Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Resveratrol: Targeting Cancer Stem Cells and ncRNAs to Overcome Cancer Drug Resistance

Author(s): Leila Rezakhani, Sima Salmani, Masoumeh Eliyasi Dashtaki and Sorayya Ghasemi*

Volume 24, Issue 8, 2024

Published on: 13 September, 2023

Page: [951 - 961] Pages: 11

DOI: 10.2174/1566524023666230817102114

Price: $65

Abstract

A major challenge in treating cancer is the development of drug resistance, which can result in treatment failure and tumor recurrence. Targeting cancer stem cells (CSCs) and non-coding RNAs (ncRNAs) with a polyphenolic substance called resveratrol has the ability to combat this problem by lowering cancer resistance to drugs and opening up new therapeutic options. Resveratrol alters the expression of genes related to self-renewal, modulating important signaling pathways involved in cancer initiation and CSC control. Additionally, resveratrol affects non-coding RNAs (ncRNAs), including Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs which are essential for stemness, drug resistance, and other cancer-related activities. Numerous studies have shown that resveratrol has the potential to be an effective anticancer drug when used in combination therapy, but issues with absorption and pharmacokinetics still need to be resolved before it can be used in clinical applications. Reducing chemotherapy resistance by better understanding the intricate mechanisms by which resveratrol affects cancer cells and CSCs, as well as its impact on ncRNA expression, could eventually contribute to more effective cancer treatments. To completely understand these pathways and optimize the utilization of resveratrol in combination treatments, additional study is necessary.

[1]
Rezakhani L, Darbandi M, Khorrami Z, Rahmati S, Shadmani FK. Mortality and disability-adjusted life years for smoking-attributed cancers from 1990 to 2019 in the north Africa and middle east countries: A systematic analysis for the global burden of disease study 2019. BMC Cancer 2023; 23(1): 80.
[http://dx.doi.org/10.1186/s12885-023-10563-5] [PMID: 36694168]
[2]
Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol 2012; 44(12): 2144-51.
[http://dx.doi.org/10.1016/j.biocel.2012.08.022] [PMID: 22981632]
[3]
Emran TB, Shahriar A, Mahmud AR, et al. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol 2022; 12: 891652.
[http://dx.doi.org/10.3389/fonc.2022.891652] [PMID: 35814435]
[4]
Vaidya FU, Sufiyan Chhipa A, Mishra V, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep 2022; 5(12): e1291.
[http://dx.doi.org/10.1002/cnr2.1291] [PMID: 33052041]
[5]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 2012; 18(1): 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[6]
Fernandes G, Silva G, Pavan A, Chiba D, Chin C, Dos Santos J. Epigenetic regulatory mechanisms induced by resveratrol. Nutrients 2017; 9(11): 1201.
[http://dx.doi.org/10.3390/nu9111201] [PMID: 29104258]
[7]
Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425(6954): 191-6.
[http://dx.doi.org/10.1038/nature01960] [PMID: 12939617]
[8]
Ren B, Kwah MXY, Liu C, et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515: 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[9]
Robertson I, Wai Hau T, Sami F, et al. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int J Pharm 2022; 618: 121605.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121605] [PMID: 35227804]
[10]
Chen Y, Tseng SH, Lai HS, Chen WJ. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 2004; 136(1): 57-66.
[http://dx.doi.org/10.1016/j.surg.2004.01.017] [PMID: 15232540]
[11]
Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. Phytomedicine 2018; 47: 192-200.
[http://dx.doi.org/10.1016/j.phymed.2017.11.005] [PMID: 30166104]
[12]
Yahyapour R, Shabeeb D, Cheki M, et al. Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr Mol Pharmacol 2018; 11(4): 285-304.
[http://dx.doi.org/10.2174/1874467211666180619125653] [PMID: 29921213]
[13]
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15(3): 261-78.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[14]
Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: A review on past to future. Curr Res Food Sci 2020; 3: 284-95.
[http://dx.doi.org/10.1016/j.crfs.2020.10.004] [PMID: 33305295]
[15]
Pouyafar A, Zadi Heydarabad M, Aghdam SB, et al. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro. J Cell Biochem 2019; 120(5): 8430-7.
[http://dx.doi.org/10.1002/jcb.28129] [PMID: 30609135]
[16]
Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: Focus on in vivo evidence. Endocr Relat Cancer 2014; 21(3): R209-25.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[17]
Amini P, Nodooshan SJ, Ashrafizadeh M, et al. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr Mol Med 2021; 21(2): 142-50.
[http://dx.doi.org/10.2174/18755666MTA2pODE0z] [PMID: 32436827]
[18]
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr 2018; 58(9): 1428-47.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[19]
Zhu W, Qin W, Zhang K, et al. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer 2012; 64(3): 393-400.
[http://dx.doi.org/10.1080/01635581.2012.654926] [PMID: 22332908]
[20]
Pankova D, Jiang Y, Chatzifrangkeskou M, et al. RASSF 1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma. EMBO J 2019; 38(13): e100532.
[http://dx.doi.org/10.15252/embj.2018100532] [PMID: 31268606]
[21]
Papaspyropoulos A. RASSF1A regulation of transcription factors in tumourigenesis and stem cell fate determination. In: University of Oxford 2014.
[22]
Fu Y, Chang H, Peng X, et al. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One 2014; 9(7): e102535.
[http://dx.doi.org/10.1371/journal.pone.0102535] [PMID: 25068516]
[23]
Tang F, Chiang E, Sun Y. Resveratrol inhibits heregulin-β1-mediated matrix metalloproteinase-9 expression and cell invasion in human breast cancer cells. J Nutr Biochem 2008; 19(5): 287-94.
[http://dx.doi.org/10.1016/j.jnutbio.2007.03.003] [PMID: 17651959]
[24]
Vazquez-Santillan K, Melendez-Zajgla J, Jimenez-Hernandez L, Martínez-Ruiz G, Maldonado V NF. NF-κB signaling in cancer stem cells: A promising therapeutic target? Cell Oncol 2015; 38(5): 327-39.
[http://dx.doi.org/10.1007/s13402-015-0236-6] [PMID: 26318853]
[25]
Steinbichler TB. Cancer stem cells and their unique role in metastatic spread. In: Seminars in cancer biology. Amsterdam: Elsevier 2020.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.007]
[26]
Li G, Rivas P, Bedolla R, et al. Dietary resveratrol prevents development of high-grade prostatic intraepithelial neoplastic lesions: involvement of SIRT1/S6K axis. Cancer Prev Res (Phila) 2013; 6(1): 27-39.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0349] [PMID: 23248098]
[27]
Liu L, Liu C, Zhang Q, et al. SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology 2016; 64(3): 814-27.
[http://dx.doi.org/10.1002/hep.28690] [PMID: 27312708]
[28]
Qin J, Liu Y, Lu Y, et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep 2017; 7(1): 10592.
[http://dx.doi.org/10.1038/s41598-017-09244-8] [PMID: 28878214]
[29]
Yang C, Zhang Y, Zhang Y, et al. Downregulation of cancer stem cell properties via mTOR signaling pathway inhibition by rapamycin in nasopharyngeal carcinoma. Int J Oncol 2015; 47(3): 909-17.
[http://dx.doi.org/10.3892/ijo.2015.3100] [PMID: 26202311]
[30]
Chen ZH, Hurh YJ, Na HK, et al. Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 2004; 25(10): 2005-13.
[http://dx.doi.org/10.1093/carcin/bgh183] [PMID: 15142886]
[31]
Liu J, Wang Q, Wu D, et al. Differential regulation of CYP1A1 and CYP1B1 expression in resveratrol-treated human medulloblastoma cells. Neurosci Lett 2004; 363(3): 257-61.
[http://dx.doi.org/10.1016/j.neulet.2004.03.075] [PMID: 15182955]
[32]
Al-Dhfyan A, Alhoshani A, Korashy HM. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and κB-Catenin and Akt activation. Mol Cancer 2017; 16(1): 1-18.
[PMID: 28093071]
[33]
Akhtar S, et al. Epigenetic regulation of cancer stem cells by the aryl hydrocarbon receptor pathway.In: Seminars in cancer biology. Amsterdam: Elsevier 2022.
[http://dx.doi.org/10.1016/j.semcancer.2020.08.014]
[34]
Song Y. Resveratrol suppresses epithelial-mesenchymal transition in GBM by regulating Smad-dependent signaling. Biomed Res Int 2019; 2019: 1321973.
[http://dx.doi.org/10.1155/2019/1321973]
[35]
Li W, Ma J, Ma Q, et al. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr Med Chem 2013; 20(33): 4185-94.
[http://dx.doi.org/10.2174/09298673113209990251] [PMID: 23992306]
[36]
Rinkenbaugh A, Baldwin A. The NF-κB pathway and cancer stem cells. Cells 2016; 5(2): 16.
[http://dx.doi.org/10.3390/cells5020016] [PMID: 27058560]
[37]
Liu Z, Ren Y, Meng L, et al. Epigenetic signaling of cancer stem cells during inflammation. Front Cell Dev Biol 2021; 9: 772211.
[http://dx.doi.org/10.3389/fcell.2021.772211] [PMID: 34722553]
[38]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[http://dx.doi.org/10.1016/j.stem.2015.02.015] [PMID: 25748930]
[39]
Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche-there goes the neighborhood? Int J Cancer 2011; 129(10): 2315-27.
[http://dx.doi.org/10.1002/ijc.26312] [PMID: 21792897]
[40]
Arabzadeh A, Mortezazadeh T, Aryafar T, Gharepapagh E, Majdaeen M, Farhood B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int 2021; 21(1): 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[41]
Wang L, Long L, Wang W, Liang Z. Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo. J Pharmacol Sci 2015; 129(4): 216-25.
[http://dx.doi.org/10.1016/j.jphs.2015.11.001] [PMID: 26698406]
[42]
Choi CY, Lim SC, Lee TB, Han SI. Molecular basis of resveratrol-induced resensitization of acquired drug-resistant cancer cells. Nutrients 2022; 14(3): 699.
[http://dx.doi.org/10.3390/nu14030699] [PMID: 35277058]
[43]
Shankar S, Nall D, Tang SN, et al. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011; 6(1): e16530.
[http://dx.doi.org/10.1371/journal.pone.0016530] [PMID: 21304978]
[44]
Buhrmann C, Shayan P, Kraehe P, Popper B, Goel A, Shakibaei M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 2015; 98(1): 51-68.
[http://dx.doi.org/10.1016/j.bcp.2015.08.105] [PMID: 26310874]
[45]
Das D, Preet R, Mohapatra P, Satapathy SR, Kundu CN. 1,3-Bis(2-chloroethyl)-1-nitrosourea enhances the inhibitory effect of resveratrol on 5-fluorouracil sensitive/resistant colon cancer cells. World J Gastroenterol 2013; 19(42): 7374-88.
[http://dx.doi.org/10.3748/wjg.v19.i42.7374] [PMID: 24259968]
[46]
Buhrmann C, Yazdi M, Popper B, et al. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients 2018; 10(7): 888.
[http://dx.doi.org/10.3390/nu10070888] [PMID: 30002278]
[47]
Hernandez-Valencia J, Garcia-Villa E, Arenas-Hernandez A, Garcia-Mena J, Diaz-Chavez J, Gariglio P. Induction of p53 phosphorylation at serine 20 by resveratrol is required to activate p53 target genes, restoring apoptosis in MCF-7 cells resistant to cisplatin. Nutrients 2018; 10(9): 1148.
[http://dx.doi.org/10.3390/nu10091148] [PMID: 30142917]
[48]
Leon-Galicia I, Diaz-Chavez J, Albino-Sanchez ME, et al. Resveratrol decreases Rad51 expression and sensitizes cisplatin resistant MCF 7 breast cancer cells. Oncol Rep 2018; 39(6): 3025-33.
[http://dx.doi.org/10.3892/or.2018.6336] [PMID: 29620223]
[49]
Osman AMM, Al-Malki HS, Al-Harthi S, El-Hanafy AA, Elashmaoui HM, Elshal MF. Modulatory role of resveratrol on cytotoxic activity of cisplatin, sensitization and modification of cisplatin resistance in colorectal cancer cells. Mol Med Rep 2015; 12(1): 1368-74.
[http://dx.doi.org/10.3892/mmr.2015.3513] [PMID: 25815689]
[50]
Zhao W, Bao P, Qi H, You H. Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/CDDP cells. Oncol Rep 2010; 23(1): 279-86.
[PMID: 19956893]
[51]
Chang CH, Lee CY, Lu CC, et al. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol 2017; 50(3): 873-82.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[52]
Baribeau S, Chaudhry P, Parent S, Asselin É. Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines. PLoS One 2014; 9(1): e86987.
[http://dx.doi.org/10.1371/journal.pone.0086987] [PMID: 24466305]
[53]
Kim TH, Shin YJ, Won AJ, et al. Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta, Gen Subj 2014; 1840(1): 615-25.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.023] [PMID: 24161697]
[54]
Zhang W, Jiang H, Chen Y, Ren F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J Cell Biochem 2019; 120(9): 16283-92.
[http://dx.doi.org/10.1002/jcb.28910] [PMID: 31155753]
[55]
Chen JM, Bai JY, Yang KX. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life 2018; 70(6): 491-500.
[http://dx.doi.org/10.1002/iub.1749] [PMID: 29637742]
[56]
Xu J, Liu D, Niu H, et al. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res 2017; 36(1): 19.
[http://dx.doi.org/10.1186/s13046-016-0487-8] [PMID: 28126034]
[57]
Li Y, Guo Y, Feng Z, et al. Involvement of the PI3K/Akt/Nrf2 signaling pathway in resveratrol-mediated reversal of drug resistance in HL-60/ADR cells. Nutr Cancer 2019; 71(6): 1007-18.
[http://dx.doi.org/10.1080/01635581.2019.1578387] [PMID: 31032633]
[58]
Shi XP, Miao S, Wu Y, et al. Resveratrol sensitizes tamoxifen in antiestrogen-resistant breast cancer cells with epithelial-mesenchymal transition features. Int J Mol Sci 2013; 14(8): 15655-68.
[http://dx.doi.org/10.3390/ijms140815655] [PMID: 23896596]
[59]
De Amicis F, Giordano F, Vivacqua A, et al. Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor α gene expression via p38 MAPK/CK2 signaling in human breast cancer cells. FASEB J 2011; 25(10): 3695-707.
[http://dx.doi.org/10.1096/fj.10-178871] [PMID: 21737614]
[60]
Guo K, Feng Y, Zheng X, et al. Resveratrol and its analogs: Potent agents to reverse epithelial-to-mesenchymal transition in tumors. Front Oncol 2021; 11: 644134.
[http://dx.doi.org/10.3389/fonc.2021.644134] [PMID: 33937049]
[61]
Vallino L, Ferraresi A, Vidoni C, et al. Modulation of non-coding RNAs by resveratrol in ovarian cancer cells: In silico analysis and literature review of the anti-cancer pathways involved. J Tradit Complement Med 2020; 10(3): 217-29.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.006] [PMID: 32670816]
[62]
Geng W, Guo X, Zhang L, et al. Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1-mediated Wnt/β-catenin signaling pathway. Biomed Pharmacother 2018; 107: 484-94.
[http://dx.doi.org/10.1016/j.biopha.2018.08.003] [PMID: 30107344]
[63]
Yang Z, Xie Q, Chen Z, et al. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Exp Ther Med 2019; 17(3): 1569-78.
[PMID: 30783423]
[64]
Ji Q, Liu X, Fu X, et al. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One 2013; 8(11): e78700.
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[65]
Pandey PR, Okuda H, Watabe M, et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 2011; 130(2): 387-98.
[http://dx.doi.org/10.1007/s10549-010-1300-6] [PMID: 21188630]
[66]
Al Aameri RFH, Sheth S, Alanisi EMA, et al. Tonic suppression of PCAT29 by the IL-6 signaling pathway in prostate cancer: Reversal by resveratrol. PLoS One 2017; 12(5): e0177198.
[http://dx.doi.org/10.1371/journal.pone.0177198] [PMID: 28467474]
[67]
Yang Q, Xu E, Dai J, et al. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol Appl Pharmacol 2015; 285(2): 79-88.
[http://dx.doi.org/10.1016/j.taap.2015.04.003] [PMID: 25888808]
[68]
Kumar P, Luo Y, Tudela C, Alexander JM, Mendelson CR. The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol 2013; 33(9): 1782-96.
[http://dx.doi.org/10.1128/MCB.01228-12] [PMID: 23438603]
[69]
Pan J, Shen J, Si W, et al. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget 2017; 8(39): 65743-58.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[70]
Yu Y-H, Chen H-A, Chen P-S, et al. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene 2013; 32(4): 431-43.
[http://dx.doi.org/10.1038/onc.2012.74] [PMID: 22410781]
[71]
Chang YW, Chen MW, Chiu CF, et al. Arsenic trioxide inhibits CXCR4-mediated metastasis by interfering miR- 520h/PP2A/NF-κB signaling in cervical cancer. Ann Surg Oncol 2014; 21(S4 4): 687-95.
[http://dx.doi.org/10.1245/s10434-014-3812-5] [PMID: 25047463]
[72]
Wu H, Wang Y, Wu C, Yang P, Li H, Li Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J Agric Food Chem 2016; 64(49): 9356-67.
[http://dx.doi.org/10.1021/acs.jafc.6b04549] [PMID: 27960279]
[73]
Yang S, Li W, Sun H, et al. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer 2015; 15(1): 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[74]
Vislovukh A, Kratassiouk G, Porto E, et al. Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br J Cancer 2013; 108(11): 2304-11.
[http://dx.doi.org/10.1038/bjc.2013.243] [PMID: 23695020]
[75]
Yang SF, Lee WJ, Tan P, et al. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas. Oncotarget 2015; 6(5): 2736-53.
[http://dx.doi.org/10.18632/oncotarget.3088] [PMID: 25605016]
[76]
Farooqi A, Khalid S, Ahmad A. Regulation of cell signaling pathways and miRNAs by resveratrol in different cancers. Int J Mol Sci 2018; 19(3): 652.
[http://dx.doi.org/10.3390/ijms19030652] [PMID: 29495357]
[77]
Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget 2015; 6(29): 27214-26.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[78]
Hagiwara K, Kosaka N, Yoshioka Y, Takahashi R, Takeshita F, Ochiya T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci Rep 2012; 2(1): 314.
[http://dx.doi.org/10.1038/srep00314] [PMID: 22423322]
[79]
Shimono Y. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. cell 2009; 138(3): 592-603.
[80]
Shen Y-A. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid Based Complement Alternat Med 2013; 2013: 590393.
[http://dx.doi.org/10.1155/2013/590393]
[81]
Chen H-C, Chen G-H, Chen Y-H, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 2009; 100(6): 1002-11.
[http://dx.doi.org/10.1038/sj.bjc.6604948] [PMID: 19293812]
[82]
Chen P, Guo X, Zhang L, et al. MiR-200c is a cMyc-activated miRNA that promotes nasopharyngeal carcinoma by downregulating PTEN. Oncotarget 2017; 8(3): 5206-18.
[http://dx.doi.org/10.18632/oncotarget.14123] [PMID: 28029649]
[83]
Felicetti F, Errico MC, Bottero L, et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 2008; 68(8): 2745-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2538] [PMID: 18417445]
[84]
Wu F, Cui L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch Dermatol Res 2017; 309(10): 823-31.
[http://dx.doi.org/10.1007/s00403-017-1784-6] [PMID: 28936555]
[85]
Venkatadri R, Muni T, Iyer AKV, Yakisich JS, Azad N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis 2016; 7(2): e2104-4.
[http://dx.doi.org/10.1038/cddis.2016.6] [PMID: 26890143]
[86]
Akhavantabasi S, Sapmaz A, Tuna S, Erson-Bensan AE. miR-125b targets ARID3B in breast cancer cells. Cell Struct Funct 2012; 37(1): 27-38.
[http://dx.doi.org/10.1247/csf.11025] [PMID: 22307404]
[87]
Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q. Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 2014; 33(20): 2589-600.
[http://dx.doi.org/10.1038/onc.2013.226] [PMID: 23752191]
[88]
Yu Z, Willmarth NE, Zhou J, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA 2010; 107(18): 8231-6.
[http://dx.doi.org/10.1073/pnas.1002080107] [PMID: 20406904]
[89]
Xu C, Yang M, Tian J, Wang X, Li Z. MALAT-1: A long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int J Oncol 2011; 39(1): 169-75.
[PMID: 21503572]
[90]
Bae S, Lee EM, Cha HJ, et al. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol Cells 2011; 32(3): 243-9.
[http://dx.doi.org/10.1007/s10059-011-1037-z] [PMID: 21887509]
[91]
Han Z, Yang Q, Liu B, et al. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis 2012; 33(1): 131-9.
[http://dx.doi.org/10.1093/carcin/bgr226] [PMID: 22016468]
[92]
Tili E, Michaille JJ, Alder H, et al. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 2010; 80(12): 2057-65.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[93]
Yu S, Xie H, Zhang J, et al. MicroRNA-663 suppresses the proliferation and invasion of colorectal cancer cells by directly targeting FSCN1. Mol Med Rep 2017; 16(6): 9707-14.
[http://dx.doi.org/10.3892/mmr.2017.7794] [PMID: 29039557]
[94]
Yang S, Li W, Dong F, et al. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. J Cell Mol Med 2014; 18(10): 2092-102.
[http://dx.doi.org/10.1111/jcmm.12368] [PMID: 25213795]
[95]
Carden T, Singh B, Mooga V, Bajpai P, Singh KK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem 2017; 292(50): 20694-706.
[http://dx.doi.org/10.1074/jbc.M117.797001] [PMID: 29066618]
[96]
Kim SY, Kawaguchi T, Yan L, Young J, Qi Q, Takabe K. Clinical relevance of microRNA expressions in breast cancer validated using the cancer genome atlas (TCGA). Ann Surg Oncol 2017; 24(10): 2943-9.
[http://dx.doi.org/10.1245/s10434-017-5984-2] [PMID: 28766230]
[97]
Liu P, Liang H, Xia Q, et al. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin Transl Oncol 2013; 15(9): 741-6.
[http://dx.doi.org/10.1007/s12094-012-0999-4] [PMID: 23359184]
[98]
Bao B, Ali S, Ahmad A, et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 2012; 7(12): e50165.
[http://dx.doi.org/10.1371/journal.pone.0050165] [PMID: 23272057]
[99]
Kumazaki M, Noguchi S, Yasui Y, et al. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem 2013; 24(11): 1849-58.
[http://dx.doi.org/10.1016/j.jnutbio.2013.04.006] [PMID: 23954321]
[100]
Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci 2007; 104(39): 15472-7.
[http://dx.doi.org/10.1073/pnas.0707351104] [PMID: 17875987]
[101]
Sachdeva M, Liu Q, Cao J, Lu Z, Mo YY. Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells. Nucleic Acids Res 2012; 40(14): 6683-92.
[http://dx.doi.org/10.1093/nar/gks324] [PMID: 22495929]
[102]
Spizzo R, Nicoloso MS, Lupini L, et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-α in human breast cancer cells. Cell Death Differ 2010; 17(2): 246-54.
[http://dx.doi.org/10.1038/cdd.2009.117] [PMID: 19730444]
[103]
Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 2017; 1403(1): 15-26.
[http://dx.doi.org/10.1111/nyas.13372] [PMID: 28662290]
[104]
Zhou W, Wang S, Ying Y, Zhou R, Mao P. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia. Oncol Rep 2017; 37(2): 1075-83.
[http://dx.doi.org/10.3892/or.2016.5321] [PMID: 28000876]
[105]
Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. OncoTargets Ther 2015; 8: 2903-14.
[PMID: 26508875]
[106]
Li T, Zhang X, Cheng L, et al. Modulation of lncRNA H19 enhances resveratrol-inhibited cancer cell proliferation and migration by regulating endoplasmic reticulum stress. J Cell Mol Med 2022; 26(8): 2205-17.
[http://dx.doi.org/10.1111/jcmm.17242] [PMID: 35166018]
[107]
de Sá Coutinho D, Pacheco M, Frozza R, Bernardi A. Anti-inflammatory effects of resveratrol: mechanistic insights. Int J Mol Sci 2018; 19(6): 1812.
[http://dx.doi.org/10.3390/ijms19061812] [PMID: 29925765]
[108]
Xu Q-H, et al. Resveratrol counteracts hypoxia-induced gastric cancer invasion and EMT through hedgehog pathway suppression. Anticancer Agents Med Chem 2020; 20(9): 1105-14.
[http://dx.doi.org/10.2174/1871520620666200402080034]
[109]
Ferraresi A, Phadngam S, Morani F, et al. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog 2017; 56(3): 1164-81.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[110]
Malaguarnera L. Influence of resveratrol on the immune response. Nutrients 2019; 11(5): 946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[111]
Yi J, Li S, Wang C, et al. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed Pharmacother 2019; 113: 108703.
[http://dx.doi.org/10.1016/j.biopha.2019.108703] [PMID: 30870719]
[112]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[113]
Farzaei MH, Rahimi R, Nikfar S, Abdollahi M. Effect of resveratrol on cognitive and memory performance and mood: A meta-analysis of 225 patients. Pharmacol Res 2018; 128: 338-44.
[http://dx.doi.org/10.1016/j.phrs.2017.08.009] [PMID: 28844841]
[114]
Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci 2015; 1348(1): 20-31.
[http://dx.doi.org/10.1111/nyas.12811] [PMID: 26109073]
[115]
Annaji M, Poudel I, Boddu SHS, Arnold RD, Tiwari AK, Babu RJ. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep 2021; 4(3): e1353.
[http://dx.doi.org/10.1002/cnr2.1353] [PMID: 33655717]
[116]
Brown VA, Patel KR, Viskaduraki M, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 2010; 70(22): 9003-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2364] [PMID: 20935227]
[117]
la Porte C, Voduc N, Zhang G, et al. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet 2010; 49(7): 449-54.
[http://dx.doi.org/10.2165/11531820-000000000-00000] [PMID: 20528005]
[118]
Maharjan CK, Mo J, Wang L, et al. Natural and synthetic estrogens in chronic inflammation and breast cancer. Cancers 2021; 14(1): 206.
[http://dx.doi.org/10.3390/cancers14010206] [PMID: 35008370]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy