Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Molecular Contrivance of Deed of Neuroprotective Biomolecules

Author(s): Rashmi Saxena Pal*, Yogendra Pal, Jaspreet Lagah, Deepti Katiyar and Saranya Punniyakotti

Volume 19, Issue 6, 2024

Published on: 31 August, 2023

Page: [621 - 627] Pages: 7

DOI: 10.2174/1574885518666230818105848

Price: $65

Abstract

Numerous herbal-based Ayurvedic and Chinese medications contain a variety of phytochemicals that may have a neuroprotective impact and help treat a variety of neurodegenerative diseases. The natural medicinal drug has long been used to treat neural signs and symptoms. There has been an enormous public and clinical interest in the use of Phytoconstituents for neuroprotection or the prevention of neurodegenerative illnesses. Various compounds, isolated from exclusive natural sources with multiple objectives seem as a capacity and promising class of therapeutics for the remedy of illnesses associated with neuro-related issues. It is vitally important to identify and create novel therapeutic strategies. The possibility for safe, naturally occurring secondary metabolites with neuroprotective characteristics is present in plants and other natural products. This review intends to take a closer look at some specific elements of natural phytoactives that are thought to be significant for the treatment of neuro-related illnesses.

Next »
Graphical Abstract

[1]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4(4): 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[2]
Sharifi-Rad M, Lankatillake C, Dias DA, et al. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J Clin Med 2020; 9(4): 1061.
[http://dx.doi.org/10.3390/jcm9041061] [PMID: 32276438]
[3]
Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 2018; 174(174): 3-17.
[http://dx.doi.org/10.1016/j.mad.2017.12.002] [PMID: 29268958]
[4]
Suk K. Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals 2005; 14(1-2): 23-33.
[http://dx.doi.org/10.1159/000085383] [PMID: 15956812]
[5]
Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10(4): 236-46.
[http://dx.doi.org/10.1007/s12017-008-8037-y] [PMID: 18543123]
[6]
Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF. Neuroprotective potential of secondary metabolites from melicope lunu-ankenda (Rutaceae). Molecules 2019; 24(17): 3109.
[http://dx.doi.org/10.3390/molecules24173109] [PMID: 31461914]
[7]
Putteeraj M, Lim WL, Teoh SL, Yahaya MF. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr Drug Targets 2018; 19(14): 1710-20.
[http://dx.doi.org/10.2174/1389450119666180326125252] [PMID: 29577854]
[8]
Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 2000; 131(4): 711-20.
[http://dx.doi.org/10.1038/sj.bjp.0703626] [PMID: 11030720]
[9]
Naomi R, Yazid MD, Teoh SH, et al. Dietary polyphenols as a protection against cognitive decline: Evidence from animal experiments; mechanisms and limitations. Antioxidants 2023; 12(5): 1054.
[http://dx.doi.org/10.3390/antiox12051054] [PMID: 37237920]
[10]
Kujawska M, Jodynis-Liebert J. Polyphenols in parkinson’s disease: A systematic review of in vivo studies. Nutrients 2018; 10(5): 642.
[http://dx.doi.org/10.3390/nu10050642] [PMID: 29783725]
[11]
Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age‐related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol 2019; 234(3): 2447-59.
[http://dx.doi.org/10.1002/jcp.27289] [PMID: 30187490]
[12]
Chen X, Drew J, Berney W, Lei W. Neuroprotective natural products for alzheimer’s disease. Cells 2021; 10(6): 1309.
[http://dx.doi.org/10.3390/cells10061309] [PMID: 34070275]
[13]
Ramis MR, Sarubbo F, Moranta D, et al. Cognitive and neurochemical changes following polyphenol-enriched diet in rats. Nutrients 2020; 13(1): 59.
[http://dx.doi.org/10.3390/nu13010059] [PMID: 33375450]
[14]
Crispi S, Filosa S. Novel perspectives for neurodegeneration prevention: Effects of bioactive polyphenols. Neural Regen Res 2021; 16(7): 1411-2.
[http://dx.doi.org/10.4103/1673-5374.300989] [PMID: 33318431]
[15]
Luo S, Sun X, Huang M, Ma Q, Du L, Cui Y. Enhanced neuroprotective effects of epicatechin gallate encapsulated by bovine milk-derived exosomes against parkinson’s disease through antiapoptosis and antimitophagy. J Agric Food Chem 2021; 69(17): 5134-43.
[http://dx.doi.org/10.1021/acs.jafc.0c07658] [PMID: 33890462]
[16]
Minchán-Herrera P, Ybañez-Julca RO, Quispe-Díaz IM, et al. Valeriana pilosa roots essential oil: Chemical composition, antioxidant activities, and molecular docking studies on enzymes involved in redox biological processes. Antioxidants 2022; 11(7): 1337.
[http://dx.doi.org/10.3390/antiox11071337] [PMID: 35883828]
[17]
Wang R, Yan H, Tang X. Progress in studies of huperzine a, a natural cholinesterase inhibitor from chinese herbal medicine1. Acta Pharmacol Sin 2006; 27(1): 1-26.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00255.x] [PMID: 16364207]
[18]
Puttarak P, Dilokthornsakul P, Saokaew S, et al. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: A systematic review and meta-analysis. Sci Rep 2017; 7(1): 10646.
[http://dx.doi.org/10.1038/s41598-017-09823-9] [PMID: 28878245]
[19]
Wong JH, Barron AM, Abdullah JM. Mitoprotective effects of centella asiatica (l.) urb.: anti-inflammatory and neuroprotective opportunities in neurodegenerative disease. Front Pharmacol 2021; 12: 687935.
[http://dx.doi.org/10.3389/fphar.2021.687935] [PMID: 34267660]
[20]
Ameri A. The effects of aconitum alkaloids on the central nervous system. Prog Neurobiol 1998; 56(2): 211-35.
[http://dx.doi.org/10.1016/S0301-0082(98)00037-9] [PMID: 9760702]
[21]
Gray NE, Alcazar Magana A, Lak P, et al. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev 2018; 17(1): 161-94.
[http://dx.doi.org/10.1007/s11101-017-9528-y] [PMID: 31736679]
[22]
Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular function. World J Cardiol 2015; 7(4): 204-14.
[http://dx.doi.org/10.4330/wjc.v7.i4.204] [PMID: 25914789]
[23]
Schiff PL Jr. Ergot and its alkaloids. Am J Pharm Educ 2006; 70(5): 98.
[http://dx.doi.org/10.5688/aj700598] [PMID: 17149427]
[24]
Bhandari M, Bhandari A, Bhandari A. Recent updates on codeine. Pharm Methods 2011; 2(1): 3-8.
[http://dx.doi.org/10.4103/2229-4708.81082] [PMID: 23781422]
[25]
Takahashi S. Metabolic contribution and cerebral blood flow regulation by astrocytes in the neurovascular unit. Cells 2022; 11(5): 813.
[http://dx.doi.org/10.3390/cells11050813] [PMID: 35269435]
[26]
Chalon S, Delion-Vancassel S, Belzung C, et al. Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr 1998; 128(12): 2512-9.
[http://dx.doi.org/10.1093/jn/128.12.2512] [PMID: 9868201]
[27]
El Saber, Batiha G, Magdy Beshbishy A, Wasef L. Chemical constituents and pharmacological activities of garlic allium sativum L. A Review Nutrients 2020; 12(3): 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[28]
A Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko llicin. chemistry and biological properties. AJ. Molecules 2014; 19(8): 12591-618.
[PMID: 25153873]
[29]
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an antioxidant and neuroprotective agent, ameliorates cognitive impairment. Antioxidants 2021; 11(1): 87.
[http://dx.doi.org/10.3390/antiox11010087] [PMID: 35052591]
[30]
Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol 2007; 595: 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[31]
Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF. Potential neuroprotective effect of the hmgb1 inhibitor glycyrrhizin in neurological disorders. ACS Chem Neurosci 2020; 11(4): 485-500.
[http://dx.doi.org/10.1021/acschemneuro.9b00640] [PMID: 31972087]
[32]
Kong ZH, Chen X, Hua HP, Liang L, Liu LJ. The oral pretreatment of glycyrrhizin prevents surgery: Induced cognitive impairment in aged mice by reducing neuroinflammation and alzheimer’s-related pathology via hmgb1 inhibition. J Mol Neurosci 2017; 63(3-4): 385-95.
[http://dx.doi.org/10.1007/s12031-017-0989-7] [PMID: 29034441]
[33]
Balakrishnan R, Cho DY, Kim IS, Seol SH, Choi DK. Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders. Antioxidants 2022; 11(2): 281.
[http://dx.doi.org/10.3390/antiox11020281] [PMID: 35204164]
[34]
Kempster PA, Hurwitz B, Lees AJ. James parkinson’s chimera: Syndrome or disease? J R Coll Phys Edinb 2017; 47(2): 190-5.
[http://dx.doi.org/10.4997/JRCPE.2017.220] [PMID: 28675197]
[35]
Kumar S, Wirths O, Theil S, Gerth J, Bayer TA, Walter J. Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer’s disease. Acta Neuropathol 2013; 125(5): 699-709.
[http://dx.doi.org/10.1007/s00401-013-1107-8] [PMID: 23525537]
[36]
Balakrishnan R, Vijayraja D, Jo S-H, Ganesan P, Su-Kim I, Choi D-K. Medicinal profile, phytochemistry, and pharmacological activities of murraya koenigii and its primary bioactive compounds. Antioxidants 2020; 9(2): 101.
[http://dx.doi.org/10.3390/antiox9020101] [PMID: 31991665]
[37]
Reddy VD, Padmavathi P, Kavitha G, Gopi S, Varadacharyulu N. Emblica officinalis ameliorates alcohol-induced brain mitochondrial dysfunction in rats. J Med Food 2011; 14(1-2): 62-8.
[http://dx.doi.org/10.1089/jmf.2010.1122] [PMID: 21138366]
[38]
Gachowska M, Szlasa W, Saczko J, Kulbacka J. Neuroregulatory role of ginkgolides. Mol Biol Rep 2021; 48(7): 5689-97.
[http://dx.doi.org/10.1007/s11033-021-06535-2] [PMID: 34245409]
[39]
Modrau B, Hjort N, Østergaard L, Mouridsen K, Andersen G, Bach FW. Theophylline as an add-on to thrombolytic therapy in acute ischaemic stroke (tea-stroke): A randomized, double-blinded, placebo-controlled, two-centre phase ii study. Eur Stroke J 2016; 1(4): 248-54.
[http://dx.doi.org/10.1177/2396987316674542] [PMID: 31008285]
[40]
Hajihasani MM, Soheili V, Zirak MR, Sahebkar A, Shakeri A. Natural products as safeguards against monosodium glutamate: Induced toxicity. Iran J Basic Med Sci 2020; 23(4): 416-30.
[PMID: 32489556]
[41]
Modrau B, Winder A, Hjort N, et al. Perfusion changes in acute stroke treated with theophylline as an add-on to thrombolysis. Clin Neuroradiol 2022; 32(2): 345-52.
[http://dx.doi.org/10.1007/s00062-021-01029-x] [PMID: 34259904]
[42]
Li XB, Yang ZX, Yang L, et al. Neuroprotective effects of flax lignan against NMDA-induced neurotoxicity in vitro. CNS Neurosci Ther 2012; 18(11): 927-33.
[http://dx.doi.org/10.1111/cns.12003] [PMID: 22970936]
[43]
Mori MA, Delattre AM, Carabelli B, et al. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-ohda model of parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 2018; 21(5): 341-51.
[http://dx.doi.org/10.1080/1028415X.2017.1290928] [PMID: 28221817]
[44]
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms underlying neurodegenerative disorders and potential neuroprotective activity of agrifood by-products. Antioxidants 2022; 12(1): 94.
[http://dx.doi.org/10.3390/antiox12010094] [PMID: 36670956]
[45]
Prema A, Janakiraman U, Manivasagam T, Justin Thenmozhi A. Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neurosci Lett 2015; 599(599): 12-9.
[http://dx.doi.org/10.1016/j.neulet.2015.05.024] [PMID: 25980996]
[46]
Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6(12): 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy