Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

c-Jun N-terminal Kinase (JNK), p38, and Caspases: Promising Therapeutic Targets for the Regulation of Apoptosis in Cancer Cells by Phytochemicals

Author(s): Manish Kumar, Satwinderjeet Kaur and Sandeep Kaur*

Volume 20, Issue 2, 2024

Published on: 06 October, 2023

Page: [200 - 211] Pages: 12

DOI: 10.2174/1573394719666230817094831

Price: $65

Abstract

Carcinogenesis is a process in which uncontrolled cell proliferation forms preneoplastic nodules which precede the appearance of cancer. In normal cells, growth and proliferation are regulated by certain growth and hormonal stimulation, while mutational alterations in these signals render the cells independent and resistant to these signals. In cancer, the critical homeostatic balance between cell growth and apoptosis is lost and the cells continue to survive beyond their normal life span. The activation of c-Jun N-terminal kinase (JNK), p38 and caspases are involved in potential proapoptotic signaling pathways. JNK, p38 MAPK pathway and caspases play a crucial role in the control of apoptosis in response to stress. The most recent and up-to-date literature was evaluated in this study, which describes the role of JNK, p38 MAPK pathway and caspases as therapeutic target in cancer. Chemotherapy uses drugs that are cytotoxic to highly proliferating tumor cells but also kills the non-tumor rapidly proliferating cells in the hair, skin and gastrointestinal tract epithelium, thereby accounting the side effects of these types of treatments. Recently, chemopreventive modalities derived from phytoconstituents present in plants provide a broad-spectrum strategy to overcome the incidence of cancer. Non-toxic, safe and affordable bioavailabilities of chemopreventive agents provide credence support in the field of cancer research compared to conventional therapies that cause serious consequences. Chemoprevention envisages the basic mechanisms like modulating the activity of xenobiotic-metabolizing enzymes, induction of apoptosis, immune system activation, suppressing angiogenesis and the formation of metastasis, antioxidant and anti-inflammatory properties. The present review highlighted the role of phytoconstituents derived from food, vegetables and medicinal plants in the induction of apoptosis in cancer cells, which in turn is mediated by the activation of JNK, p38 MAPK pathways, and caspases.

Graphical Abstract

[1]
Kerr J F R, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26(4): 239-57.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[2]
Lawen A. Apoptosis?an introduction. BioEssays 2003; 25(9): 888-96.
[http://dx.doi.org/10.1002/bies.10329] [PMID: 12938178]
[3]
Brown DA, Yang N, Ray SD. Apoptosis. In: Encyclopedia of Toxicology. 3rd ed. 2014; p. 287-94.
[4]
Fietta P. Many ways to die: passive and active cell death styles. Riv Biol 2006; 99(1): 69-83.
[PMID: 16791791]
[5]
Proskuryakov SY, Gabai VL, Konoplyannikov AG. Necrosis is an active and controlled form of programmed cell death. Biochemistry 2002; 67(4): 387-408.
[http://dx.doi.org/10.1023/A:1015289521275] [PMID: 11996653]
[6]
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43(1): 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[7]
Singh R, George J, Shukla Y. Role of senescence and mitotic catastrophe in cancer therapy. Cell Div 2010; 5(1): 4.
[http://dx.doi.org/10.1186/1747-1028-5-4] [PMID: 20205872]
[8]
Shu L, Cheung KL, Khor TO, Chen C, Kong AN. Phytochemicals: Cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 2010; 29(3): 483-502.
[http://dx.doi.org/10.1007/s10555-010-9239-y] [PMID: 20798979]
[9]
Okarter N, Liu RH. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 2010; 50(3): 193-208.
[http://dx.doi.org/10.1080/10408390802248734] [PMID: 20301011]
[10]
Duthie GG, Duthie SJ, Kyle JAM. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr Res Rev 2000; 13(1): 79-106.
[http://dx.doi.org/10.1079/095442200108729016] [PMID: 19087434]
[11]
Neergheen VS, Bahorun T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medici-nal phytochemicals in cancer chemoprevention. Toxicology 2010; 278(2): 229-41.
[http://dx.doi.org/10.1016/j.tox.2009.10.010] [PMID: 19850100]
[12]
Moon JY, Mosaddik A, Kim H, et al. The chloroform fraction of guava (Psidium cattleianum sabine) leaf extract inhibits human gastric cancer cell proliferation via induction of apoptosis. Food Chem 2011; 125(2): 369-75.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.007]
[13]
Pitchakarn P, Suzuki S, Ogawa K, et al. Induction of G1 arrest and apoptosis in androgen-dependent human prostate cancer by Kuguacin J, a triterpenoid from Momordica charantia leaf. Cancer Lett 2011; 306(2): 142-50.
[http://dx.doi.org/10.1016/j.canlet.2011.02.041] [PMID: 21429659]
[14]
Mahassni SH, Al-Reemi RM. Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (Lepidium sativum) seeds. Saudi J Biol Sci 2013; 20(2): 131-9.
[http://dx.doi.org/10.1016/j.sjbs.2012.12.002] [PMID: 23961228]
[15]
Tao L, Fu R, Wang X, et al. LL-202, a newly synthesized flavonoid, inhibits tumor growth via inducing G2/M phase arrest and cell apop-tosis in MCF-7 human breast cancer cells in vitro and in vivo. Toxicol Lett 2014; 228(1): 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2014.04.002] [PMID: 24752227]
[16]
Karin M, Cao Y, Greten FR, Li ZW. NF-κB in cancer: From innocent bystander to major culprit. Nat Rev Cancer 2002; 2(4): 301-10.
[http://dx.doi.org/10.1038/nrc780] [PMID: 12001991]
[17]
Kyosseva SV. Mitogen-activated protein kinase signaling. Int Rev Neurobiol 2004; 59: 201-20.
[http://dx.doi.org/10.1016/S0074-7742(04)59008-6] [PMID: 15006489]
[18]
Kaur S, Kumar M, Kaur S. Role of phytochemicals in MAPK signaling pathway-mediated apoptosis. Stud Nat Prod Chem 2016; 50: 159-78.
[http://dx.doi.org/10.1016/B978-0-444-63749-9.00005-0]
[19]
Weston C, Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev 2002; 12(1): 14-21.
[http://dx.doi.org/10.1016/S0959-437X(01)00258-1] [PMID: 11790549]
[20]
Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000; 103(2): 239-52.
[http://dx.doi.org/10.1016/S0092-8674(00)00116-1] [PMID: 11057897]
[21]
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer’s Disease. Front Pharmacol 2016; 6: 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[22]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[23]
Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19(2): 142-9.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[24]
Engström W, Ward A, Moorwood K. The role of scaffold proteins in JNK signalling. Cell Prolif 2010; 43(1): 56-66.
[http://dx.doi.org/10.1111/j.1365-2184.2009.00654.x] [PMID: 19922489]
[25]
Nguyen TQ, Aumont-Nicaise M, Andreani J, et al. Characterization of the binding mode of JNK-interacting protein 1 (JIP1) to kinesin-light chain 1 (KLC1). 2018; 293(36): 13946-60.
[26]
Lee HJ, Wang CJ, Kuo HC, Chou FP, Jean LF, Tseng TH. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mito-chondria translocation of Bax/Bak and activation of JNK. Toxicol Appl Pharmacol 2005; 203(2): 124-31.
[http://dx.doi.org/10.1016/j.taap.2004.08.004] [PMID: 15710173]
[27]
Biswas KK, Tancharon S, Sarker KP, Kawahara K, Hashiguchi T, Maruyama I. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett 2006; 580(2): 703-10.
[http://dx.doi.org/10.1016/j.febslet.2005.12.048] [PMID: 16412424]
[28]
Yip ECH, Chan ASL, Pang H, Tam YK, Wong YH. Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism. Cell Biol Toxicol 2006; 22(4): 293-302.
[http://dx.doi.org/10.1007/s10565-006-0082-4] [PMID: 16835731]
[29]
Chiang CT, Way TD, Tsai SJ, Lin JK. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett 2007; 581(30): 5735-42.
[http://dx.doi.org/10.1016/j.febslet.2007.11.021] [PMID: 18022396]
[30]
Deng YT, Lin JK. EGCG inhibits the invasion of highly invasive CL1-5 lung cancer cells through suppressing MMP-2 expression via JNK signaling and induces G2/M arrest. J Agric Food Chem 2011; 59(24): 13318-27.
[http://dx.doi.org/10.1021/jf204149c] [PMID: 22082235]
[31]
Liao CL, Lai KC, Huang AC, et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol 2012; 50(5): 1734-40.
[http://dx.doi.org/10.1016/j.fct.2012.02.033] [PMID: 22387266]
[32]
Kim HY, Lee SM. Ferulic acid attenuates ischemia/reperfusioninduced hepatocyte apoptosis via inhibition of JNK activation. Eur J Pharm Sci 2012; 45(5): 708-15.
[http://dx.doi.org/10.1016/j.ejps.2012.01.010] [PMID: 22326704]
[33]
Wang CY, Deng YT, Huang SY, Liu CM, Chang HH, Wong MY. Epigallocatechin-3-gallate inhibits lysophosphatidic acidstimulated connective tissue growth factor via JNK and Smad3 suppression in human gingival fibroblasts. J Formos Med Assoc 2014; 113(1): 50-5.
[http://dx.doi.org/10.1016/j.jfma.2012.04.004] [PMID: 24445011]
[34]
Tu P, Huang Q, Ou Y, et al. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway. Oncol Rep 2016; 35(6): 3209-15.
[http://dx.doi.org/10.3892/or.2016.4703] [PMID: 27035222]
[35]
Abdel-Aleem GA, Khaleel EF. Rutin hydrate ameliorates cadmium chloride-induced spatial memory loss and neural apoptosis in rats by enhancing levels of acetylcholine, inhibiting JNK and ERK1/2 activation and activating mTOR signalling. Arch Physiol Biochem 2018; 124(4): 367-77.
[http://dx.doi.org/10.1080/13813455.2017.1411370] [PMID: 29214892]
[36]
Patel R, Ingle A, Maru GB. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway. Toxicol Appl Pharmacol 2008; 227(1): 136-46.
[http://dx.doi.org/10.1016/j.taap.2007.10.009] [PMID: 18037152]
[37]
Arumugam A, Agullo P, Boopalan T, et al. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis. Cancer Biol Ther 2014; 15(1): 26-34.
[http://dx.doi.org/10.4161/cbt.26604] [PMID: 24146019]
[38]
Kumar S, Boehm J, Lee JC. p38 MAP kinases: Key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2(9): 717-26.
[http://dx.doi.org/10.1038/nrd1177] [PMID: 12951578]
[39]
Rouse J, Cohen P, Trigon S, et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phos-phorylation of the small heat shock proteins. Cell 1994; 78(6): 1027-37.
[http://dx.doi.org/10.1016/0092-8674(94)90277-1] [PMID: 7923353]
[40]
Han J, Sun P. The pathways to tumor suppression via route p38. Trends Biochem Sci 2007; 32(8): 364-71.
[http://dx.doi.org/10.1016/j.tibs.2007.06.007] [PMID: 17624785]
[41]
Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446(7132): 153-8.
[http://dx.doi.org/10.1038/nature05610] [PMID: 17344846]
[42]
Adachi S, Natsume H, Yamauchi J, et al. p38 MAP kinase controls EGF receptor downregulation via phosphorylation at Ser1046/1047. Cancer Lett 2009; 277(1): 108-13.
[http://dx.doi.org/10.1016/j.canlet.2008.11.034] [PMID: 19138820]
[43]
Soeda A, Lathia J, Williams BJ, et al. The p38 signaling pathway mediates quiescence of glioma stem cells by regulating epidermal growth factor receptor trafficking. Oncotarget 2017; 8(20): 33316-28.
[http://dx.doi.org/10.18632/oncotarget.16741] [PMID: 28410196]
[44]
Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J Biol Chem 1996; 271(30): 17920-6.
[http://dx.doi.org/10.1074/jbc.271.30.17920] [PMID: 8663524]
[45]
Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 1996; 228(2): 334-40.
[http://dx.doi.org/10.1006/bbrc.1996.1662] [PMID: 8920915]
[46]
Lechner C, Zahalka MA, Giot JF, Møller NP, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci 1996; 93(9): 4355-9.
[http://dx.doi.org/10.1073/pnas.93.9.4355] [PMID: 8633070]
[47]
Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem 1997; 272(48): 30122-8.
[http://dx.doi.org/10.1074/jbc.272.48.30122] [PMID: 9374491]
[48]
Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR. Novel homologues of CSBP/p38 MAP kinase: Activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 1997; 235(3): 533-8.
[http://dx.doi.org/10.1006/bbrc.1997.6849] [PMID: 9207191]
[49]
Parker CG, Hunt J, Diener K, et al. Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun 1998; 249(3): 791-6.
[http://dx.doi.org/10.1006/bbrc.1998.9250] [PMID: 9731215]
[50]
Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J 2010; 429(3): 403-17.
[http://dx.doi.org/10.1042/BJ20100323] [PMID: 20626350]
[51]
Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005; 15(1): 11-8.
[http://dx.doi.org/10.1038/sj.cr.7290257] [PMID: 15686620]
[52]
Kalra N, Seth K, Prasad S, Singh M, Pant AB, Shukla Y. RETRACTED: Theaflavins induced apoptosis of LNCaP cells is mediated through induction of p53, down-regulation of NF-kappa B and mitogen-activated protein kinases pathways. Life Sci 2007; 80(23): 2137-46.
[http://dx.doi.org/10.1016/j.lfs.2007.04.009] [PMID: 17499812]
[53]
Sánchez Y, Calle C, de Blas E, Aller P. Modulation of arsenic trioxide-induced apoptosis by genistein and functionally related agents in U937 human leukaemia cells. Regulation by ROS and mitogen-activated protein kinases. Chem Biol Interact 2009; 182(1): 37-44.
[http://dx.doi.org/10.1016/j.cbi.2009.08.015] [PMID: 19720055]
[54]
Tsai CW, Lin CY, Lin HH, Chen JH. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res 2011; 36(12): 2442-51.
[http://dx.doi.org/10.1007/s11064-011-0573-4] [PMID: 21833842]
[55]
Zhu B, Lin Y, Zhu CF, et al. Emodin inhibits extracellular matrix synthesis by suppressing p38 and ERK1/2 pathways in TGF-β1-stimulated NRK-49F cells. Mol Med Rep 2011; 4(3): 505-9.
[http://dx.doi.org/10.3892/mmr.2011.444] [PMID: 21468599]
[56]
Zhang W, Huang Q, Hua Z. Galangin and TRAIL cooperate to suppress A549 lung cancer proliferation via apoptosis and p38 MAPK activation. Acta Pharm Sin B 2012; 2(6): 569-74.
[http://dx.doi.org/10.1016/j.apsb.2012.10.009]
[57]
Hsieh CJ, Kuo PL, Hsu YC, Huang YF, Tsai EM, Hsu YL. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med 2014; 67: 159-70.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.10.004] [PMID: 24140706]
[58]
Li W, Li DY, Zhao SM, et al. Rutin attenuates isoflurane-induced neuroapoptosis via modulating JNK and p38 MAPK pathways in the hippocampi of neonatal rats. Exp Ther Med 2017; 13(5): 2056-64.
[http://dx.doi.org/10.3892/etm.2017.4173] [PMID: 28565808]
[59]
Yeewa R, Naiki-Ito A, Naiki T, et al. Hexane insoluble fraction from purple rice extract retards carcinogenesis and castration-resistant cancer growth of prostate through suppression of androgen receptor mediated cell proliferation and metabolism. Nutrients 2020; 12(2): 558.
[http://dx.doi.org/10.3390/nu12020558] [PMID: 32093357]
[60]
Stennicke HR, Salvesen GS. Properties of the caspases. Biochim Biophys Acta Protein Struct Mol Enzymol 1998; 1387(1-2): 17-31.
[http://dx.doi.org/10.1016/S0167-4838(98)00133-2] [PMID: 9748481]
[61]
O’Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care (San Antonio) 2008; 18(6): 572-85.
[http://dx.doi.org/10.1111/j.1476-4431.2008.00363.x]
[62]
Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv 2000; 74(2-3): 281-6.
[http://dx.doi.org/10.1016/S0031-6865(99)00038-2] [PMID: 10812970]
[63]
Balan KV, Demetzos C, Prince J, et al. Induction of apoptosis in human colon cancer HCT116 cells treated with an extract of the plant product, Chios mastic gum. In Vivo 2005; 19(1): 93-102.
[PMID: 15796160]
[64]
Ovadje P, Chatterjee S, Griffin C, Tran C, Hamm C, Pandey S. Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. J Ethnopharmacol 2011; 133(1): 86-91.
[http://dx.doi.org/10.1016/j.jep.2010.09.005] [PMID: 20849941]
[65]
Kim HJ, Han MH, Kim GY, Choi YW, Choi YH. Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3B human hepatocarcinoma cells. Oncol Rep 2012; 28(5): 1757-63.
[http://dx.doi.org/10.3892/or.2012.1985] [PMID: 22923154]
[66]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[67]
Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305(5684): 626-9.
[http://dx.doi.org/10.1126/science.1099320] [PMID: 15286356]
[68]
Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25(34): 4798-811.
[http://dx.doi.org/10.1038/sj.onc.1209608] [PMID: 16892092]
[69]
Saelens X, Festjens N, Walle LV, Gurp M, Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23(16): 2861-74.
[http://dx.doi.org/10.1038/sj.onc.1207523] [PMID: 15077149]
[70]
Zhao Y, Yang LF, Ye M, Gu HH, Cao Y. Induction of apoptosis by epigallocatechin-3-gallate via mitochondrial signal transduction pathway. Prev Med 2004; 39(6): 1172-9.
[http://dx.doi.org/10.1016/j.ypmed.2004.04.042] [PMID: 15539052]
[71]
Cao W, Li XQ, Wang X, et al. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical can-cer HeLa cells through an intrinsic apoptotic pathway. Phytomedicine 2010; 17(8-9): 598-605.
[http://dx.doi.org/10.1016/j.phymed.2009.12.014] [PMID: 20092988]
[72]
Benarba B, Meddah B, Aoues A. Bryonia dioica aqueous extract induces apoptosis through mitochondrial intrinsic pathway in BL41 Burkitt’s lymphoma cells. J Ethnopharmacol 2012; 141(1): 510-6.
[http://dx.doi.org/10.1016/j.jep.2012.02.052] [PMID: 22465729]
[73]
Choi ES, Kim JS, Kwon KH, Kim HS, Cho NP, Cho SD. Methanol extract of Sanguisorba officinalis L. with cytotoxic activity against PC3 human prostate cancer cells. Mol Med Rep 2012; 6(3): 670-4.
[http://dx.doi.org/10.3892/mmr.2012.949] [PMID: 22710351]
[74]
Ibrahim B, Sowemimo A, Spies L, Koekomoer T, van de Venter M, Odukoya OA. Antiproliferative and apoptosis inducing activity of Markhamia tomentosa leaf extract on HeLa cells. J Ethnopharmacol 2013; 149(3): 745-9.
[http://dx.doi.org/10.1016/j.jep.2013.07.040] [PMID: 23928192]
[75]
Alonso-Castro AJ, Ortiz-Sánchez E, García-Regalado A, et al. Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. J Ethnopharmacol 2013; 145(2): 476-89.
[http://dx.doi.org/10.1016/j.jep.2012.11.016] [PMID: 23211658]
[76]
Pieme CA, Guru SK, Ambassa P, et al. Induction of mitochondrial dependent apoptosis and cell cycle arrest in human promyelocytic leukemia HL-60 cells by an extract from Dorstenia psilurus: A spice from Cameroon. BMC Complement Altern Med 2013; 13(1): 223.
[http://dx.doi.org/10.1186/1472-6882-13-223] [PMID: 24016040]
[77]
Chuang WL, Lin PY, Lin HC, Chen YL. The apoptotic effect of ursolic acid on sk-hep-1 cells is regulated by the PI3K/Akt, p38 and JNK MAPK signaling pathways. Molecules 2016; 21(4): 460.
[http://dx.doi.org/10.3390/molecules21040460] [PMID: 27104510]
[78]
Zein N, Elewa YHA, Alruwaili MK, et al. Barhi date (Phoenix dactylifera) extract ameliorates hepatocellular carcinoma in male rats. Biomed Pharmacother 2022; 156: 113976.
[http://dx.doi.org/10.1016/j.biopha.2022.113976] [PMID: 36411668]
[79]
Purushothaman A, Nandhakumar E, Shanthi P, Sachidanandam TP. Antiproliferative and apoptotic effects of Shemamruthaa, a Herbal Preparation, in 7,12-Dimethylbenz(a)anthracene-induced breast cancer rats. J Evid Based Complementary Altern Med 2015; 20(4): 259-68.
[http://dx.doi.org/10.1177/2156587215580434] [PMID: 25888591]
[80]
Lieberman J, Fan Z. Nuclear war: The granzyme A-bomb. Curr Opin Immunol 2003; 15(5): 553-9.
[http://dx.doi.org/10.1016/S0952-7915(03)00108-0] [PMID: 14499264]
[81]
Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2(10): 735-47.
[http://dx.doi.org/10.1038/nri911] [PMID: 12360212]
[82]
Doherty P. Cell-mediated cytotoxicity. Cell 1993; 75(4): 607-12.
[http://dx.doi.org/10.1016/0092-8674(93)90480-E] [PMID: 7694805]
[83]
Podack ER, Hengartner H, Lichtenheld MG. A central role of perforin in cytolysis? Annu Rev Immunol 1991; 9(1): 129-57.
[http://dx.doi.org/10.1146/annurev.iy.09.040191.001021] [PMID: 1910674]
[84]
Arimura T, Kojima-Yuasa A, Suzuki M, Kennedy DO, Matsui-Yuasa I. Caspase-independent apoptosis induced by evening primrose extract in Ehrlich ascites tumor cells. Cancer Lett 2003; 201(1): 9-16.
[http://dx.doi.org/10.1016/S0304-3835(03)00440-3] [PMID: 14580681]
[85]
Constantinou C, Hyatt JA, Vraka PS, et al. Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives. Nutr Cancer 2009; 61(6): 864-74.
[http://dx.doi.org/10.1080/01635580903285130] [PMID: 20155628]
[86]
Chung YC, Tang FY, Liao JW, et al. Isatis indigotica induces hepatocellular cancer cell death via caspase-independent apoptosis-inducing factor translocation apoptotic pathway in vitro and in vivo. Integr Cancer Ther 2011; 10(2): 201-14.
[http://dx.doi.org/10.1177/1534735410387420] [PMID: 21382959]
[87]
Logue SE, Gorman AM, Cleary P, Keogh N, Samali A. Current Concepts in ER Stress-Induced Apoptosis. Carcinogenesis & Mutagenesis 2013; pp. 1-7.
[88]
Cao A, Li Q, Yin P, et al. Curcumin induces apoptosis in human gastric carcinoma AGS cells and colon carcinoma HT-29 cells through mitochondrial dysfunction and endoplasmic reticulum stress. Apoptosis 2013; 18(11): 1391-402.
[http://dx.doi.org/10.1007/s10495-013-0871-1] [PMID: 23881281]
[89]
Yoon JS, Kim HM, Yadunandam AK, et al. Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 2013; 20(11): 1013-22.
[http://dx.doi.org/10.1016/j.phymed.2013.03.024] [PMID: 23746959]
[90]
Yoon JW, Lee JS, Kim BM, Ahn J, Yang KM. Catechin-7-Oxyloside induces apoptosis via endoplasmic reticulum stress and mitochondrial dysfunction in human non-small cell lung carcinoma H1299 cells. Oncol Rep 2014; 31(1): 314-20.
[http://dx.doi.org/10.3892/or.2013.2840] [PMID: 24213951]
[91]
Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 2012; 12(12): 801-17.
[http://dx.doi.org/10.1038/nrc3399] [PMID: 23175119]
[92]
Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel 2009; 12(2): 240-5.
[PMID: 19333869]
[93]
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009; 461(7267): 1071-8.
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[94]
Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432(7015): 316-23.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[95]
Bartek J, Lukas J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19(2): 238-45.
[http://dx.doi.org/10.1016/j.ceb.2007.02.009] [PMID: 17303408]
[96]
Donzelli M, Draetta GF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 2003; 4(7): 671-7.
[http://dx.doi.org/10.1038/sj.embor.embor887] [PMID: 12835754]
[97]
viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother 2001; 5(2): 109-29.
[http://dx.doi.org/10.1016/S1278-3218(01)00087-7] [PMID: 11355576]
[98]
Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev 2016; 45: 129-38.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.002] [PMID: 27017286]
[99]
Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 2006; 24(11): 1770-83.
[http://dx.doi.org/10.1200/JCO.2005.03.7689] [PMID: 16603719]
[100]
Wenzel ES, Singh ATK. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo 2018; 32(1): 1-5.
[PMID: 29275292]
[101]
Narayanan BA, Re GG. IGF-II down regulation associated cell cycle arrest in colon cancer cells exposed to phenolic antioxidant ellagic acid. Anticancer Res 2001; 21(1A): 359-64.
[PMID: 11299762]
[102]
Choi EJ, Ahn WS. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr Res Pract 2008; 2(4): 322-5.
[http://dx.doi.org/10.4162/nrp.2008.2.4.322] [PMID: 20016737]
[103]
Yeh SL, Yeh CL, Chan ST, Chuang CH. Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells. Planta Med 2011; 77(10): 992-8.
[http://dx.doi.org/10.1055/s-0030-1250735] [PMID: 21267808]
[104]
Atashpour S, Fouladdel S, Movahhed TK, et al. Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iran J Basic Med Sci 2015; 18(7): 635-43.
[PMID: 26351552]
[105]
Huang C, Lee SY, Lin CL, et al. Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl-β-D-glucose causes cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 and AU565 cells. J Agric Food Chem 2013; 61(26): 6430-45.
[http://dx.doi.org/10.1021/jf305253m] [PMID: 23731217]
[106]
Chen H, Miao Q, Geng M, et al. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. ScientificWorldJournal 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/269165] [PMID: 24459422]
[107]
Lee HH, Ye S, Li XJ, Lee KB, Park MH, Kim SM. Combination treatment with paclitaxel and doxorubicin inhibits growth of human esophageal squamous cancer cells by inactivation of Akt. Oncol Rep 2014; 31(1): 183-8.
[http://dx.doi.org/10.3892/or.2013.2851] [PMID: 24247637]
[108]
Forester SC, Choy YY, Waterhouse AL, Oteiza PI. The anthocyanin metabolites gallic acid, 3- O -methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol Carcinog 2014; 53(6): 432-9.
[http://dx.doi.org/10.1002/mc.21974] [PMID: 23124926]
[109]
Park S, Kim JH, Hwang YI, Jung KS, Jang YS, Jang SH. Schedule-dependent effect of epigallocatechin-3-Gallate (EGCG) with paclitaxel on H460 cells. Tuberc Respir Dis 2014; 76(3): 114-9.
[http://dx.doi.org/10.4046/trd.2014.76.3.114] [PMID: 24734098]
[110]
Vicinanza R, Zhang Y, Henning SM, Heber D. Pomegranate juice metabolites, ellagic acid and urolithin a, synergistically inhibit androgen-independent prostate cancer cell growth via distinct effects on cell cycle control and apoptosis. Evid Based Complement Alternat Med 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/247504] [PMID: 23710216]
[111]
Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol 2016; 22(15): 3952-61.
[http://dx.doi.org/10.3748/wjg.v22.i15.3952] [PMID: 27099438]
[112]
Jafari N, Zargar SJ, Delnavazi MR, Yassa N. A cell cycle arrest and apoptosis induction of phloroacetophenone glycosides and caffeoylquinic acid derivatives in gastric adeno carcinoma (AGS) Cells. Anticancer Agents Med Chem 2017; 18(4): 610-6.
[113]
Sadeghi Ekbatan S, Li XQ, Ghorbani M, Azadi B, Kubow S. Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in Human colon cancer Caco-2 cells. Int J Mol Sci 2018; 19(3): 723.
[http://dx.doi.org/10.3390/ijms19030723] [PMID: 29510500]
[114]
Abdel-Hamid NM, Zakaria S, Nawaya RA, Eldomany RA, El-Shishtawy MM. Daidzein and chicory extract arrest the cell cycle via inhibition of cyclin D/CDK4 and Cyclin A/CDK2 gene expression in hepatocellular carcinoma. Recent Patents Anticancer Drug Discov 2022; 18(2): 187-99.
[PMID: 35319392]
[115]
Hu YQ, Wang J, Wu JH. Administration of resveratrol enhances cell-cycle arrest followed by apoptosis in DMBA-induced skin carcino-genesis in male Wistar rats. Eur Rev Med Pharmacol Sci 2016; 20(13): 2935-46.
[PMID: 27424997]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy