Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

LncRNA LINC00847 Accelerates Melanoma Progression by Regulating MiR-133a-3p/TGFBR1 Axis

Author(s): Lei Jiang, Xiufang Shi, Yanxin Liu and Huaxia Chen*

Volume 27, Issue 8, 2024

Published on: 30 October, 2023

Page: [1231 - 1241] Pages: 11

DOI: 10.2174/1386207326666230816113411

Price: $65

conference banner
Abstract

Aims: Growing evidence has suggested that lncRNAs play a regulatory role in tumorigenesis. Dysregulation of a newly identified lncRNA (LINC00847) has been involved in several tumors. Nevertheless, the expression and roles of lncRNAs in skin melanoma remain unclear. Therefore, we attempted to investigate the expressions and roles of lncRNAs in this study.

Materials and Methods: Expression levels of LINC00847 were quantified in tissue samples from the TCGA database and clinically recruited participants. LINC00847 was inhibited in cells by transfecting with si-LINC00847 or si-NC. Expressions of LINC00847 and miR-133a-3p were determined using RT-qPCR, and the TGFBR1 level was determined using Western blotting. Targeting sites of LINC00847 with miR-133a-3p and miR-133a-3p with TGFBR1 were predicted by bioinformatic tools and proved by dual-luciferase reporter system and RNA immunoprecipitation. Cell proliferation, invasion, and migration abilities were assessed using CCK8, cell colony formation, cell wound scratch, and transwell assay, respectively.

Results: In both TCGA and clinical cohorts, the expression of LINC00847 was abnormally upregulated in skin melanoma tissues than that of benign nevus. Besides, LINC00847 expression increased more markedly in A375 and SK-MEL-28 cells than in normal epidermal melanocytes (HEMa-LP cells). LINC00847 knockdown remarkably restrained skin melanoma cell proliferation, metastasis, and wound healing rate. Furthermore, miR-133a-3p/TGFBR1 was the downstream target for LINC00847. LINC00847 negatively regulated miR-133a-3p expression in skin melanoma cells. Both miR-133a-3p inhibitors and TGFBR1 vector transfection reversed the effect of LINC00847 silence in skin melanoma cells.

Conclusion: LINC00847 was highly expressed in skin melanoma, and its overexpression accelerated the malignant tumor behavior of skin melanoma cells. The miR-133a-3p /TGFBR1 axis was involved in the roles of LINC00847 in skin melanoma.

« Previous
Graphical Abstract

[1]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[2]
Jiang, Y.; Chen, Z.; Jieping, Z.; Dongxu, H.; Xiujuan, S. Comprehensive analysis of the prognosis and biological significance for IFIT family in skin cutaneous melanoma. Int. Immunopharmacol., 2021, 101(PT A), 108344.
[http://dx.doi.org/10.1016/j.intimp.2021.108344]
[3]
Watts, C.G.; McLoughlin, K.; Goumas, C.; van Kemenade, C.H.; Aitken, J.F.; Soyer, H.P.; Fernandez, P.P.; Guitera, P.; Scolyer, R.A.; Morton, R.L.; Menzies, S.W.; Caruana, M.; Kang, Y.J.; Mann, G.J.; Chakera, A.H.; Madronio, C.M.; Armstrong, B.K.; Thompson, J.F.; Cust, A.E. Association between melanoma detected during routine skin checks and mortality. JAMA Dermatol., 2021, 157(12), 1425-1436.
[http://dx.doi.org/10.1001/jamadermatol.2021.3884] [PMID: 34730781]
[4]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[5]
Safa, A.; Gholipour, M.; Dinger, M.E.; Taheri, M.; Ghafouri-Fard, S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp. Mol. Pathol., 2020, 117, 104558.
[http://dx.doi.org/10.1016/j.yexmp.2020.104558] [PMID: 33096077]
[6]
Xu, H.L.; Tian, F.Z. Clinical significance of lncRNA MIR31HG in melanoma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4389-4395.
[PMID: 32373976]
[7]
Tang, L.; Zhang, W.; Su, B.; Yu, B. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/251098] [PMID: 23862139]
[8]
Sun, L.; Sun, P.; Zhou, Q.Y.; Gao, X.; Han, Q. Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing of miR-140. Am. J. Transl. Res., 2016, 8(9), 3939-3946.
[PMID: 27725873]
[9]
Chen, X.; Gao, J.; Yu, Y.; Zhao, Z.; Pan, Y. LncRNA FOXD3-AS1 promotes proliferation, invasion and migration of cutaneous malignant melanoma via regulating miR-325/MAP3K2. Biomed. Pharmacother., 2019, 120109438.
[http://dx.doi.org/10.1016/j.biopha.2019.109438] [PMID: 31541886]
[10]
Hu, Y.; Gu, X.; Duan, Y.; Shen, Y.; Xie, X. Bioinformatics analysis of prognosis-related long non-coding RNAs in invasive breast carcinoma. Oncol. Lett., 2020, 20(1), 113-122.
[http://dx.doi.org/10.3892/ol.2020.11558] [PMID: 32565939]
[11]
Li, H.; Chen, Y.; Wan, Q.; Shi, A.; Wang, M.; He, P.; Tang, L. Long non-coding RNA LINC00847 induced by E2F1 accelerates non-small cell lung cancer progression through targeting miR-147a/IFITM1 axis. Front. Med., 2021, 8663558.
[http://dx.doi.org/10.3389/fmed.2021.663558] [PMID: 33968966]
[12]
Tu, L.R.; Li, W.; Liu, J.; Song, X.G.; Xu, H.W. LncRNA LINC00847 contributes to hepatocellular carcinoma progression by acting as a sponge of miR-99a to induce E2F2 expression. J. Biol. Regul. Homeost. Agents, 2020, 34(6), 2195-2203.
[PMID: 33426857]
[13]
Safarpour-Dehkordi, M.; Doosti, A.; Jami, M.S. Integrative analysis of lncrnas in kidney cancer to discover a new lncRNA (LINC00847) as a therapeutic target for staphylococcal enterotoxin tst gene. Cell J., 2020, 22(S1), 101-109.
[PMID: 32779439]
[14]
Nuñez-Olvera, S.I.; Aguilar-Arnal, L.; Cisneros-Villanueva, M.; Hidalgo-Miranda, A.; Marchat, L.A.; Salinas-Vera, Y.M.; Ramos-Payán, R.; Pérez-Plasencia, C.; Carlos-Reyes, Á.; Puente-Rivera, J.; López-Camarillo, C. Breast cancer cells reprogram the oncogenic lncRNAs/mRNAs coexpression networks in three-dimensional microenvironment. Cells, 2022, 11(21), 3458.
[http://dx.doi.org/10.3390/cells11213458] [PMID: 36359853]
[15]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[16]
Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol., 2015, 1A, 68-77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[17]
Wang, L.; Liqiang, C.; Chunxia, W.; Jie, L.; Guiping, Y.; Chengying, L. LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis. Hum. Cell, 2020, 33(1), 195-204.
[18]
Li, H.; Gao, C.; Liu, L.; Zhuang, J.; Yang, J.; Liu, C.; Zhou, C.; Feng, F.; Sun, C. 7-lncRNA assessment model for monitoring and prognosis of breast cancer patients: Based on cox regression and co-expression analysis. Front. Oncol., 2019, 9, 1348.
[http://dx.doi.org/10.3389/fonc.2019.01348] [PMID: 31850229]
[19]
Gong, Y.; Ren, J.; Liu, K.; Tang, L.M. Tumor suppressor role of miR-133a in gastric cancer by repressing IGF1R. World J. Gastroenterol., 2015, 21(10), 2949-2958.
[http://dx.doi.org/10.3748/wjg.v21.i10.2949] [PMID: 25780292]
[20]
Li, W.; Chen, A.; Xiong, L.; Chen, T.; Tao, F.; Lu, Y.; He, Q.; Zhao, L.; Ou, R.; Xu, Y. miR-133a acts as a tumor suppressor in colorectal cancer by targeting eIF4A1. Tumour Biol., 2017, 39(5)
[http://dx.doi.org/10.1177/1010428317698389] [PMID: 28466778]
[21]
Xu, Y.; Zhang, L.; Xia, L.; Zhu, X. MicroRNA 133a 3p suppresses malignant behavior of non small cell lung cancer cells by negatively regulating ERBB2. Oncol. Lett., 2021, 21(6), 457.
[http://dx.doi.org/10.3892/ol.2021.12718] [PMID: 33907567]
[22]
Qin, Y.; Dang, X.; Li, W.; Ma, Q. miR-133a functions as a tumor suppressor and directly targets FSCN1 in pancreatic cancer. Oncol. Res., 2014, 21(6), 353-363.
[http://dx.doi.org/10.3727/096504014X14024160459122] [PMID: 25198665]
[23]
Sun, L.; Guo, Z.; Sun, J.; Li, J.; Dong, Z.; Zhang, Y.; Chen, J.; Kan, Q.; Yu, Z. MiR-133a acts as an anti-oncogene in Hepatocellular carcinoma by inhibiting FOSL2 through TGF-β/Smad3 signaling pathway. Biomed. Pharmacother., 2018, 107, 168-176.
[http://dx.doi.org/10.1016/j.biopha.2018.07.151] [PMID: 30086463]
[24]
Wang, X.; Zhu, L.; Lin, X.; Huang, Y.; Lin, Z. MiR-133a-3p inhibits the malignant progression of oesophageal cancer by targeting CDCA8. J. Biochem., 2021, 170(6), 689-698.
[http://dx.doi.org/10.1093/jb/mvab071] [PMID: 34117764]
[25]
Han, S.; Ding, X.; Wang, S. miR-133a-3p regulates hepatocellular carcinoma progression through targeting CORO1C. Cancer Manag. Res., 2020, 12, 8685-8693.
[26]
Dong, X.; Su, H.; Jiang, F.; Li, H.; Shi, G.; Fan, L. miR 133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol. Lett., 2018, 15(6), 8311-8318.
[http://dx.doi.org/10.3892/ol.2018.8421] [PMID: 29805563]
[27]
Wang, L.L.; Du, L.T.; Li, J.; Liu, Y.M.; Qu, A.L.; Yang, Y.M.; Zhang, X.; Zheng, G.X.; Wang, C.X. Decreased expression of miR-133a correlates with poor prognosis in colorectal cancer patients. World J. Gastroenterol., 2014, 20(32), 11340-11346.
[http://dx.doi.org/10.3748/wjg.v20.i32.11340] [PMID: 25170220]
[28]
Zhou, Y.; Yan, J.; Chen, H.; Zhou, W.; Yang, J. MicroRNA-133a-3p inhibits lung adenocarcinoma development and cisplatin resistance through targeting GINS4. Cells Tissues Organs, 2022.
[http://dx.doi.org/10.1159/000527684] [PMID: 36273455]
[29]
Li, Q.; Wang, Y.; He, J. MiR‐133a‐3p attenuates resistance of non‐small cell lung cancer cells to gefitinib by targeting SPAG5. J. Clin. Lab. Anal., 2021, 35(7), e23853.
[http://dx.doi.org/10.1002/jcla.23853] [PMID: 34057242]
[30]
Wei, L.; Peng, Y.; Shao, N.; Zhou, P. Downregulation of Tim-1 inhibits the proliferation, migration and invasion of glioblastoma cells via the miR-133a/TGFBR1 axis and the restriction of Wnt/β-catenin pathway. Cancer Cell Int., 2021, 21(1), 347.
[http://dx.doi.org/10.1186/s12935-021-02036-1] [PMID: 34225723]
[31]
Mulder, E.E.A.P.; Dwarkasing, J.T.; Tempel, D.; Spek, A.; Bosman, L.; Verver, D.; Mooyaart, A.L.; Veldt, A.A.M.; Verhoef, C.; Nijsten, T.E.C.; Grunhagen, D.J.; Hollestein, L.M. Validation of a clinicopathological and gene expression profile model for sentinel lymph node metastasis in primary cutaneous melanoma. Br. J. Dermatol., 2021, 184(5), 944-951.
[http://dx.doi.org/10.1111/bjd.19499] [PMID: 32844403]
[32]
Wang, H.; Zhang, Q.; Wang, B.; Wu, W.; Wei, J.; Li, P.; Huang, R. miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1. Eur. J. Cell Biol., 2018, 97(4), 257-268.
[http://dx.doi.org/10.1016/j.ejcb.2018.03.006] [PMID: 29588073]
[33]
Wang, H.X.; Sharma, C.; Knoblich, K.; Granter, S.R.; Hemler, M.E. EWI-2 negatively regulates TGF-β signaling leading to altered melanoma growth and metastasis. Cell Res., 2015, 25(3), 370-385.
[http://dx.doi.org/10.1038/cr.2015.17] [PMID: 25656846]
[34]
Busse, A.; Keilholz, U. Role of TGF-β in melanoma. Curr. Pharm. Biotechnol., 2011, 12(12), 2165-2175.
[http://dx.doi.org/10.2174/138920111798808437] [PMID: 21619542]
[35]
Larson, C.; Oronsky, B.; Carter, C.A.; Oronsky, A.; Knox, S.J.; Sher, D.; Reid, T.R. TGF-beta: A master immune regulator. Expert Opin. Ther. Targets, 2020, 24(5), 427-438.
[http://dx.doi.org/10.1080/14728222.2020.1744568] [PMID: 32228232]
[36]
Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy