Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Numerical Modelling of Carrier Transport in Organic Field Effect Transistors

In Press, (this is not the final "Version of Record"). Available online 23 October, 2023
Author(s): Salma Hussien and Sameh Abdellatif*
Published on: 23 October, 2023

DOI: 10.2174/2352096516666230816115259

Price: $95

Abstract

Organic field effect transistors (OFETs), used in the fabrication of nanosensors, are one of the most promising devices in organic electronics because of their lightweight, flexibility, and low fabrication cost. However, the optimization of such OFETs is still in an early stage due to the minimal analytical and numerical models presented in the literature.

Objective: This research presses to demonstrate a numerical carrier transport model based on the finite element method (FEM) to investigate the I-V characteristic of OFETs.

Methods: Two various organic semiconductor materials have been included in the study, polyaniline and pentacene, where micro-scale, as well as nano-scale models have been presented. OFETs regarding channel length, dielectric thickness, and doping level impact have been studied. We nominated the threshold voltage, the on/off current ratio, the sub-threshold swing, and the field effect mobilities as the primary output evaluating parameters.

Results: The numerical model has shown the criticality of the doping effect on tuning the device flowing drain current to exceed 300 µA saturation current, along with a threshold voltage of -0.1 V under a channel length of 30 nm.

Conclusion: The study highlights the effectiveness of polyaniline over pentacene as nano-channel length OFET due to the boosted conductivity of polyaniline concerning pentacene.

[1]
J. Zhao, Z. Xu, M-K. Law, H. Heidari, S.O. Abdellatif, M.A. Imran, and R. Ghannam, "Simulation of crystalline silicon photovoltaic cells for wearable applications", IEEE Access, vol. 9, pp. 20868-20877, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3050431]
[2]
A. Gaiardo, D. Novel, E. Scattolo, M. Crivellari, A. Picciotto, F. Ficorella, E. Iacob, A. Bucciarelli, L. Petti, P. Lugli, and A. Bagolini, "Optimization of a low-power chemoresistive gas sensor: Predictive thermal modelling and mechanical failure analysis", sensors, vol. 21, no. 3, p. 783, 2021.
[http://dx.doi.org/10.3390/s21030783] [PMID: 33503884]
[3]
P.Y. Kuo, and Y.Y. Chen, "A novel low unity-gain frequency and low power consumption instrumentation amplifier design for RuO2 Uric acid biosensor measurement", IEEE Trans. Instrum. Meas., vol. 70, pp. 1-9, 2021.
[http://dx.doi.org/10.1109/TIM.2021.3060571]
[4]
A. Bhattacharjee, and K. Kandpal, "A low power, charge-sensitive preamplifier integrated with a silicon nanowire biosensor", In IEEE Latin America Electron Devices Conference (LAEDC)., 2021, pp. 1-4
Mexico, Mexico [http://dx.doi.org/10.1109/LAEDC51812.2021.9437913]
[5]
S. Grigg, R. Pullin, M. Pearson, D. Jenman, R. Cooper, A. Parkins, and C.A. Featherston, "Development of a low‐power wireless acoustic emission sensor node for aerospace applications", Struct. Contr. Health Monit., vol. 28, no. 4, p. e2701, 2021.
[http://dx.doi.org/10.1002/stc.2701]
[6]
T.T. Bui, F. Goubard, M. Ibrahim-Ouali, D. Gigmes, and F. Dumur, "Thermally activated delayed fluorescence emitters for deep blue organic light-emitting diodes: A review of recent advances", Appl. Sci., vol. 8, no. 4, p. 494, 2018.
[http://dx.doi.org/10.3390/app8040494]
[7]
S.G. Surya, H.N. Raval, R. Ahmad, P. Sonar, K.N. Salama, and V.R. Rao, "Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review", Trends Analyt. Chem., vol. 111, pp. 27-36, 2019.
[http://dx.doi.org/10.1016/j.trac.2018.11.027]
[8]
Y.H. Lee, M. Jang, M.Y. Lee, O.Y. Kweon, and J.H. Oh, "Flexible field-effect transistor-type sensors based on conjugated molecules", Chem, vol. 3, no. 5, pp. 724-763, 2017.
[http://dx.doi.org/10.1016/j.chempr.2017.10.005]
[9]
M. Song, J. Seo, H. Kim, and Y. Kim, "Ultrasensitive multi-functional flexible sensors based on organic field-effect transistors with polymer-dispersed liquid crystal sensing layers", Sci. Rep., vol. 7, no. 1, p. 2630, 2017.
[http://dx.doi.org/10.1038/s41598-017-02160-x] [PMID: 28572567]
[10]
M. Song, J. Seo, H. Kim, and Y. Kim, "Flexible thermal sensors based on organic field-effect transistors with polymeric channel/gate-insulating and light-blocking layers", ACS Omega, vol. 2, no. 7, pp. 4065-4070, 2017.
[http://dx.doi.org/10.1021/acsomega.7b00494] [PMID: 31457707]
[11]
O.O. Ogunleye, H. Sakai, Y. Ishii, and H. Murata, "Investigation of the sensing mechanism of dual-gate low-voltage organic transistor based pressure sensor", Org. Electron., vol. 75, p. 105431, 2019.
[http://dx.doi.org/10.1016/j.orgel.2019.105431]
[12]
C. Sun, R. Li, Y. Song, X. Jiang, C. Zhang, S. Cheng, and W. Hu, "Ultrasensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis", Anal. Chem., vol. 93, no. 15, pp. 6188-6194, 2021.
[http://dx.doi.org/10.1021/acs.analchem.1c00372] [PMID: 33780235]
[13]
T. Minami, T. Sato, T. Minamiki, K. Fukuda, D. Kumaki, and S. Tokito, "A novel OFET-based biosensor for the selective and sensitive detection of lactate levels", Biosens. Bioelectron., vol. 74, pp. 45-48, 2015.
[http://dx.doi.org/10.1016/j.bios.2015.06.002] [PMID: 26101795]
[14]
J. Song, J. Dailey, H. Li, H-J. Jang, L. Russell, P. Zhang, P.C. Searson, J.T-H. Wang, A.D. Everett, and H.E. Katz, "Influence of bioreceptor layer structure on myelin basic protein detection using organic field effect transistor-based biosensors", Adv. Funct. Mater., vol. 28, no. 37, p. 1802605, 2018.
[http://dx.doi.org/10.1002/adfm.201802605]
[15]
A. Świst, and J. Sołoducho, "Organic semiconductors–materials of the future", CHEMIK science-technology-market, vol. 1, pp. 289-296, 2012.
[16]
C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, "Electrical Conductivity in Doped Polyacetylene", Phys. Rev. Lett., vol. 40, no. 22, p. 1472, 1978.
[http://dx.doi.org/10.1103/PhysRevLett.40.1472]
[17]
B.D. Guenther, and D. Steel, Encyclopedia of modern optics., Academic Press, 2018.
[18]
R.J. Martín-Palma, and J. Martínez-Duart, Nanotechnology for Microelectronics and Photonics., Elsevier, 2017.
[19]
M. Kus, T.Y. Alic, C. Kirbiyik, C. Baslak, K. Kara, and D.A. Kara, "Synthesis of nanoparticles", In: Handbook of Nanomaterials for Industrial Applications., Elsevier, 2018, pp. 392-429.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00025-0]
[20]
B. Kumar, B.K. Kaushik, and Y.S. Negi, "Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review", Polym. Rev., vol. 54, no. 1, pp. 33-111, 2014.
[http://dx.doi.org/10.1080/15583724.2013.848455]
[21]
X. Tao, and V. Koncar, "Textile electronic circuits based on organic fibrous transistors", In: Smart Textiles and their Applications., Elsevier, 2016, pp. 569-598.
[http://dx.doi.org/10.1016/B978-0-08-100574-3.00025-4]
[22]
O. Ostroverkhova, Handbook of organic materials for electronic and photonic devices., Woodhead Publishing, 2018.
[23]
P.T. Liu, "TFT materials and devices", In: Encyclopedia of Modern Optics., Elsevier, 2018, pp. 12-16.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09624-7]
[24]
W-Y. Lee, J. Mei, and Z. Bao, "OFETs: Bas.ic concepts and material designs", In: The WSPC Reference On Organic Electronics: Organic Semiconductors: Fundamental aspects of materials and applications., World Scientific, 2016, pp. 19-83.
[http://dx.doi.org/10.1142/9789813148611_0002]
[25]
S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, "Organic semiconductors for solution-processable field-effect transistors (OFETs)", Angew. Chem. Int. Ed., vol. 47, no. 22, pp. 4070-4098, 2008.
[http://dx.doi.org/10.1002/anie.200701920] [PMID: 18357603]
[26]
I. Kymissis, C.D. Dimitrakopoulos, and S. Purushothaman, "High-performance bottom electrode organic thin-film transistors", IEEE Trans. Electron Dev., vol. 48, no. 6, pp. 1060-1064, 2001.
[http://dx.doi.org/10.1109/16.925226]
[27]
Z.A. Lamport, H.F. Haneef, S. Anand, M. Waldrip, and O.D. Jurchescu, "Tutorial: Organic field-effect transistors: Materials, structure and operation", J. Appl. Phys., vol. 124, no. 7, p. 071101, 2018.
[http://dx.doi.org/10.1063/1.5042255]
[28]
O. Jurchescu, Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique., Woodhead Publishing, 2013.
[http://dx.doi.org/10.1533/9780857098764.2.377]
[29]
V. Raghuwanshi, D. Bharti, A.K. Mahato, I. Varun, and S.P. Tiwari, "Solution-processed organic field-effect transistors with high performance and stability on paper substrates", ACS Appl. Mater. Interfaces, vol. 11, no. 8, pp. 8357-8364, 2019.
[http://dx.doi.org/10.1021/acsami.8b21404] [PMID: 30701957]
[30]
Y. Liu, J-Q. Zhao, W-J. Sun, Y-K. Huang, S-J. Chen, X-J. Guo, and Q. Zhang, "A facile photo-cross-linking method for polymer gate dielectrics and their applications in fully solution processed low voltage organic field-effect transistors on plastic substrate", Chin. J. Polym. Sci., vol. 36, no. 8, pp. 918-924, 2018.
[http://dx.doi.org/10.1007/s10118-018-2110-2]
[31]
H. Li, F.S. Kim, G. Ren, and S.A. Jenekhe, "High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics", J. Am. Chem. Soc., vol. 135, no. 40, pp. 14920-14923, 2013.
[http://dx.doi.org/10.1021/ja407471b] [PMID: 24066927]
[32]
S. Lan, Y. Yan, H. Yang, G. Zhang, Y. Ye, F. Li, H. Chen, and T. Guo, "Improving device performance of n-type organic field-effect transistors via doping with a p-type organic semiconductor", J. Mater. Chem. C Mater. Opt. Electron. Devices, vol. 7, no. 15, pp. 4543-4550, 2019.
[http://dx.doi.org/10.1039/C8TC05740K]
[33]
I. Benacer, and Z. Dibi, "Modeling and simulation of organic field effect transistor (OFET) using artificial neural networks", Int. J. Adv. Sci. Technol., vol. 66, pp. 79-88, 2014.
[http://dx.doi.org/10.14257/ijast.2014.66.07]
[34]
S. Fatima, U. Rafique, U.F. Ahmed, and M.M. Ahmed, "A global parameters extraction technique to model organic field effect transistors output characteristics", Solid-State Electron., vol. 152, pp. 81-92, 2019.
[http://dx.doi.org/10.1016/j.sse.2018.12.002]
[35]
Y. Yang, R.A. Nawrocki, R.M. Voyles, and H.H. Zhang, "Modeling of the electrical characteristics of an organic field effect transistor in presence of the bending effects", Org. Electron., vol. 88, p. 106000, 2021.
[http://dx.doi.org/10.1016/j.orgel.2020.106000]
[36]
S. Cho, J.S. Lee, and H. Joo, "Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications", Polymers, vol. 11, no. 12, p. 1965, 2019.
[http://dx.doi.org/10.3390/polym11121965] [PMID: 31795489]
[37]
K. Amer, S. Ebrahim, M. Feteha, M. Soliman, and A. El-Shaer, "Organic field effect transistor based on polyaniline-dodecylbenzene sulphonic acid for humidity sensor", In 34th National Radio Science Conference (NRSC)., 2017, pp. 440-447,
Alexandria, Egypt, 2017. [http://dx.doi.org/10.1109/NRSC.2017.7893514]
[38]
M. Mahadik, G. Bodkhe, N. Ingle, P. Sayyad, T. Al-Gahouari, S.M. Shirsat, K. Datta, and M.D. Shirsat, "Ethylenediaminetetra acetic acid functionalized polyaniline nanowires: Organic field effect transistor for the detection of Hg2+", J. Electron. Mater., vol. 50, no. 4, pp. 2339-2347, 2021.
[http://dx.doi.org/10.1007/s11664-020-08723-5]
[39]
A. Ali, A.M. Sallam, M. Mohsen, A. Kasry, and S.O. Abdellatif, "Ultra-low threshold voltage OFET using PANI nanofibers", IEEE Trans. Nanotechnol., vol. 21, pp. 830-835, 2022.
[http://dx.doi.org/10.1109/TNANO.2022.3230261]
[40]
S. Nair, M. Kathiresan, and T. Mukundan, "Two dimensional simulation of patternable conducting polymer electrode based organic thin film transistor", Semicond. Sci. Technol., vol. 33, no. 2, p. 025006, 2018.
[http://dx.doi.org/10.1088/1361-6641/aaa223]
[41]
H. Wang, J. Huang, S. Xing, and J. Yu, "Improved mobility and lifetime of carrier for highly efficient ternary polymer solar cells based on TIPS-pentacene in PTB7: PC 71 BM", Org. Electron., vol. 28, pp. 11-19, 2016.
[http://dx.doi.org/10.1016/j.orgel.2015.10.009]
[42]
G. Gu, M.G. Kane, J.E. Doty, and A.H. Firester, "Electron traps and hysteresis in pentacene-based organic thin-film transistors", Appl. Phys. Lett., vol. 87, no. 24, p. 243512, 2005.
[http://dx.doi.org/10.1063/1.2146059]
[43]
A. Pal, B. Kumar, and G. Tripathi, "Effect of electrode-thickness on electrical properties of organic-thin-film-transistors", In International Conference on Emerging Trends in Communication Technologies (ETCT)., 2016, pp. 1-5,
Dehradun, India, 2016. [http://dx.doi.org/10.1109/ETCT.2016.7883002]
[44]
B. Kumar, B.K. Kaushik, and Y.S. Negi, "Modeling of top and bottom contact structure organic field-effect transistors", J. vacuum sci. technol. B, vol. 31, no. 1, p. 012401, 2013.
[45]
I. Lashkov, K. Krechan, K. Ortstein, F. Talnack, S.J. Wang, S.C.B. Mannsfeld, H. Kleemann, and K. Leo, "Modulation doping for threshold voltage control in organic field-effect transistors", ACS Appl. Mater. Interfaces, vol. 13, no. 7, pp. 8664-8671, 2021.
[http://dx.doi.org/10.1021/acsami.0c22224] [PMID: 33569958]
[46]
H. Wang, S. Yi, X. Pu, and C. Yu, "Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits", ACS Appl. Mater. Interfaces, vol. 7, no. 18, pp. 9589-9597, 2015.
[http://dx.doi.org/10.1021/acsami.5b01149] [PMID: 25894982]
[47]
M.A. Moussa, A.M. Ghoneim, M.H. Abdel Rehim, S.A. Khairy, M.A. Soliman, and G.M. Turky, "Relaxation dynamic and electrical mobility for poly(methyl methacrylate)-polyaniline composites", J. Appl. Polym. Sci., vol. 134, no. 42, p. 45415, 2017.
[http://dx.doi.org/10.1002/app.45415]
[48]
M.G. Hosseini, P.Y. Sefidi, and S. Kinayyigit, "Modification of polyaniline-WO3 as a noble metal-free photo electrocatalyst with (6, 6) - Phenyl-C61- butyric acid methyl ester for solar photoelectrochemical water splitting", Mater. Sci. Semicond. Process., vol. 121, p. 105440, 2021.
[http://dx.doi.org/10.1016/j.mssp.2020.105440]
[49]
S. Kim, S. Go, and S. Kim, "Simulation study about negative capacitance effects on recessed channel tunnel FET", Jpn. J. Appl. Phys., vol. 60, no. SC, p. SCCE07, 2021.
[http://dx.doi.org/10.35848/1347-4065/abf2d2]
[50]
H.R. Yang, and Y.Y. Lai, "Regulate the electron mobility and threshold voltage of P(NDI2OD‐T2)‐Based organic field‐effect transistors by the compatibility principle", Adv. Electron. Mater., vol. 7, no. 2, p. 2000939, 2021.
[http://dx.doi.org/10.1002/aelm.202000939]
[51]
J.H. Kim, J.T. Jang, J.H. Bae, S.J. Choi, D.M. Kim, C. Kim, Y. Kim, and D.H. Kim, "Analysis of threshold voltage shift for Full VGS/VDS/oxygen-content span under positive bias stress in bottom-gate amorphous InGaZnO thin-film transistors", Micromachines, vol. 12, no. 3, p. 327, 2021.
[http://dx.doi.org/10.3390/mi12030327] [PMID: 33808738]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy