Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Preparation, Characterization, and Evaluation of the Anticancer Effect of Mesoporous Silica Nanoparticles Containing Rutin and Curcumin

Author(s): Solmaz Maleki Dizaj, Maryam Kouhsoltani, Kosar Pourreza, Simin Sharifi* and Elaheh Dalir Abdolahinia*

Volume 12, Issue 3, 2024

Published on: 28 September, 2023

Page: [269 - 275] Pages: 7

DOI: 10.2174/2211738511666230818092706

Price: $65

conference banner
Abstract

Aims and Objective: The aim of this study was the preparation of mesoporous silica nanoparticles co-loaded with rutin and curcumin (Rut-Cur-MSNs) and the assessment of its physicochemical properties as well as its cytotoxicity on the head and neck cancer cells (HN5). Besides, ROS generation of HN5 cells exposed to Rut-Cur-MSNs was evaluated.

Several investigations showed that rutin and curcumin have potential effects as anticancer phytochemicals; however, their low aqueous solubility and poor bioavailability limited their applications.

The assessment of physicochemical properties and anticancer effect of prepared nanoparticles was the objective of this study.

Methods: The physicochemical properties of produced nanoparticles were evaluated. The toxicity of Rut-Cur-MSNs on HN5 cells was assessed. In addition, the ROS production in cells treated with Rut- Cur-MSNs was assessed compared to control untreated cells.

Results: The results showed that Rut-Cur-MSNs have mesoporous structure, nanometer size and negative surface charge. The X-ray diffraction pattern showed that the prepared nanoparticles belong to the family of silicates named MCM-41. The cytotoxicity of Rut-Cur-MSNs at 24 h was significantly higher than that of rutin-loaded MSNs (Rut-MSNs) and curcumin-loaded MSNs (Cur-MSNs) (p<0.05).

Conclusion: The achieved results recommend that the prepared mesoporous silica nanoparticles containing rutin and curcumin can be a useful nanoformulation for the treatment of cancer.

The produced nanomaterial in this study can be helpful for cancer therapy.

Graphical Abstract

[1]
Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci 2017; 18(7): 1412.
[http://dx.doi.org/10.3390/ijms18071412] [PMID: 28671583]
[2]
Armat M, Oghabi Bakhshaiesh T, Sabzichi M, et al. The role of Six1 signaling in paclitaxel-dependent apoptosis in MCF-7 cell line. Bosn J Basic Med Sci 2016; 16(1): 28-34.
[PMID: 26773176]
[3]
Bakhshaiesh TO, Armat M, Shanehbandi D, et al. Arsenic trioxide promotes paclitaxel cytotoxicity in resistant breast cancer cells. Asian Pac J Cancer Prev 2015; 16(13): 5191-7.
[http://dx.doi.org/10.7314/APJCP.2015.16.13.5191] [PMID: 26225652]
[4]
Süntar I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem Rev 2020; 19(5): 1199-209.
[http://dx.doi.org/10.1007/s11101-019-09629-9]
[5]
Mohseni M, Samadi N, Ghanbari P, et al. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance. Iran J Basic Med Sci 2016; 19(3): 300-9.
[PMID: 27114800]
[6]
Sharifi S, Moghaddam FA, Abedi A, et al. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020; 46(6): 874-93.
[http://dx.doi.org/10.1002/biof.1682] [PMID: 33037744]
[7]
Ahmadian E, Shahi S, Yazdani J, Maleki Dizaj S, Sharifi S. Local treatment of the dental caries using nanomaterials. Biomed Pharmacother 2018; 108: 443-7.
[http://dx.doi.org/10.1016/j.biopha.2018.09.026] [PMID: 30241047]
[8]
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36(3): 1156-81.
[http://dx.doi.org/10.1002/ptr.7389] [PMID: 35129230]
[9]
Negahdari R, Ghavimi MA, Barzegar A, et al. Antibacterial effect of nanocurcumin inside the implant fixture: An in vitro study. Clin Exp Dent Res 2021; 7(2): 163-9.
[http://dx.doi.org/10.1002/cre2.348] [PMID: 33210463]
[10]
Khan MM, Madni A, Tahir N, et al. Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. Int J Nanomedicine 2020; 15: 2207-17.
[http://dx.doi.org/10.2147/IJN.S247893] [PMID: 32280215]
[11]
Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010; 3(1): 11.
[http://dx.doi.org/10.1186/1757-2215-3-11] [PMID: 20429876]
[12]
Jung CH, Lee JY, Cho CH, Kim CJ. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharm Res 2007; 30(12): 1599-607.
[http://dx.doi.org/10.1007/BF02977330] [PMID: 18254248]
[13]
Pandey P, Khan F, Qari HA, Oves M. Rutin (Bioflavonoid) as cell signaling pathway modulator: Prospects in treatment and chemoprevention. Pharmaceuticals 2021; 14(11): 1069.
[http://dx.doi.org/10.3390/ph14111069] [PMID: 34832851]
[14]
Volate SR, Davenport DM, Muga SJ, Wargovich MJ. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis 2005; 26(8): 1450-6.
[http://dx.doi.org/10.1093/carcin/bgi089] [PMID: 15831530]
[15]
Nafees S, Mehdi SH, Zafaryab M, Zeya B, Sarwar T, Rizvi MA. Synergistic interaction of rutin and silibinin on human colon cancer cell line. Arch Med Res 2018; 49(4): 226-34.
[http://dx.doi.org/10.1016/j.arcmed.2018.09.008] [PMID: 30314650]
[16]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[17]
Manach C, Morand C, Demigné C, Texier O, Régérat F, Rémésy C. Bioavailability of rutin and quercetin in rats. FEBS Lett 1997; 409(1): 12-6.
[http://dx.doi.org/10.1016/S0014-5793(97)00467-5] [PMID: 9199494]
[18]
Zhang XK, Wang QW, Xu YJ, Sun HM, Wang L, Zhang LX. Co‐delivery of cisplatin and oleanolic acid by silica nanoparticles‐enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J Med Sci 2021; 37(6): 505-12.
[http://dx.doi.org/10.1002/kjm2.12365] [PMID: 33559348]
[19]
Li D, Cui R, Xu S, Liu Y. Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance. Drug Deliv 2020; 27(1): 191-9.
[http://dx.doi.org/10.1080/10717544.2019.1710622] [PMID: 31924110]
[20]
Shahi S, Özcan M, Maleki Dizaj S, et al. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol Mech Methods 2019; 29(5): 368-77.
[http://dx.doi.org/10.1080/15376516.2019.1566424] [PMID: 30642212]
[21]
Hamidi A, Sharifi S, Davaran S, Ghasemi S, Omidi Y, Rashidi M-R. Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. Bioimpacts 2012; 2(2): 97-103.
[PMID: 23678447]
[22]
Wen C, Zhou Y, Zhou C, et al. Enhanced radiosensitization effect of curcumin delivered by PVP-PCL nanoparticle in lung cancer. J Nanomater 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/9625909]
[23]
Batra H, Pawar S, Bahl D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol Res 2019; 139: 91-105.
[http://dx.doi.org/10.1016/j.phrs.2018.11.005] [PMID: 30408575]
[24]
Shevtsov M, Multhoff G, Mikhaylova E, Shibata A, Guzhova I, Margulis B. Combination of anti-cancer drugs with molecular chaperone inhibitors. Int J Mol Sci 2019; 20(21): 5284.
[http://dx.doi.org/10.3390/ijms20215284] [PMID: 31652993]
[25]
Samadi N, Tabasinezhad M, Ghanbari P, et al. Sphingosin 1-phosphate contributes in tumor progression. J Cancer Res Ther 2013; 9(4): 556-63.
[http://dx.doi.org/10.4103/0973-1482.126446] [PMID: 24518696]
[26]
Kang S, Kang K, Chae A, Kim YK, Jang H, Min DH. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale 2019; 11(32): 15173-83.
[http://dx.doi.org/10.1039/C9NR04495G] [PMID: 31380881]
[27]
Xiao Y, Liu J, Guo M, et al. Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale 2018; 10(26): 12639-49.
[http://dx.doi.org/10.1039/C8NR02700E] [PMID: 29943786]
[28]
Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: Synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 2019; 16(3): 219-37.
[http://dx.doi.org/10.1080/17425247.2019.1575806] [PMID: 30686075]
[29]
Murugan B, Sagadevan S, J AL, et al. Role of mesoporous silica nanoparticles for the drug delivery applications. Mater Res Express 2020; 7(10): 102002.
[http://dx.doi.org/10.1088/2053-1591/abbf7e]
[30]
Argyo C, Weiss V, Bräuchle C, Bein T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 2014; 26(1): 435-51.
[http://dx.doi.org/10.1021/cm402592t]
[31]
Alyassin Y, Sayed EG, Mehta P, et al. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov Today 2020; 25(8): 1513-20.
[http://dx.doi.org/10.1016/j.drudis.2020.06.006] [PMID: 32561300]
[32]
Kazemzadeh P, Sayadi K, Toolabi A, et al. Structure-property relationship for different mesoporous silica nanoparticles and its drug de-livery applications: A review. Front Chem 2022; 10: 823785.
[http://dx.doi.org/10.3389/fchem.2022.823785] [PMID: 35372272]
[33]
Karaman DŞ, Kettiger H. Silica-based nanoparticles as drug delivery systems: Chances and challenges, Inorganic frameworks as smart nanomedicines. Elsevier 2018; pp. 1-40.
[http://dx.doi.org/10.1016/B978-0-12-813661-4.00001-8]
[34]
Freidus LG, Kumar P, Marimuthu T, Pradeep P, Choonara YE. Theranostic mesoporous silica nanoparticles loaded with a curcumin-naphthoquinone conjugate for potential cancer intervention. Front Mol Biosci 2021; 8: 670792.
[http://dx.doi.org/10.3389/fmolb.2021.670792] [PMID: 34095225]
[35]
Feng Y, Li N, Yin H, Chen T, Yang Q, Wu M. Thermo-and pH-responsive, lipid-coated, mesoporous silica nanoparticle-based dual drug delivery system to improve the antitumor effect of hydrophobic drugs. Mol Pharm 2019; 16(1): 422-36.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01073] [PMID: 30525641]
[36]
Memar MY, Dalir Abdolahinia E, Yekani M, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Preparation of rutin-loaded mesoporous silica nanoparticles and evaluation of its physicochemical, anticancer, and antibacterial properties. Mol Biol Rep 2022; 50(1): 1-11.
[PMID: 36319783]
[37]
Sharifi S, Dalir Abdolahinia E, Ghavimi MA, et al. Effect of curcumin-loaded mesoporous silica nanoparticles on the head and neck can-cer cell line, HN5. Curr Issues Mol Biol 2022; 44(11): 5247-59.
[http://dx.doi.org/10.3390/cimb44110357] [PMID: 36354669]
[38]
Memar MY, Yekani M, Ghanbari H, Shahi S, Sharifi S, Maleki Dizaj S. Biocompatibility, cytotoxicity and antibacterial effects of mero-penem-loaded mesoporous silica nanoparticles against carbapenem-resistant Enterobacteriaceae. Artif Cells Nanomed Biotechnol 2020; 48(1): 1354-61.
[http://dx.doi.org/10.1080/21691401.2020.1850466] [PMID: 33236938]
[39]
Larsson M, Hill A, Duffy J. Suspension stability; why particle size, zeta potential and rheology are important. Annu trans Nord Rheol Soc 2012; 20: 6.
[40]
Kayes JB. Pharmaceutical suspensions: Relation between zeta potential, sedimentation volume and suspension stability. J Pharm Pharmacol 1977; 29(4): 199-204.
[PMID: 17667]
[41]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 2013; 12(2): 265-73.
[42]
Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan M-H, Adibkia K. Application of Box–Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles. Artif Cells Nanomed Biotechnol 2016; 44(6): 1475-81.
[43]
Karimzadeh M, Rashidi L, Ganji F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 2017; 43: 628-36.
[44]
Dizaj SM, Ebrahimi SSB, Jafari S, et al. Co-delivery of cisplatin and curcumin using mesoporous silica nanoparticles to improve their anticancer effects. Pharm Nanotechnol 2023; 11(4): 364-72.
[http://dx.doi.org/10.2174/2211738511666230327123627] [PMID: 36974418]
[45]
Cheng Y, Zhao P, Wu S, et al. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm 2018; 545(1-2): 261-73.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.007] [PMID: 29730175]
[46]
Tan BL, Norhaizan ME. Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules 2019; 24(14): 2527.
[http://dx.doi.org/10.3390/molecules24142527] [PMID: 31295906]
[47]
Baharuddin P, Satar N, Fakiruddin KS, et al. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. Oncol Rep 2016; 35(1): 13-25.
[http://dx.doi.org/10.3892/or.2015.4371] [PMID: 26531053]
[48]
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – Strategies and per-spectives. J Control Release 2016; 240: 489-503.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.012] [PMID: 27287891]
[49]
Zhang Y, Dai M, Yuan Z. Methods for the detection of reactive oxygen species. Anal Methods 2018; 10(38): 4625-38.
[http://dx.doi.org/10.1039/C8AY01339J]
[50]
Rhee SG, Chang TS, Jeong W, Kang D. Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 2010; 29(6): 539-49.
[http://dx.doi.org/10.1007/s10059-010-0082-3] [PMID: 20526816]
[51]
Raj L, Ide T, Gurkar AU, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475(7355): 231-4.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[52]
Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol 2013; 32(3): 249-70.
[http://dx.doi.org/10.3109/08830185.2012.755176] [PMID: 23617726]
[53]
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ 2015; 22(3): 377-88.
[http://dx.doi.org/10.1038/cdd.2014.150] [PMID: 25257172]
[54]
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: An update. Arch Toxicol 2012; 86(11): 1649-65.
[http://dx.doi.org/10.1007/s00204-012-0906-3] [PMID: 22811024]
[55]
Gilardini Montani MS, Santarelli R, Granato M, et al. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation. Autophagy 2019; 15(4): 652-67.
[http://dx.doi.org/10.1080/15548627.2018.1536530] [PMID: 30324853]
[56]
Wang T, Wu X, Al Rudaisat M, Song Y, Cheng H. Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senes-cence in cervical cancer cells. J Cancer 2020; 11(22): 6704-15.
[http://dx.doi.org/10.7150/jca.45176] [PMID: 33046993]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy