Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review

Author(s): Yaru Zhao, He Li, Zhenlin Fan* and Tianyun Wang*

Volume 25, Issue 6, 2024

Published on: 22 September, 2023

Page: [665 - 675] Pages: 11

DOI: 10.2174/1389201024666230818112633

Price: $65

Abstract

Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.

Graphical Abstract

[1]
Li, Z.M.; Fan, Z.L.; Wang, X.Y.; Wang, T.Y. Factors affecting the expression of recombinant protein and improvement strategies in chinese hamster ovary cells. Front. Bioeng. Biotechnol., 2022, 10, 880155.
[http://dx.doi.org/10.3389/fbioe.2022.880155] [PMID: 35860329]
[2]
Yang, Y.X.; Li, Q.; Li, W.D.; Wang, T.Y.; Feng, H.G. Factors and mechanisms affecting the secretion of recombinant protein in CHO cells. Curr. Pharm. Biotechnol., 2022, 24(3), 391-400.
[PMID: 35658884]
[3]
Knight, T.J.; Turner, S.; Jaques, C.M.; Smales, C.M. Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J. Biotechnol., 2021, 337, 35-45.
[http://dx.doi.org/10.1016/j.jbiotec.2021.06.019] [PMID: 34171439]
[4]
Aboulaich, N.; Chung, W.K.; Thompson, J.H.; Larkin, C.; Robbins, D.; Zhu, M. A novel approach to monitor clearance of host cell proteins associated with monoclonal antibodies. Biotechnol. Prog., 2014, 30(5), 1114-1124.
[http://dx.doi.org/10.1002/btpr.1948] [PMID: 25044920]
[5]
Park, J.H.; Jin, J.H.; Ji, I.J.; An, H.J.; Kim, J.W.; Lee, G.M. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Biotechnol. Bioeng., 2017, 114(10), 2267-2278.
[http://dx.doi.org/10.1002/bit.26360] [PMID: 28627725]
[6]
Liu, X.; Chen, Y.; Zhao, Y.; Liu-Compton, V.; Chen, W.; Payne, G.; Lazar, A.C. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process. J. Pharm. Biomed. Anal., 2019, 174, 500-508.
[http://dx.doi.org/10.1016/j.jpba.2019.06.021] [PMID: 31234041]
[7]
Tuameh, A.; Harding, S.E.; Darton, N.J. Methods for addressing host cell protein impurities in biopharmaceutical product development. Biotechnol. J., 2023, 18(3), 2200115.
[http://dx.doi.org/10.1002/biot.202200115] [PMID: 36427352]
[8]
Fischer, S.K.; Cheu, M.; Peng, K.; Lowe, J.; Araujo, J.; Murray, E.; McClintock, D.; Matthews, J.; Siguenza, P.; Song, A. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in lebrikizumab clinical material. AAPS J., 2017, 19(1), 254-263.
[http://dx.doi.org/10.1208/s12248-016-9998-7] [PMID: 27739010]
[9]
Vanderlaan, M.; Zhu-Shimoni, J.; Lin, S.; Gunawan, F.; Waerner, T.; Van Cott, K.E. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol. Prog., 2018, 34(4), 828-837.
[http://dx.doi.org/10.1002/btpr.2640] [PMID: 29693803]
[10]
Li, X.; An, Y.; Liao, J.; Xiao, L.; Swanson, M.; Martinez-Fonts, K.; Pavon, J.A.; Sherer, E.C.; Jawa, V.; Wang, F.; Gao, X.; Letarte, S.; Richardson, D.D. Identification and characterization of a residual host cell protein hexosaminidase B associated with N -glycan degradation during the stability study of a therapeutic recombinant monoclonal antibody product. Biotechnol. Prog., 2021, 37(3), e3128.
[http://dx.doi.org/10.1002/btpr.3128] [PMID: 33476097]
[11]
Chiverton, L.M.; Evans, C.; Pandhal, J.; Landels, A.R.; Rees, B.J.; Levison, P.R.; Wright, P.C.; Smales, C.M. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line. Biotechnol. J., 2016, 11(8), 1014-1024.
[http://dx.doi.org/10.1002/biot.201500550] [PMID: 27214759]
[12]
Betts, Z.; Dickson, A.J. Improved CHO cell line stability and recombinant protein expression during long-term culture. Methods Mol. Biol., 2017, 1603, 119-141.
[http://dx.doi.org/10.1007/978-1-4939-6972-2_8] [PMID: 28493127]
[13]
Li, Y. Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr. Purif., 2017, 134, 96-103.
[http://dx.doi.org/10.1016/j.pep.2017.04.006] [PMID: 28414067]
[14]
Alhuthali, S.; Kontoravdi, C. Population balance modelling captures host cell protein dynamics in CHO cell cultures. PLoS One, 2022, 17(3), e0265886.
[http://dx.doi.org/10.1371/journal.pone.0265886] [PMID: 35320326]
[15]
Ben Yahia, B.; Malphettes, L.; Heinzle, E. Predictive macroscopic modeling of cell growth, metabolism and monoclonal antibody production: Case study of a CHO fed-batch production. Metab. Eng., 2021, 66, 204-216.
[http://dx.doi.org/10.1016/j.ymben.2021.04.004] [PMID: 33887460]
[16]
Goey, C.H.; Tsang, J.M.H.; Bell, D.; Kontoravdi, C. Cascading effect in bioprocessing-The impact of mild hypothermia on CHO cell behavior and host cell protein composition. Biotechnol. Bioeng., 2017, 114(12), 2771-2781.
[http://dx.doi.org/10.1002/bit.26437] [PMID: 28843000]
[17]
Fukuda, N.; Senga, Y.; Honda, S. Anxa2 - and Ctsd -knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnol. Prog., 2019, 35(4), e2820.
[http://dx.doi.org/10.1002/btpr.2820] [PMID: 30972970]
[18]
Obrstar, D.; Kröner, F.; Japelj, B.; Bojic, L.; Anderka, O. Host cell protein profiling in biopharmaceutical harvests. Anal. Chem., 2018, 90(19), 11240-11247.
[http://dx.doi.org/10.1021/acs.analchem.8b01236] [PMID: 30048127]
[19]
Migani, D.; Smales, C.M.; Bracewell, D.G. Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells. Biotechnol. Prog., 2017, 33(3), 666-676.
[http://dx.doi.org/10.1002/btpr.2455] [PMID: 28249362]
[20]
Falkenberg, H.; Waldera-Lupa, D.M.; Vanderlaan, M.; Schwab, T.; Krapfenbauer, K.; Studts, J.M.; Flad, T.; Waerner, T. Mass spectrometric evaluation of upstream and downstream process influences on host cell protein patterns in biopharmaceutical products. Biotechnol. Prog., 2019, 35(3), e2788.
[http://dx.doi.org/10.1002/btpr.2788] [PMID: 30767403]
[21]
Yuk, I.H.; Nishihara, J.; Walker, D., Jr; Huang, E.; Gunawan, F.; Subramanian, J.; Pynn, A.F.J.; Yu, X.C.; Zhu-Shimoni, J.; Vanderlaan, M.; Krawitz, D.C. More similar than different: Host cell protein production using three null CHO cell lines. Biotechnol. Bioeng., 2015, 112(10), 2068-2083.
[http://dx.doi.org/10.1002/bit.25615] [PMID: 25894672]
[22]
Jin, M.; Szapiel, N.; Zhang, J.; Hickey, J.; Ghose, S. Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): Implications for downstream process development. Biotechnol. Bioeng., 2010, 105(2), 306-316.
[http://dx.doi.org/10.1002/bit.22532] [PMID: 19739084]
[23]
Wilson, L.J.; Lewis, W.; Kucia-Tran, R.; Bracewell, D.G. Identification and classification of host cell proteins during biopharmaceutical process development. Biotechnol. Prog., 2022, 38(1), e3224.
[http://dx.doi.org/10.1002/btpr.3224] [PMID: 34751518]
[24]
Hamaker, N.K.; Min, L.; Lee, K.H. Comprehensive assessment of host cell protein expression after extended culture and bioreactor production of CHO cell lines. Biotechnol. Bioeng., 2022, 119(8), 2221-2238.
[http://dx.doi.org/10.1002/bit.28128] [PMID: 35508759]
[25]
Wingfield, P.T. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci., 2015, 80, 611-6135.
[http://dx.doi.org/10.1002/0471140864.ps0601s80]
[26]
Reese, H.R.; Xiao, X.; Shanahan, C.C.; Chu, W.; Van Den Driessche, G.A.; Fourches, D.; Carbonell, R.G.; Hall, C.K.; Menegatti, S. Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J. Chromatogr. A, 2020, 1625, 461237.
[http://dx.doi.org/10.1016/j.chroma.2020.461237] [PMID: 32709313]
[27]
Van Manen-Brush, K.; Zeitler, J.; White, J.R.; Younge, P.; Willis, S.; Jones, M. Improving Chinese hamster ovary host cell protein ELISA using Ella ®: An automated microfluidic platform. Biotechniques, 2020, 69(3), 186-192.
[http://dx.doi.org/10.2144/btn-2020-0074] [PMID: 32615786]
[28]
Singh, S.K.; Mishra, A.; Yadav, D.; Budholiya, N.; Rathore, A.S. Understanding the mechanism of copurification of “difficult to remove” host cell proteins in rituximab biosimilar products. Biotechnol. Prog., 2020, 36(2), e2936.
[http://dx.doi.org/10.1002/btpr.2936] [PMID: 31661608]
[29]
Bee, J.S.; Tie, L.; Johnson, D.; Dimitrova, M.N.; Jusino, K.C.; Afdahl, C.D. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnol. Prog., 2015, 31(5), 1360-1369.
[http://dx.doi.org/10.1002/btpr.2150] [PMID: 26259961]
[30]
Bee, J.S.; Machiesky, L.M.; Peng, L.; Jusino, K.C.; Dickson, M.; Gill, J.; Johnson, D.; Lin, H.Y.; Miller, K.; Heidbrink Thompson, J.; Remmele, R.L., Jr Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D. Biotechnol. Prog., 2017, 33(1), 140-145.
[http://dx.doi.org/10.1002/btpr.2397] [PMID: 27798957]
[31]
Park, J.H.; Jin, J.H.; Lim, M.S.; An, H.J.; Kim, J.W.; Lee, G.M. Proteomic analysis of host cell protein dynamics in the culture supernatants of antibody-producing CHO cells. Sci. Rep., 2017, 7(1), 44246.
[http://dx.doi.org/10.1038/srep44246] [PMID: 28281648]
[32]
Doshi, N.; Martin, J.; Tomlinson, A. Improving prediction of free fatty acid particle formation in biopharmaceutical drug products: Incorporating ester distribution during polysorbate 20 degradation. Mol. Pharm., 2020, 17(11), 4354-4363.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00794] [PMID: 32941040]
[33]
Graf, T.; Abstiens, K.; Wedekind, F.; Elger, C.; Haindl, M.; Wurth, C.; Leiss, M. Controlled polysorbate 20 hydrolysis – A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time. Eur. J. Pharm. Biopharm., 2020, 152, 318-326.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.017] [PMID: 32445968]
[34]
Luo, H.; Tie, L.; Cao, M.; Hunter, A.K.; Pabst, T.M.; Du, J.; Field, R.; Li, Y.; Wang, W.K.; Cathepsin, L. Cathepsin L causes proteolytic cleavage of chinese-hamster-ovary cell expressed proteins during processing and storage: Identification, characterization, and mitigation. Biotechnol. Prog., 2019, 35(1), e2732.
[http://dx.doi.org/10.1002/btpr.2732] [PMID: 30320962]
[35]
Tran, B.; Grosskopf, V.; Wang, X.; Yang, J.; Walker, D., Jr; Yu, C.; McDonald, P. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography. J. Chromatogr. A, 2016, 1438, 31-38.
[http://dx.doi.org/10.1016/j.chroma.2016.01.047] [PMID: 26896920]
[36]
Hall, T.; Sandefur, S.L.; Frye, C.C.; Tuley, T.L.; Huang, L. Polysorbates 20 and 80 degradation by group xv lysosomal phospholipase A 2 isomer x1 in monoclonal antibody formulations. J. Pharm. Sci., 2016, 105(5), 1633-1642.
[http://dx.doi.org/10.1016/j.xphs.2016.02.022] [PMID: 27056628]
[37]
Li, X.; Chandra, D.; Letarte, S.; Adam, G.C.; Welch, J.; Yang, R.S.; Rivera, S.; Bodea, S.; Dow, A.; Chi, A.; Strulson, C.A.; Richardson, D.D. Profiling active enzymes for polysorbate degradation in biotherapeutics by activity-based protein profiling. Anal. Chem., 2021, 93(23), 8161-8169.
[http://dx.doi.org/10.1021/acs.analchem.1c00042] [PMID: 34032423]
[38]
Zhang, S.; Riccardi, C.; Kamen, D.; Reilly, J.; Mattila, J.; Bak, H.; Xiao, H.; Li, N. Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm. Res., 2022, 39(1), 75-87.
[http://dx.doi.org/10.1007/s11095-021-03160-3] [PMID: 34981317]
[39]
Molden, R.; Hu, M.; Yen E, S.; Saggese, D.; Reilly, J.; Mattila, J.; Qiu, H.; Chen, G.; Bak, H.; Li, N. Host cell protein profiling of commercial therapeutic protein drugs as a benchmark for monoclonal antibody-based therapeutic protein development. MAbs., 2021, 13(1), 1955811.
[http://dx.doi.org/10.1080/19420862.2021.1955811] [PMID: 34365906]
[40]
Tscheliessnig, A.L.; Konrath, J.; Bates, R.; Jungbauer, A. Host cell protein analysis in therapeutic protein bioprocessing - methods and applications. Biotechnol. J., 2013, 8(6), 655-670.
[http://dx.doi.org/10.1002/biot.201200018] [PMID: 23436780]
[41]
Hogwood, C.E.M.; Chiverton, L.M.; Mark Smales, C. Characterization of host cell proteins (HCPs) in CHO cell bioprocesses. Methods Mol. Biol., 2017, 1603, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-6972-2_16] [PMID: 28493135]
[42]
Meleady, P. Two-dimensional gel electrophoresis and 2D-DIGE. Methods Mol. Biol., 2018, 1664, 3-14.
[http://dx.doi.org/10.1007/978-1-4939-7268-5_1] [PMID: 29019120]
[43]
Ciereszko, A.; Dietrich, M.A.; Słowińska, M.; Nynca, J.; Ciborowski, M.; Kisluk, J.; Michalska-Falkowska, A.; Reszec, J.; Sierko, E.; Nikliński, J. Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PLoS. One., 2019, 14(10), e0223840.
[http://dx.doi.org/10.1371/journal.pone.0223840] [PMID: 31622403]
[44]
Geisler, C.; Gaisa, N.T.; Pfister, D.; Fuessel, S.; Kristiansen, G.; Braunschweig, T.; Gostek, S.; Beine, B.; Diehl, H.C.; Jackson, A.M.; Borchers, C.H.; Heidenreich, A.; Meyer, H.E.; Knüchel, R.; Henkel, C. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BioMed Res. Int., 2015, 2015, 1-23.
[http://dx.doi.org/10.1155/2015/454256] [PMID: 25667921]
[45]
Arentz, G.; Weiland, F.; Oehler, M.K.; Hoffmann, P. State of the art of 2D DIGE. Proteomics Clin. Appl., 2015, 9(3-4), 277-288.
[http://dx.doi.org/10.1002/prca.201400119] [PMID: 25400138]
[46]
Chen, I.H.; Xiao, H.; Li, N. Improved host cell protein analysis in monoclonal antibody products through ProteoMiner. Anal. Biochem., 2020, 610, 113972.
[http://dx.doi.org/10.1016/j.ab.2020.113972] [PMID: 32979367]
[47]
Farrell, A.; Mittermayr, S.; Morrissey, B.; Mc Loughlin, N.; Navas Iglesias, N.; Marison, I.W.; Bones, J. Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Anal. Chem., 2015, 87(18), 9186-9193.
[http://dx.doi.org/10.1021/acs.analchem.5b01377] [PMID: 26280711]
[48]
Huang, L.; Wang, N.; Mitchell, C.E.; Brownlee, T.; Maple, S.R.; De Felippis, M.R. A novel sample preparation for shotgun proteomics characterization of HCPs in antibodies. Anal. Chem., 2017, 89(10), 5436-5444.
[http://dx.doi.org/10.1021/acs.analchem.7b00304] [PMID: 28414239]
[49]
Levy, N.E.; Valente, K.N.; Lee, K.H.; Lenhoff, A.M. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol. Bioeng., 2016, 113(6), 1260-1272.
[http://dx.doi.org/10.1002/bit.25882] [PMID: 26550778]
[50]
Chen, Y.; Xu, C.F.; Stanley, B.; Evangelist, G.; Brinkmann, A.; Liu, S.; McCarthy, S.; Xiong, L.; Jones, E.; Sosic, Z.; Yeung, B. A highly sensitive LC-MS/MS method for targeted quantitation of lipase host cell proteins in biotherapeutics. J. Pharm. Sci., 2021, 110(12), 3811-3818.
[http://dx.doi.org/10.1016/j.xphs.2021.08.024] [PMID: 34461112]
[51]
Johnson, R.O.B.; Greer, T.; Cejkov, M.; Zheng, X.; Li, N. Combination of FAIMS, protein A depletion, and native digest conditions enables deep proteomic profiling of host cell proteins in monoclonal antibodies. Anal. Chem., 2020, 92(15), 10478-10484.
[http://dx.doi.org/10.1021/acs.analchem.0c01175] [PMID: 32628830]
[52]
Mörtstedt, H.; Makower, Å.; Edlund, P.O.; Sjöberg, K.; Tjernberg, A. Improved identification of host cell proteins in a protein biopharmaceutical by LC–MS/MS using the ProteoMiner™ Enrichment Kit. J. Pharm. Biomed. Anal., 2020, 185, 113256.
[http://dx.doi.org/10.1016/j.jpba.2020.113256] [PMID: 32229402]
[53]
Gao, X.; Rawal, B.; Wang, Y.; Li, X.; Wylie, D.; Liu, Y.H.; Breunig, L.; Driscoll, D.; Wang, F.; Richardson, D.D. Targeted host cell protein quantification by LC–MRM enables biologics processing and product characterization. Anal. Chem., 2020, 92(1), 1007-1015.
[http://dx.doi.org/10.1021/acs.analchem.9b03952] [PMID: 31860266]
[54]
Clavier, S.; Fougeron, D.; Petrovic, S.; Elmaleh, H.; Fourneaux, C.; Bugnazet, D.; Duffieux, F.; Masiero, A.; Mitra-Kaushik, S.; Genet, B.; Fromentin, Y.; Kreiss, P.; Laborderie, B.; Brault, D.; Menet, J.M. Improving the analytical toolbox to investigate copurifying host cell proteins presence: N -(4)-(β-acetylglucosaminyl)-L-asparaginase case study. Biotechnol. Bioeng., 2020, 117(11), 3368-3378.
[http://dx.doi.org/10.1002/bit.27514] [PMID: 32706388]
[55]
Seisenberger, C.; Graf, T.; Haindl, M.; Wegele, H.; Wiedmann, M.; Wohlrab, S. Questioning coverage values determined by 2D western blots: A critical study on the characterization of anti-HCP ELISA reagents. Biotechnol. Bioeng., 2021, 118(3), 1116-1126.
[http://dx.doi.org/10.1002/bit.27635] [PMID: 33241851]
[56]
Seisenberger, C.; Graf, T.; Haindl, M.; Wegele, H.; Wiedmann, M.; Wohlrab, S. Toward optimal clearance: A universal affinity-based mass spectrometry approach for comprehensive ELISA reagent coverage evaluation and HCP hitchhiker analysis. Biotechnol. Prog., 2022, 38(3), e3244.
[http://dx.doi.org/10.1002/btpr.3244] [PMID: 35150475]
[57]
Waldera-Lupa, D.M.; Jasper, Y.; Köhne, P.; Schwichtenhövel, R.; Falkenberg, H.; Flad, T.; Happersberger, P.; Reisinger, B.; Dehghani, A.; Moussa, R.; Waerner, T. Host cell protein detection gap risk mitigation: Quantitative IAC-MS for ELISA antibody reagent coverage determination. MAbs, 2021, 13(1), 1955432.
[http://dx.doi.org/10.1080/19420862.2021.1955432] [PMID: 34347561]
[58]
Huang, Y.; Molden, R.; Hu, M.; Qiu, H.; Li, N. Toward unbiased identification and comparative quantification of host cell protein impurities by automated iterative LC–MS/MS (HCP-AIMS) for therapeutic protein development. J. Pharm. Biomed. Anal., 2021, 200, 114069.
[http://dx.doi.org/10.1016/j.jpba.2021.114069] [PMID: 33901758]
[59]
Chen, I.H.; Xiao, H.; Daly, T.; Li, N. Improved host cell protein analysis in monoclonal antibody products through molecular weight cutoff enrichment. Anal. Chem., 2020, 92(5), 3751-3757.
[http://dx.doi.org/10.1021/acs.analchem.9b05081] [PMID: 31999105]
[60]
Graf, T.; Tomlinson, A.; Yuk, I.H.; Kufer, R.; Spensberger, B.; Falkenstein, R.; Shen, A.; Li, H.; Duan, D.; Liu, W.; Wohlrab, S.; Edelmann, F.; Leiss, M. Identification and characterization of polysorbate-degrading enzymes in a monoclonal antibody formulation. J. Pharm. Sci., 2021, 110(11), 3558-3567.
[http://dx.doi.org/10.1016/j.xphs.2021.06.033] [PMID: 34224732]
[61]
Bailey-Kellogg, C.; Gutiérrez, A.H.; Moise, L.; Terry, F.; Martin, W.D.; De Groot, A.S. CHOPPI: A web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnol. Bioeng., 2014, 111(11), 2170-2182.
[http://dx.doi.org/10.1002/bit.25286] [PMID: 24888712]
[62]
Pythoud, N.; Bons, J.; Mijola, G.; Beck, A.; Cianférani, S.; Carapito, C. Optimized sample preparation and data processing of data-independent acquisition methods for the robust quantification of trace-level host cell protein impurities in antibody drug products. J. Proteome Res., 2021, 20(1), 923-931.
[http://dx.doi.org/10.1021/acs.jproteome.0c00664] [PMID: 33016074]
[63]
Jones, M.; Palackal, N.; Wang, F.; Gaza-Bulseco, G.; Hurkmans, K.; Zhao, Y.; Chitikila, C.; Clavier, S.; Liu, S.; Menesale, E.; Schonenbach, N.S.; Sharma, S.; Valax, P.; Waerner, T.; Zhang, L.; Connolly, T. “High-risk” host cell proteins (HCPs): A multi-company collaborative view. Biotechnol. Bioeng., 2021, 118(8), 2870-2885.
[http://dx.doi.org/10.1002/bit.27808] [PMID: 33930190]
[64]
Goey, C.H.; Alhuthali, S.; Kontoravdi, C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol. Adv., 2018, 36(4), 1223-1237.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.021] [PMID: 29654903]
[65]
Dovgan, T.; Golghalyani, V.; Zurlo, F.; Hatton, D.; Lindo, V.; Turner, R.; Harris, C.; Cui, T. Targeted CHO cell engineering approaches can reduce HCP-related enzymatic degradation and improve mAb product quality. Biotechnol. Bioeng., 2021, 118(10), 3821-3831.
[http://dx.doi.org/10.1002/bit.27857] [PMID: 34125434]
[66]
Laux, H.; Romand, S.; Nuciforo, S.; Farady, C.J.; Tapparel, J.; Buechmann-Moeller, S.; Sommer, B.; Oakeley, E.J.; Bodendorf, U. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout. Biotechnol. Bioeng., 2018, 115(10), 2530-2540.
[http://dx.doi.org/10.1002/bit.26731] [PMID: 29777593]
[67]
Chiu, J.; Valente, K.N.; Levy, N.E.; Min, L.; Lenhoff, A.M.; Lee, K.H. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol. Bioeng., 2017, 114(5), 1006-1015.
[http://dx.doi.org/10.1002/bit.26237] [PMID: 27943242]
[68]
Kol, S.; Ley, D.; Wulff, T.; Decker, M.; Arnsdorf, J.; Schoffelen, S.; Hansen, A.H.; Jensen, T.L.; Gutierrez, J.M.; Chiang, A.W.T.; Masson, H.O.; Palsson, B.O.; Voldborg, B.G.; Pedersen, L.E.; Kildegaard, H.F.; Lee, G.M.; Lewis, N.E. Multiplex secretome engineering enhances recombinant protein production and purity. Nat. Commun., 2020, 11(1), 1908.
[http://dx.doi.org/10.1038/s41467-020-15866-w] [PMID: 32313013]
[69]
Van de Velde, J.; Saller, M.J.; Eyer, K.; Voloshin, A. Chromatographic clarification overcomes chromatin-mediated hitch-hiking interactions on Protein A capture column. Biotechnol. Bioeng., 2020, 117(11), 3413-3421.
[http://dx.doi.org/10.1002/bit.27513] [PMID: 32706389]
[70]
Han, J.; Yang, J.; Wang, Y.; Li, Y. The adequate amount of sodium chloride in protein a wash buffer for effective host cell protein clearance. Protein Expr. Purif., 2019, 158, 59-64.
[http://dx.doi.org/10.1016/j.pep.2019.02.016] [PMID: 30825515]
[71]
Wan, Y.; Zhang, T.; Chen, T.; Wang, Y.; Li, Y. Sodium caprylate induced precipitation post protein a chromatography as an effective means for host cell protein clearance. Protein Expr. Purif., 2019, 164, 105460.
[http://dx.doi.org/10.1016/j.pep.2019.105460] [PMID: 31351123]
[72]
Luo, H.; Du, Q.; Qian, C.; Mlynarczyk, M.; Pabst, T.M.; Damschroder, M.; Hunter, A.K.; Wang, W.K. Formation of transient highly-charged mAb clusters strengthens interactions with host cell proteins and results in poor clearance of host cell proteins by protein A chromatography. J. Chromatogr. A, 2022, 1679, 463385.
[http://dx.doi.org/10.1016/j.chroma.2022.463385] [PMID: 35933770]
[73]
Cui, T.; Chi, B.; Heidbrink Thompson, J.; Kasali, T.; Sellick, C.; Turner, R.; Cathepsin, D. Cathepsin D: Removal strategy on protein A chromatography, near real time monitoring and characterisation during monoclonal antibody production. J. Biotechnol., 2019, 305, 51-60.
[http://dx.doi.org/10.1016/j.jbiotec.2019.08.013] [PMID: 31442501]
[74]
Zhang, Q.; Goetze, A.M.; Cui, H.; Wylie, J.; Tillotson, B.; Hewig, A.; Hall, M.P.; Flynn, G.C. Characterization of the co-elution of host cell proteins with monoclonal antibodies during protein A purification. Biotechnol. Prog., 2016, 32(3), 708-717.
[http://dx.doi.org/10.1002/btpr.2272] [PMID: 27073178]
[75]
Lavoie, R.A.; Fazio, A.; Williams, T.I.; Carbonell, R.; Menegatti, S. Targeted capture of Chinese hamster ovary host cell proteins: Peptide ligand binding by proteomic analysis. Biotechnol. Bioeng., 2020, 117(2), 438-452.
[http://dx.doi.org/10.1002/bit.27213] [PMID: 31654407]
[76]
Gilgunn, S.; El-Sabbahy, H.; Albrecht, S.; Gaikwad, M.; Corrigan, K.; Deakin, L.; Jellum, G.; Bones, J. Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies. J. Chromatogr. A, 2019, 1595, 28-38.
[http://dx.doi.org/10.1016/j.chroma.2019.02.056] [PMID: 30898377]
[77]
Bojar, D.; Fuhrer, T.; Fussenegger, M. Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab. Eng., 2019, 52, 110-123.
[http://dx.doi.org/10.1016/j.ymben.2018.11.007] [PMID: 30468874]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy