocyte glutathione peroxidase (GSH-Px)-levels in asymptomatic versus symptomatic human immunodeficiency virus-1 (HIV-1)-infection. Eur J Clin Nutr 1997; 51(4): 266-72.
[http://dx.doi.org/10.1038/sj.ejcn.1600401] [PMID: 9104578]
[118]
Saing T, Lagman M, Castrillon J, Gutierrez E, Guilford FT, Venketaraman V. Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer’s disease and its implication in the pathophysiology of the disease process. BBA Clin 2016; 6: 38-44.
[http://dx.doi.org/10.1016/j.bbacli.2016.05.006] [PMID: 27335804]
[119]
Venketaraman V, Millman A, Salman M, et al. Glutathione levels and immune responses in tuberculosis patients. Microb Pathog 2008; 44(3): 255-61.
[http://dx.doi.org/10.1016/j.micpath.2007.09.002] [PMID: 17959342]
[120]
Dalvi SM, Patil VW, Ramraje NN. The roles of glutathione, glutathione peroxidase, glutathione reductase and the carbonyl protein in pulmonary and extra pulmonary tuberculosis. J Clin Diagn Res 2012; 6(9): 1462-5.
[http://dx.doi.org/10.7860/JCDR/2012/4410.2533] [PMID: 23285430]
[121]
Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis 2020; 6(7): 1558-62.
[http://dx.doi.org/10.1021/acsinfecdis.0c00288] [PMID: 32463221]
[122]
Kumar P, Osahon O, Vides DB, Hanania N, Minard CG, Sekhar RV. Severe glutathione deficiency, oxidative stress and oxidant damage in adults hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) supplementation. Antioxidants 2021; 11(1): 50.
[http://dx.doi.org/10.3390/antiox11010050] [PMID: 35052554]
[123]
Usal A, Acartürk E, Yüregir GT, et al. Decreased glutathione levels in acute myocardial infarction. Jpn Heart J 1996; 37(2): 177-82.
[http://dx.doi.org/10.1536/ihj.37.177] [PMID: 8676544]
[124]
Chaves F, Mansego M, Blesa S, et al. Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. Am J Hypertens 2007; 20(1): 62-9.
[http://dx.doi.org/10.1016/j.amjhyper.2006.06.006] [PMID: 17198913]
[125]
Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J 2001; 15(8): 1335-49.
[http://dx.doi.org/10.1096/fj.00-0650rev] [PMID: 11387231]
[126]
Kumar A, Sharma A, Duseja A, et al. Patients with nonalcoholic fatty liver disease (NAFLD) have higher oxidative stress in comparison to chronic viral hepatitis. J Clin Exp Hepatol 2013; 3(1): 12-8.
[http://dx.doi.org/10.1016/j.jceh.2012.10.009] [PMID: 25755466]
[127]
Świetek K, Juszczyk J. Reduced glutathione concentration in erythrocytes of patients with acute and chronic viral hepatitis. J Viral Hepat 1997; 4(2): 139-41.
[http://dx.doi.org/10.1111/j.1365-2893.1997.tb00217.x] [PMID: 9097271]
[128]
Sekhar RV, McKay SV, Patel SG, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011; 34(1): 162-7.
[http://dx.doi.org/10.2337/dc10-1006] [PMID: 20929994]
[129]
Samiec PS, Drews-Botsch C, Flagg EW, et al. Glutathione in human plasma: Decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 1998; 24(5): 699-704.
[http://dx.doi.org/10.1016/S0891-5849(97)00286-4] [PMID: 9586798]
[130]
Ryter SW, Bhatia D, Choi ME. Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal 2019; 30(1): 138-59.
[http://dx.doi.org/10.1089/ars.2018.7518] [PMID: 29463101]
[131]
Lee MT, Lin WC, Lee TT. Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals — A review. Asian-Australas J Anim Sci 2019; 32(3): 309-19.
[http://dx.doi.org/10.5713/ajas.18.0538] [PMID: 30381743]
[132]
Li P, Chang M. Roles of PRR-mediated signaling pathways in the regulation of oxidative stress and inflammatory diseases. Int J Mol Sci 2021; 22(14): 7688.
[http://dx.doi.org/10.3390/ijms22147688] [PMID: 34299310]
[133]
Nakao A, Matsunaga Y, Hayashida K, Takahashi N. Role of oxidative stress and Ca2+ signaling in psychiatric disorders. Front Cell Dev Biol 2021; 9: 615569.
[http://dx.doi.org/10.3389/fcell.2021.615569] [PMID: 33644051]
[134]
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol 2016; 26(4): 249-61.
[http://dx.doi.org/10.1016/j.tcb.2015.12.002] [PMID: 26791157]
[135]
Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol 2018; 7: 81-6.
[http://dx.doi.org/10.1016/j.cotox.2017.11.002] [PMID: 29862377]
[136]
Habte-Tsion HM. A review on fish immuno-nutritional response to indispensable amino acids in relation to TOR, NF-κB and Nrf2 signaling pathways: Trends and prospects. Comp Biochem Physiol B Biochem Mol Biol 2020; 241: 110389.
[http://dx.doi.org/10.1016/j.cbpb.2019.110389] [PMID: 31812790]
[137]
Mohan S, Gupta D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother 2018; 108: 1866-78.
[http://dx.doi.org/10.1016/j.biopha.2018.10.019] [PMID: 30372892]
[138]
Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/217580] [PMID: 22529521]
[139]
Flohé L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta, Gen Subj 2013; 1830(5): 3139-42.
[http://dx.doi.org/10.1016/j.bbagen.2012.10.020]
[140]
Bains JS, Shaw CA. Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 1997; 25(3): 335-58.
[http://dx.doi.org/10.1016/S0165-0173(97)00045-3] [PMID: 9495562]
[141]
Zhao H, Ruan H, Li H. Progress in the research of GSH in cells. Chin Sci Bull 2011; 56(28-29): 3057.
[http://dx.doi.org/10.1007/s11434-011-4689-3]
[142]
McBean GJ. The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids 2012; 42(1): 199-205.
[http://dx.doi.org/10.1007/s00726-011-0864-8] [PMID: 21369939]
[143]
Mak TW, Grusdat M, Duncan GS, et al. Glutathione primes T cell metabolism for inflammation. Immunity 2017; 46(4): 675-89.
[http://dx.doi.org/10.1016/j.immuni.2017.03.019] [PMID: 28423341]
[144]
Tewes F, Böl GF, Brigelius-Flohé R. Thiol modulation inhibits the interleukin (IL)-1-mediated activation of an IL-1 receptor-associated protein kinase and NF-xB. Eur J Immunol 1997; 27(11): 3015-21.
[http://dx.doi.org/10.1002/eji.1830271139] [PMID: 9394832]
[145]
Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants 2020; 9(7): 624.
[http://dx.doi.org/10.3390/antiox9070624] [PMID: 32708578]
[146]
Soto ME, Guarner-Lans V, Díaz-Díaz E, et al. Hyperglycemia and loss of redox homeostasis in COVID-19 patients. Cells 2022; 11(6): 932.
[http://dx.doi.org/10.3390/cells11060932] [PMID: 35326383]
[147]
Perricone C, De Carolis C, Perricone R. Glutathione: A key player in autoimmunity. Autoimmun Rev 2009; 8(8): 697-701.
[http://dx.doi.org/10.1016/j.autrev.2009.02.020] [PMID: 19393193]
[148]
Xu T, Ding W, Ji X, et al. Oxidative stress in cell death and cardiovascular diseases. Oxid Med Cell Longev 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/9030563] [PMID: 31781356]
[149]
Nunes S, Serpa J. Glutathione in ovarian cancer: A double-edged sword. Int J Mol Sci 2018; 19(7): 1882.
[http://dx.doi.org/10.3390/ijms19071882] [PMID: 29949936]
[150]
Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct 2004; 22(6): 343-52.
[http://dx.doi.org/10.1002/cbf.1149] [PMID: 15386533]
[151]
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50(10): 6013-41.
[http://dx.doi.org/10.1039/D0CS00718H] [PMID: 34027953]
[152]
Huang Z-Z, Chen C, Zeng Z, et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J 2001; 15(1): 19-21.
[http://dx.doi.org/10.1096/fj.00-0445fje] [PMID: 11099488]
[153]
Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 2018; 217(7): 2291-8.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[154]
Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules 2020; 10(10): 1429.
[http://dx.doi.org/10.3390/biom10101429] [PMID: 33050144]
[155]
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant properties dedicated to nanotechnologies. Antioxidants 2018; 7(5): 62.
[http://dx.doi.org/10.3390/antiox7050062] [PMID: 29702624]
[156]
McCarthy K, Avent M. Oral or intravenous antibiotics? Aust Prescr 2020; 43(2): 45-8.
[http://dx.doi.org/10.18773/austprescr.2020.008] [PMID: 32346210]
[157]
Cyriac JM, James E. Switch over from intravenous to oral therapy: A concise overview. J Pharmacol Pharmacother 2014; 5(2): 83-7.
[http://dx.doi.org/10.4103/0976-500X.130042] [PMID: 24799810]
[158]
Coles LD, Tuite PJ, Öz G, et al. Repeated-dose oral N-acetylcysteine in parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 2018; 58(2): 158-67.
[http://dx.doi.org/10.1002/jcph.1008] [PMID: 28940353]
[159]
Dong S, Dong Y, Jia T, et al. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv Mater 2020; 32(42): 2002439.
[http://dx.doi.org/10.1002/adma.202002439] [PMID: 32914495]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy