Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Current Update on New Delhi Metallo-β-lactamase (NDM) Variants: New Challenges in the Journey of Evolution

Author(s): Samiya Farooq and Asad U. Khan*

Volume 24, Issue 8, 2023

Published on: 15 September, 2023

Page: [655 - 665] Pages: 11

DOI: 10.2174/1389203724666230816154117

Price: $65

conference banner
Abstract

New Delhi Metallo-β-lactamase is an enzyme produced by gram-negative bacteria which has become one of the global concerns for physicians to treating the infection. These Metallo- β-lactamase are capable of catalyzing the hydrolysis of almost all β-lactam antibiotics, endangering infection treatment. Substitution of single or multiple amino acids results in new NDM variants. Forty NDM variants have been identified in different bacterial strains across the globe. In this review, we focused on the structural insight of all NDM variants including the type of amino acid residues and their position of substitution, country of origin, and type of bacteria carrying these resistant markers. We also discussed the carbapenemase activity and stability of enzymes that helps to design potent inhibitors to combat drug-resistant infections.

Graphical Abstract

[1]
Mojica, M.F.; Bonomo, R.A.; Fast, W. B1-Metallo-β-lactamases: Where do we stand? Curr. Drug Targets., 2016, 17(9), 1029-1050.
[http://dx.doi.org/10.2174/1389450116666151001105622] [PMID: 26424398]
[2]
Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-beta-lactamases: The quiet before the storm? Clin. Microbiol. Rev., 2005, 18(2), 306-325.
[http://dx.doi.org/10.1128/CMR.18.2.306-325.2005] [PMID: 15831827]
[3]
Köhler, T.; Michea-Hamzehpour, M.; Epp, S.F.; Pechere, J.C. Carbapenem activities against Pseudomonas aeruginosa: Respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother., 1999, 43(2), 424-427.
[http://dx.doi.org/10.1128/AAC.43.2.424] [PMID: 9925552]
[4]
Hammoudi, D.; Ayoub Moubareck, C.; Karam Sarkis, D. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J. Microbiol. Methods, 2014, 107, 106-118.
[http://dx.doi.org/10.1016/j.mimet.2014.09.009] [PMID: 25304059]
[5]
Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev., 2007, 20(3), 440-458.
[http://dx.doi.org/10.1128/CMR.00001-07] [PMID: 17630334]
[6]
Yang, H.; Aitha, M.; Hetrick, A.M.; Richmond, T.K.; Tierney, D.L.; Crowder, M.W. Mechanistic and spectroscopic studies of metallo-β-lactamase NDM-1. Biochemistry., 2012, 51(18), 3839-3847.
[http://dx.doi.org/10.1021/bi300056y] [PMID: 22482529]
[7]
Kim, Y.; Tesar, C.; Mire, J.; Jedrzejczak, R.; Binkowski, A.; Babnigg, G.; Sacchettini, J.; Joachimiak, A. Structure of apo- and monometalated forms of NDM-1--a highly potent carbapenem-hydrolyzing metallo-β-lactamase. PLoS. One., 2011, 6(9), e24621.
[http://dx.doi.org/10.1371/journal.pone.0024621] [PMID: 21931780]
[8]
Poirel, L.; Pitout, J.D.; Nordmann, P. Carbapenemases: Molecular diversity and clinical consequences. Future Microbiol., 2007, 2(5), 501-512.
[http://dx.doi.org/10.2217/17460913.2.5.501] [PMID: 17927473]
[9]
Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[10]
Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin. Microbiol. Rev., 2019, 32(2), e00115-18.
[http://dx.doi.org/10.1128/CMR.00115-18] [PMID: 30700432]
[11]
González, L.J.; Bahr, G.; Nakashige, T.G.; Nolan, E.M.; Bonomo, R.A.; Vila, A.J. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol., 2016, 12(7), 516-522.
[http://dx.doi.org/10.1038/nchembio.2083] [PMID: 27182662]
[12]
Crowder, M.W.; Spencer, J.; Vila, A.J. Metallo-beta-lactamases: Novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res., 2006, 39(10), 721-728.
[http://dx.doi.org/10.1021/ar0400241] [PMID: 17042472]
[13]
Bahr, G.; Vitor-Horen, L.; Bethel, C.R.; Bonomo, R.A.; González, L.J.; Vila, A.J. Clinical evolution of new delhi metallo-β-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob. Agents Chemother., 2017, 62(1), e01849-e17.
[PMID: 29038264]
[14]
NCBI pathogen detection reference gene catalog. blaNDM. 2021. Available from:http://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/blaNDM
[15]
Bushnell, G.; Mitrani-Gold, F.; Mundy, L.M. Emergence of New Delhi metallo-β-lactamase type 1-producing Enterobacteriaceae and non-Enterobacteriaceae: Global case detection and bacterial surveillance. Int. J. Infect. Dis., 2013, 17(5), e325-e333.
[http://dx.doi.org/10.1016/j.ijid.2012.11.025] [PMID: 23332300]
[16]
Grundmann, H.; Livermore, D.M.; Giske, C.G.; Cantón, R.; Rossolini, G.M.; Campos, J.; Vatopoulos, A.; Gniadkowski, M.; Toth, A.; Pfeifer, Y.; Jarlier, V.; Carmeli, Y. Carbapenem-non-susceptible Enterobacteriaceae in Europe: Conclusions from a meeting of national experts. Euro Surveill., 2010, 15(46), 19711.
[http://dx.doi.org/10.2807/ese.15.46.19711-en] [PMID: 21144429]
[17]
Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect. Dis., 2011, 11(5), 355-362.
[http://dx.doi.org/10.1016/S1473-3099(11)70059-7] [PMID: 21478057]
[18]
Groundwater, P.W.; Xu, S.; Lai, F.; Váradi, L.; Tan, J.; Perry, J.D.; Hibbs, D.E. New Delhi metallo-β-lactamase-1: Structure, inhibitors and detection of producers. Future Med. Chem., 2016, 8(9), 993-1012.
[http://dx.doi.org/10.4155/fmc-2016-0015] [PMID: 27253479]
[19]
Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci., 2015, 22(1), 90-101.
[http://dx.doi.org/10.1016/j.sjbs.2014.08.002] [PMID: 25561890]
[20]
Codjoe, F.; Donkor, E. Carbapenem resistance: A review. Med. Sci., 2017, 6(1), 1.
[http://dx.doi.org/10.3390/medsci6010001] [PMID: 29267233]
[21]
Rolain, J.M.; Parola, P.; Cornaglia, G. New Delhi metallo-beta-lactamase (NDM-1): Towards a new pandemia? Clin. Microbiol. Infect., 2010, 16(12), 1699-1701.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03385.x] [PMID: 20874758]
[22]
Ho, P.L.; Li, Z.; Lo, W.U.; Cheung, Y.Y.; Lin, C.H.; Sham, P.C.; Cheng, V.C.; Ng, T.K.; Que, T.L.; Chow, K.H. Identification and characterization of a novel incompatibility group X3 plasmid carrying bla NDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg. Microbes Infect., 2012, 1(11), e39.
[PMID: 26038408]
[23]
Partridge, S.R.; Iredell, J.R. Genetic contexts of blaNDM-1. Antimicrob. Agents Chemother., 2012, 56(11), 6065-6067.
[http://dx.doi.org/10.1128/AAC.00117-12] [PMID: 23074228]
[24]
Nordmann, P.; Poirel, L.; Walsh, T.R.; Livermore, D.M. The emerging NDM carbapenemases. Trends Microbiol., 2011, 19(12), 588-595.
[http://dx.doi.org/10.1016/j.tim.2011.09.005] [PMID: 22078325]
[25]
Nordmann, P.; Gniadkowski, M.; Giske, C.G.; Poirel, L.; Woodford, N.; Miriagou, V. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect., 2012, 18(5), 432-438.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03815.x] [PMID: 22507110]
[26]
Nordmann, P.; Boulanger, A.E.; Poirel, L. NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrob. Agents Chemother., 2012, 56(4), 2184-2186.
[http://dx.doi.org/10.1128/AAC.05961-11] [PMID: 22252797]
[27]
Carattoli, A.; Seiffert, S.N.; Schwendener, S.; Perreten, V.; Endimiani, A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS. One., 2015, 10(5), e0123063.
[http://dx.doi.org/10.1371/journal.pone.0123063] [PMID: 25933288]
[28]
Rogers, B.A.; Sidjabat, H.E.; Silvey, A.; Anderson, T.L.; Perera, S.; Li, J.; Paterson, D.L. Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae. Microb. Drug Resist., 2013, 19(2), 100-103.
[http://dx.doi.org/10.1089/mdr.2012.0063] [PMID: 23330550]
[29]
Zhang; Hao, Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J., 2011, 25(8), 2574-2582.
[http://dx.doi.org/10.1096/fj.11-184036] [PMID: 21507902]
[30]
King, D.; Strynadka, N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci., 2011, 20(9), 1484-1491.
[http://dx.doi.org/10.1002/pro.697] [PMID: 21774017]
[31]
Lassaux, P.; Traoré, D.A.K.; Loisel, E.; Favier, A.; Docquier, J.D.; Sohier, J.S.; Laurent, C.; Bebrone, C.; Frère, J.M.; Ferrer, J.L.; Galleni, M. Biochemical and structural characterization of the subclass B1 metallo-β-lactamase VIM-4. Antimicrob. Agents. Chemother., 2011, 55(3), 1248-1255.
[http://dx.doi.org/10.1128/AAC.01486-09] [PMID: 21149620]
[32]
Lisa, M.N.; Palacios, A.R.; Aitha, M.; González, M.M.; Moreno, D.M.; Crowder, M.W.; Bonomo, R.A.; Spencer, J.; Tierney, D.L.; Llarrull, L.I.; Vila, A.J. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Commun., 2017, 8(1), 538.
[http://dx.doi.org/10.1038/s41467-017-00601-9] [PMID: 28912448]
[33]
Feng, H.; Ding, J.; Zhu, D.; Liu, X.; Xu, X.; Zhang, Y.; Zang, S.; Wang, D.C.; Liu, W. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J. Am. Chem. Soc., 2014, 136(42), 14694-14697.
[http://dx.doi.org/10.1021/ja508388e] [PMID: 25268575]
[34]
Cheng, Z.; Thomas, P.W.; Ju, L.; Bergstrom, A.; Mason, K.; Clayton, D.; Miller, C.; Bethel, C.R.; VanPelt, J.; Tierney, D.L.; Page, R.C.; Bonomo, R.A.; Fast, W.; Crowder, M.W. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J. Biol. Chem., 2018, 293(32), 12606-12618.
[http://dx.doi.org/10.1074/jbc.RA118.003835] [PMID: 29909397]
[35]
Makena, A.; Brem, J.; Pfeffer, I.; Geffen, R.E.J.; Wilkins, S.E.; Tarhonskaya, H.; Flashman, E.; Phee, L.M.; Wareham, D.W.; Schofield, C.J. Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. J. Antimicrob. Chemother., 2015, 70(2), 463-469.
[http://dx.doi.org/10.1093/jac/dku403] [PMID: 25324420]
[36]
Espinal, P.; Poirel, L.; Carmeli, Y.; Kaase, M.; Pal, T.; Nordmann, P.; Vila, J. Spread of NDM-2-producing Acinetobacter baumannii in the middle east. J. Antimicrob. Chemother., 2013, 68(8), 1928-1930.
[http://dx.doi.org/10.1093/jac/dkt109] [PMID: 23674763]
[37]
Du, H.; Chen, L.; Chavda, K.D.; Pandey, R.; Zhang, H.; Xie, X.; Tang, Y.W.; Kreiswirth, B.N. Genomic characterization of enterobacter cloacae isolates from china that coproduce KPC-3 and NDM-1 carbapenemases. Antimicrob. Agents Chemother., 2016, 60(4), 2519-2523.
[http://dx.doi.org/10.1128/AAC.03053-15] [PMID: 26787700]
[38]
Tada, T.; Miyoshi-Akiyama, T.; Shimada, K.; Kirikae, T. Biochemical analysis of metallo-β-lactamase NDM-3 from a multidrug-resistant Escherichia coli strain isolated in Japan. Antimicrob. Agents. Chemother., 2014, 58(6), 3538-3540.
[http://dx.doi.org/10.1128/AAC.02793-13] [PMID: 24687501]
[39]
Khan, A.U.; Parvez, S. Detection of bla NDM-4 in Escherichia coli from hospital sewage. J. Med. Microbiol., 2014, 63(10), 1404-1406.
[http://dx.doi.org/10.1099/jmm.0.076026-0] [PMID: 25071158]
[40]
Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods, 2005, 63(3), 219-228.
[http://dx.doi.org/10.1016/j.mimet.2005.03.018] [PMID: 15935499]
[41]
Poirel, L.; Bonnin, R.A.; Nordmann, P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob. Agents Chemother., 2011, 55(9), 4224-4229.
[http://dx.doi.org/10.1128/AAC.00165-11] [PMID: 21746951]
[42]
Hornsey, M.; Phee, L.; Wareham, D.W. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother., 2011, 55(12), 5952-5954.
[http://dx.doi.org/10.1128/AAC.05108-11] [PMID: 21930874]
[43]
Ho, P.L.; Wang, Y.; Liu, M.C.J.; Lai, E.L.Y.; Law, P.Y.T.; Cao, H.; Chow, K.H. IncX3 epidemic plasmid carrying blaNDM-5 in Escherichia coli from swine in multiple geographic areas in China. Antimicrob. Agents Chemother., 2018, 62(3), e02295-17.
[http://dx.doi.org/10.1128/AAC.02295-17] [PMID: 29311058]
[44]
Williamson, D.A.; Sidjabat, H.E.; Freeman, J.T.; Roberts, S.A.; Silvey, A.; Woodhouse, R.; Mowat, E.; Dyet, K.; Paterson, D.L.; Blackmore, T.; Burns, A.; Heffernan, H. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int. J. Antimicrob. Agents, 2012, 39(6), 529-533.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.02.017] [PMID: 22526013]
[45]
Ali, A.; Gupta, D.; Srivastava, G.; sharma, A.; Khan, A.U. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. J. Biomol. Struct. Dyn., 2019, 37(8), 2061-2071.
[http://dx.doi.org/10.1080/07391102.2018.1475261] [PMID: 29749296]
[46]
Göttig, S.; Hamprecht, A.G.; Christ, S.; Kempf, V.A.J.; Wichelhaus, T.A. Detection of NDM-7 in Germany, a new variant of the New Delhi metallo- -lactamase with increased carbapenemase activity. J. Antimicrob. Chemother., 2013, 68(8), 1737-1740.
[http://dx.doi.org/10.1093/jac/dkt088] [PMID: 23557929]
[47]
Tada, T.; Miyoshi-Akiyama, T.; Dahal, R.K.; Sah, M.K.; Ohara, H.; Kirikae, T.; Pokhrel, B.M. NDM-8 metallo-β-lactamase in a multidrug-resistant Escherichia coli strain isolated in Nepal. Antimicrob. Agents Chemother., 2013, 57(5), 2394-2396.
[http://dx.doi.org/10.1128/AAC.02553-12] [PMID: 23459485]
[48]
Wang, X.; Li, H.; Zhao, C.; Chen, H.; Liu, J.; Wang, Z.; Wang, Q.; Zhang, Y.; He, W.; Zhang, F.; Wang, H. Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. Int. J. Antimicrob. Agents, 2014, 44(1), 90-91.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.04.010] [PMID: 24913967]
[49]
Khajuria, A.; Praharaj, A.K.; Kumar, M.; Grover, N. Presence of a novel variant NDM-10, of the New Delhi metallo-beta-lactamase in a Klebsiella pneumoniae isolate. Indian J. Med. Microbiol., 2016, 34(1), 121-123.
[http://dx.doi.org/10.4103/0255-0857.174101] [PMID: 26776144]
[50]
Rahman, M.; Mukhopadhyay, C.; Rai, R.P.; Singh, S.; Gupta, S.; Singh, A.; Pathak, A.; Prasad, K.N. Novel variant NDM-11 and other NDM-1 variants in multidrug-resistant Escherichia coli from South India. J. Glob. Antimicrob. Resist., 2018, 14, 154-157.
[http://dx.doi.org/10.1016/j.jgar.2018.04.001] [PMID: 29656053]
[51]
Tada, T.; Shrestha, B.; Miyoshi-Akiyama, T.; Shimada, K.; Ohara, H.; Kirikae, T.; Pokhrel, B.M. NDM-12, a novel New Delhi metallo-β-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother., 2014, 58(10), 6302-6305.
[http://dx.doi.org/10.1128/AAC.03355-14] [PMID: 25092693]
[52]
Shrestha, B.; Tada, T.; Miyoshi-Akiyama, T.; Shimada, K.; Ohara, H.; Kirikae, T.; Pokhrel, B.M. Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother., 2015, 59(9), 5847-5850.
[http://dx.doi.org/10.1128/AAC.00332-15] [PMID: 26169399]
[53]
Zou, D.; Huang, Y.; Zhao, X.; Liu, W.; Dong, D.; Li, H.; Wang, X.; Huang, S.; Wei, X.; Yan, X.; Yang, Z.; Tong, Y.; Huang, L.; Yuan, J. A novel New Delhi metallo-β-lactamase variant, NDM-14, isolated in a Chinese Hospital possesses increased enzymatic activity against carbapenems. Antimicrob. Agents Chemother., 2015, 59(4), 2450-2453.
[http://dx.doi.org/10.1128/AAC.05168-14] [PMID: 25645836]
[54]
Kazmierczak, K.M.; Rabine, S.; Hackel, M.; McLaughlin, R.E.; Biedenbach, D.J.; Bouchillon, S.K.; Sahm, D.F.; Bradford, P.A. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2016, 60(2), 1067-1078.
[http://dx.doi.org/10.1128/AAC.02379-15] [PMID: 26643349]
[55]
Liu, Z.; Wang, Y.; Walsh, T.R.; Liu, D.; Shen, Z.; Zhang, R.; Yin, W.; Yao, H.; Li, J.; Shen, J. Plasmid-mediated novel blaNDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrob. Agents Chemother., 2017, 61(5), e02233-16.
[http://dx.doi.org/10.1128/AAC.02233-16] [PMID: 28242668]
[56]
Mancini, S.; Keller, P.M.; Greiner, M.; Bruderer, V.; Imkamp, F. Detection of NDM-19, a novel variant of the New Delhi metallo-β-lactamase with increased carbapenemase activity under zinc-limited conditions, in Switzerland. Diagn. Microbiol. Infect. Dis., 2019, 95(3), 114851.
[http://dx.doi.org/10.1016/j.diagmicrobio.2019.06.003] [PMID: 31285120]
[57]
Liu, Z.; Li, J.; Wang, X.; Liu, D.; Ke, Y.; Wang, Y.; Shen, J. Novel variant of new delhi metallo-β-lactamase, NDM-20, in Escherichia coli. Front. Microbiol., 2018, 9, 248.
[http://dx.doi.org/10.3389/fmicb.2018.00248] [PMID: 29515538]
[58]
Liu, L.; Feng, Y.; McNally, A.; Zong, Z. bla NDM-21, a new variant of blaNDM in an Escherichia coli clinical isolate carrying blaCTX-M-55 and rmtB. J. Antimicrob. Chemother., 2018, 73(9), 2336-2339.
[http://dx.doi.org/10.1093/jac/dky226] [PMID: 29912337]
[59]
Liu, Z.; Piccirilli, A.; Liu, D.; Li, W.; Wang, Y.; Shen, J. Deciphering the role of V88L substitution in NDM-24 metallo-β-lactamase. Catalysts., 2019, 9(9), 744.
[http://dx.doi.org/10.3390/catal9090744]
[60]
Linciano, P.; Cendron, L.; Gianquinto, E.; Spyrakis, F.; Tondi, D. Ten years with new delhi metallo-β-lactamase-1 (NDM-1): From structural insights to inhibitor design. ACS Infect. Dis., 2019, 5(1), 9-34.
[http://dx.doi.org/10.1021/acsinfecdis.8b00247] [PMID: 30421910]
[61]
Wang, T.; Zhou, Y.; Zou, C.; Zhu, Z.; Zhu, J.; Lv, J.; Xie, X.; Chen, L.; Niu, S.; Du, H. Identification of a novel blaNDM Variant, blaNDM-33, in an Escherichia coli isolate from hospital Wastewater in China. MSphere., 2021, 6(5), e00776-21.
[http://dx.doi.org/10.1128/mSphere.00776-21] [PMID: 34643418]
[62]
Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10), 2731-2739.
[http://dx.doi.org/10.1093/molbev/msr121] [PMID: 21546353]
[63]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy