Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Microwave and Ultrasound-Assisted Synthesis of Pyrazole Scaffolds

Author(s): Fatih Tok and Bedia Koçyiğit-Kaymakçıoğlu*

Volume 27, Issue 12, 2023

Published on: 06 September, 2023

Page: [1053 - 1071] Pages: 19

DOI: 10.2174/1385272827666230816105258

Price: $65

Abstract

Pyrazoles are well-known five-membered heterocyclic compounds and are found in a wide variety of synthetic and natural compounds. Compounds carrying pyrazole scaffolds exhibit a wide range of biological activities such as anticancer, antimicrobial, anticonvulsant, antioxidant, analgesic and anti-inflammatory effects. Pharmaceuticals with many different activities in the pyrazole structure are currently on the market (e.g., celecoxib, lonazolac, tepoxalin, rimonabant, pyrazofurin, epirizole). The pyrazole ring contains the N-N double bond, which is thought to have a key role in biological activity, and compounds with this bond are difficult to produce by organisms, so their relative abundance is very low in nature. For this reason, many studies have been carried out on this structure and it has been revealed that the structure has a unique effect spectrum. Microwave-assisted synthesis has opened up some new opportunities compared to conventional synthesis. It is possible to use less solvent and reduce processing time with microwave synthesis. In addition, better selectivity and thermal stability are provided by microwave synthesis. Ultrasound-assisted synthesis is often used to enhance conventional solvent extraction, while microwaves reveal bioactive compounds by heating without any solvent. In the traditional method of pyrazole synthesis; polar solvents, acidic and basic catalysts are needed in large quantities in the synthesis of pyrazole scaffolds. This review aims to summarize the recent advancements in the synthesis methods of a pyrazole ring with nontraditional methods. Therefore this article will provide readers with a new perspective on the synthesis of pyrazole scaffolds as an environmentally friendly alternative.

Graphical Abstract

[1]
Secrieru, A.; O’Neill, P.M.; Cristiano, M.L.S. Revisiting the structure and chemistry of 3(5)-substituted pyrazoles. Molecules, 2019, 25(1), 42.
[http://dx.doi.org/10.3390/molecules25010042] [PMID: 31877672]
[2]
Nandurkar, D.; Danao, K.; Rokde, V.; Shivhare, R.; Mahajan, U. Pyrazole scaffold: Strategies toward the synthesis and their applications. In: Strategies for the synthesis of heterocycles and their applications; Intechopen: London, 2022.
[3]
Kumar, H.; Saini, D.; Jain, S.; Jain, N. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem., 2013, 70, 248-258.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.004] [PMID: 24161702]
[4]
Ahmad, A.; Husain, A.; Khan, S.A.; Mujeeb, M.; Bhandari, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20(5), 577-584.
[http://dx.doi.org/10.1016/j.jscs.2014.12.004]
[5]
Tok, F. Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem., 2019, 84(3), 41-50.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.016] [PMID: 30481645]
[6]
Tok, F. Erdoğan, Ö.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis, in silico ADMET studies and anticancer activity of some new pyrazoline and benzodioxole derivatives. Acta Chim. Slov., 2022, 69(2), 293-303.
[http://dx.doi.org/10.17344/acsi.2021.7119] [PMID: 35861084]
[7]
Tok, F. Baltaş N.; Tatar, G.; Koçyiğit-Kaymakçıoğlu, B. Synthesis, biological evaluation and in silico studies of new pyrazoline derivatives bearing benzo[d]thiazol-2(3H)-one moiety as potential urease inhibitors. Chem. Biodivers., 2022, 19(3), e202100826.
[http://dx.doi.org/10.1002/cbdv.202100826] [PMID: 35018718]
[8]
Ashok, D.; Kavitha, R.; Gundu, S.; Hanumantha, R. Microwave-assisted synthesis of new pyrazole derivatives bearing 1,2,3-triazole scaffold as potential antimicrobial agents. J. Serb. Chem. Soc., 2017, 82(4), 357-366.
[http://dx.doi.org/10.2298/JSC160205016A]
[9]
Hamada, N.; Abdo, N. Synthesis, characterization, antimicrobial screening and free-radical scavenging activity of some novel substituted pyrazoles. Molecules, 2015, 20(6), 10468-10486.
[http://dx.doi.org/10.3390/molecules200610468] [PMID: 26060913]
[10]
Khare, S.P.; Deshmukh, T.R.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Ultrasound assisted rapid synthesis, biological evaluation, and molecular docking study of new 1,2,3-triazolyl pyrano[2,3-c]pyrazoles as antifungal and antioxidant agent. Synth. Commun., 2019, 49(19), 2521-2537.
[http://dx.doi.org/10.1080/00397911.2019.1631849]
[11]
Govindaraju, S.; Daniel, N.K.; Tabassum, S. Sulfamic acid catalyzed grinding: A facile one-pot approach for the synthesis of polysubstituted pyrazoles under green conditions. Mater. Today Proc., 2022, 62, 5336-5340.
[http://dx.doi.org/10.1016/j.matpr.2022.03.416]
[12]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Özdemir, A.; Devrim Can, Ö.; Chevallet, P. Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44(6), 2606-2610.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.002] [PMID: 18922604]
[13]
Ozmen Ozgün, D.; Gul, H.I.; Yamali, C.; Sakagami, H.; Gulcin, I.; Sukuroglu, M.; Supuran, C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem., 2019, 84, 511-517.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.028] [PMID: 30605787]
[14]
Mumtaz, A.; Majeed, A.; Zaib, S.; Ur Rahman, S.; Hameed, S.; Saeed, A.; Rafique, H.; Mughal, E.; Maalik, A.; Hussain, I.; Iqbal, J. Investigation of potent inhibitors of cholinesterase based on thiourea and pyrazoline derivatives: Synthesis, inhibition assay and molecular modeling studies. Bioorg. Chem., 2019, 90, 103036.
[http://dx.doi.org/10.1016/j.bioorg.2019.103036] [PMID: 31271943]
[15]
Kumar, K.A.; Jayaroopa, P. Pyrazoles: Synthetic strategies and their pharmaceutical applications-an overview. Int. J. Pharm. Tech. Res., 2013, 5(4), 1473-1486.
[16]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Synthesis and Applications, 2nd ed; Wiley-VCH: Weinheim, 2003, pp. 236-243.
[http://dx.doi.org/10.1002/352760183X]
[17]
Knorr, L. Einwirkung von acetessigester auf phenylhydrazin. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2597-2599.
[http://dx.doi.org/10.1002/cber.188301602194]
[18]
Beyhan, N. Koçyiğit-Kaymakçıoğlu, B.; Gümrü, S.; Aricioglu, F. Synthesis and anticonvulsant activity of some 2-pyrazolines derived from chalcones. Arab. J. Chem., 2017, 10(2), S2073-S2081.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.037]
[19]
Tok, F. Doğan, M.O.; Gürbüz, B.; Koçyi̇ği̇tkaymakçioğlu, B. Synthesis of novel pyrazoline derivatives and evaluation of their antimicrobial activity. J. Res. Pharm., 2022, 26(5), 1453-1460.
[http://dx.doi.org/10.29228/jrp.238]
[20]
Prakash, O.; Pannu, K.; Naithani, R.; Kaur, H. One‐pot synthesis of oxime derivatives of 1,3‐diphenylpyrazole‐4‐carboxaldehydes from acetophenone phenylhydrazones using Vilsmeier–Haack reagent. Synth. Commun., 2006, 36(23), 3479-3485.
[http://dx.doi.org/10.1080/00397910600942941]
[21]
Bhat, M.; Nagaraja, G.K.; Kayarmar, R.; Peethamber, S.K.; Shafeeulla, M. Design, synthesis and characterization of new 1,2,3-triazolyl pyrazole derivatives as potential antimicrobial agents via a Vilsmeier–Haack reaction approach. RSC Advances, 2016, 6, 59375-59388.
[http://dx.doi.org/10.1039/C6RA06093E]
[22]
Çetin, A. Synthesis methods of pyrazole derivates. Mus Alparslan Uni. J. Sci., 2015, 3(1), 303-321.
[23]
Zhang, W.; Liu, J.; Zhu, H.; Gao, W.; Sun, L. Practical synthesis of new β‐diketone‐connected bipyridine and its conversion to pyrazole‐centered bipyridine ligand. Synth. Commun., 2007, 37(19), 3393-3402.
[http://dx.doi.org/10.1080/00397910701487408]
[24]
Gonçalves, M.S.T.; Oliveira-Campos, A.M.F.; Rodrigues, L.M.; Proença, M.F.R.P.; Griffiths, J.; Maia, H.L.S.; Kaja, M.; Hrdina, R. Synthesis of novel derivatives of 4-amino-3,5-dicyanopyrazole. J. Chem. Res., 2004, 2004(2), 115-117.
[http://dx.doi.org/10.3184/030823404323000396]
[25]
Wu, M.H.; Hu, J.H.; Shen, D.S.; Brémond, P.; Guo, H. Regiospecific synthesis of 6-aryl-3-cyano-5-alkylamino/arylamino-1-p-tolyl-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-ones via iminophosphorane-mediated annulation. Tetrahedron, 2010, 66(27-28), 5112-5120.
[http://dx.doi.org/10.1016/j.tet.2010.04.114]
[26]
Yuen, F.K.; Hameed, B.H. Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv. Colloid Interface Sci., 2009, 149(1-2), 19-27.
[http://dx.doi.org/10.1016/j.cis.2008.12.005] [PMID: 19187928]
[27]
Sharma, A.; Piplani, P. Microwave-activated synthesis of pyrroles: A short review. J. Heterocycl. Chem., 2017, 54(1), 27-34.
[http://dx.doi.org/10.1002/jhet.2550]
[28]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[29]
Diaz-Ortiz, A.; Pricto, P.; Hoz, A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 2018, 18, 1-14.
[PMID: 30035361]
[30]
Li, H.B.; Liang, W.; Ma, C.P.; Kai, Y.M.; Li, L.; Zhang, Y.G. Rapid and convenient synthesis of N-arylmorpholines under microwave irradiation. J. Heterocycl. Chem., 2013, 50(4), 995-998.
[http://dx.doi.org/10.1002/jhet.1710]
[31]
Thakuri, A.; Banerjee, M.; Chatterjee, A. Microwave-assisted rapid and sustainable synthesis of unsymmetrical azo dyes by coupling of nitroarenes with aniline derivatives. iScience, 2022, 25(6), 104497.
[http://dx.doi.org/10.1016/j.isci.2022.104497] [PMID: 35721466]
[32]
El-Faham, A.; Khattab, S.N.; Ghabbour, H.A.; Fun, H.K.; H., Siddiqui M.R. Microwave irradiation: Synthesis and characterization of α-ketoamide and bis (α-ketoamide) derivatives via the ring opening of N-acetylisatin. Chem. Cent. J., 2014, 8(1), 27.
[http://dx.doi.org/10.1186/1752-153X-8-27] [PMID: 24839460]
[33]
Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano, 2020, 11, 100076.
[http://dx.doi.org/10.1016/j.mtnano.2020.100076]
[34]
Soni, J.P.; Chemitikanti, K.S.; Joshi, S.V.; Shankaraiah, N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Org. Biomol. Chem., 2020, 18(48), 9737-9761.
[http://dx.doi.org/10.1039/D0OB01779E] [PMID: 33211792]
[35]
Srinivas, A.; Sunitha, M.; Vasumathi Reddy, K.; Karthik, P.; Rajesh Kumar, G. Microwave-assisted synthesis of hybrid heterocyclics as biological potent molecules. J. Heterocycl. Chem., 2018, 55(7), 1564-1573.
[http://dx.doi.org/10.1002/jhet.3187]
[36]
Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sustain. Energy Rev., 2013, 28, 317-330.
[http://dx.doi.org/10.1016/j.rser.2013.08.008]
[37]
Gabano, E.; Ravera, M. Microwave-assisted synthesis: Can transition metal complexes take advantage of this “green” method? Molecules, 2022, 27(13), 4249.
[http://dx.doi.org/10.3390/molecules27134249] [PMID: 35807493]
[38]
Saini, N.; Sharma, A.; Thakur, V.K.; Makatsoris, C.; Dandia, A.; Bhagat, M.; Tonk, R.K.; Sharma, P.C. Microwave assisted green synthesis of thiazolidin-4-one derivatives: A perspective on potent antiviral and antimicrobial activities. Curr. Opin. Green Sustain. Chem., 2020, 3, 1-6.
[39]
Wang, Y.; Yang, Q.; Ke, L.; Peng, Y.; Liu, Y.; Wu, Q.; Tian, X.; Dai, L.; Ruan, R.; Jiang, L. Review on the catalytic pyrolysis of waste oil for the production of renewable hydrocarbon fuels. Fuel, 2021, 283, 119170.
[http://dx.doi.org/10.1016/j.fuel.2020.119170]
[40]
Dhanush, P.C.; Saranya, P.V.; Anilkumar, G. Microwave assisted C-H activation reaction: An overview. Tetrahedron, 2022, 105, 132614.
[http://dx.doi.org/10.1016/j.tet.2021.132614]
[41]
Le, Y.; Zhang, Y.; Wang, Q.; Rao, N.; Li, D.; Liu, L.; Ouyang, G.; Yan, L. Microwave-assisted synthesis of phenylpyrimidine derivatives via Suzuki-Miyaura reactions in water. Tetrahedron Lett., 2021, 68, 152903.
[http://dx.doi.org/10.1016/j.tetlet.2021.152903]
[42]
Manvar, A.; Shah, A. Microwave-assisted chemistry of purines and xanthines. An overview. Tetrahedron, 2013, 69(38), 8105-8127.
[http://dx.doi.org/10.1016/j.tet.2013.06.034]
[43]
Hesas, R.H.; Daud, W.M.A.W.; Sahu, J.N.; Arami-Niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. JAAP, 2013, 100, 1-11.
[44]
Meera, G.; Rohit, K.R.; Saranya, S.; Anilkumar, G. Microwave assisted synthesis of five membered nitrogen heterocycles. RSC Advances, 2020, 10(59), 36031-36041.
[http://dx.doi.org/10.1039/D0RA05150K] [PMID: 35517065]
[45]
Albuquerque, H.M.T.; Pinto, D.C.G.A.; Silva, A.M.S. Microwave irradiation: Alternative heating process for the synthesis of biologically applicable chromones, quinolones, and their precursors. Molecules, 2021, 26(20), 6293.
[http://dx.doi.org/10.3390/molecules26206293] [PMID: 34684877]
[46]
Torres-Moya, I.; Harbuzaru, A.; Donoso, B.; Prieto, P.; Ponce Ortiz, R.; Díaz-Ortiz, Á. Microwave irradiation as a powerful tool for the preparation of n-type benzotriazole semiconductors with applications in organic field-effect transistors. Molecules, 2022, 27(14), 4340.
[http://dx.doi.org/10.3390/molecules27144340] [PMID: 35889212]
[47]
Araia, A.; Wang, Y.; Robinson, B.; Jiang, C.; Brown, S.; Wildfire, C.; Shekhawat, D.; Hu, J. Microwave-assisted ammonia synthesis over Cs-Ru/CeO2 catalyst at ambient pressure: Effects of metal loading and support particle size. Catal. Commun., 2022, 170, 106491.
[http://dx.doi.org/10.1016/j.catcom.2022.106491]
[48]
Molteni, V.; Hamilton, M.M.; Mao, L.; Crane, C.M.; Termin, A.P.; Wilson, D.M. Aqueous one-pot synthesis of pyrazoles, pyrimidines and isoxazoles promoted by microwave irradiation. Synthesis, 2002, 2002(12), 1669-1674.
[http://dx.doi.org/10.1055/s-2002-33650]
[49]
da Rosa, B.; Venzke, D.; Poletti, T.; de Lima, N.; Camacho, J.; Mariotti, K.; dos Santos, M.; Pizzuti, L.; Carreño, N.; Pereira, C. Microwave assisted synthesis of thiocarbamoylpyrazoles and application as an alternative latent fingermark developers. J. Braz. Chem. Soc., 2020, 31(6), 1327-1331.
[http://dx.doi.org/10.21577/0103-5053.20200014]
[50]
Patel, N.B.; Shaikh, F.M.; Patel, H.R.; Rajani, D. Synthesis of 2-pyrazolines from pyridine based chalcone by conventional and microwave techniques: Their comparison and antimicrobial studies. J. Saudi Chem. Soc., 2016, 20, S451-S456.
[http://dx.doi.org/10.1016/j.jscs.2013.01.008]
[51]
Obermayer, D.; Glasnov, T.N.; Kappe, C.O. Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides. J. Org. Chem., 2011, 76(16), 6657-6669.
[http://dx.doi.org/10.1021/jo2009824] [PMID: 21721531]
[52]
Sridhar, R.; Perumal, P.T. Synthesis of novel 1H-pyrazole-4-carboxylic acid esters by conventional and microwave assisted Vilsmeier cyclization of hydrazones. Synth. Commun., 2003, 33(9), 1483-1488.
[http://dx.doi.org/10.1081/SCC-120018766]
[53]
Manikannan, R.; Venkatesan, R.; Muthusubramanian, S.; Yogeeswari, P.; Sriram, D. Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity. Bioorg. Med. Chem. Lett., 2010, 20(23), 6920-6924.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.137] [PMID: 20970331]
[54]
Yadav, J.S.; Reddy, B.V.S.; Satheesh, G.; Naga Lakshmi, P.; Kiran Kumar, S.; Kunwar, A.C. Rapid and efficient synthesis of optically active pyrazoles under solvent-free conditions. Tetrahedron Lett., 2004, 45(46), 8587-8590.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.040]
[55]
Gomha, S.M.; Edrees, M.M.; Faty, R.A.M.; Muhammad, Z.A.; Mabkhot, Y.N. Microwave-assisted one pot three-component synthesis of some novel pyrazole scaffolds as potent anticancer agents. Chem. Cent. J., 2017, 11(1), 37.
[http://dx.doi.org/10.1186/s13065-017-0266-4] [PMID: 29086808]
[56]
Patel, V.M.; Desai, K.R. Eco-friendly synthesis of fluorine-containing pyrazoline derivatives over potassium carbonate. ARKIVOC, 2004, 2004, 123-129.
[http://dx.doi.org/10.3998/ark.5550190.0005.111]
[57]
Bonacorso, H.G.; Martins, M.A.P.; Bittencourt, S.R.T.; Lourega, R.V.; Zanatta, N.; Flores, A.F.C. Trifluoroacetylation of unsymmetrical ketone acetals. A convenient route to obtain alkyl side chain trifluoromethylated heterocycles. J. Fluor. Chem., 1999, 99(2), 177-182.
[http://dx.doi.org/10.1016/S0022-1139(99)00146-3]
[58]
Sauzem, P.D.; Machado, P.; Rubin, M.A. da S Sant’anna, G.; Faber, H.B.; de Souza, A.H.; Mello, C.F.; Beck, P.; Burrow, R.A.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Design and microwave-assisted synthesis of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles: Novel agents with analgesic and anti-inflammatory properties. Eur. J. Med. Chem., 2008, 43(6), 1237-1247.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.018] [PMID: 17889969]
[59]
Al-Mutairi, A.A.; El-Baih, F.E.M.; Al-Hazimi, H.M. Microwave versus ultrasound assisted synthesis of some new heterocycles based on pyrazolone moiety. J. Saudi Chem. Soc., 2010, 14(3), 287-299.
[http://dx.doi.org/10.1016/j.jscs.2010.02.010]
[60]
Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Niazimbetova, Z.I.; Evans, D.H. Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part 1: Single-stage synthesis of 1′-substituted 6-amino-spiro-4-(piperidine-4′)-2H,4H-pyrano[2,3-c]pyraz-ole-5-carbonitriles. Tetrahedron, 2003, 59(38), 7491-7496.
[http://dx.doi.org/10.1016/S0040-4020(03)01178-5]
[61]
Gorobets, N.; Ermolaev, S.A.; Silin, A.V.; Nikltchenko, V.M. The interaction of 2-iminocoumarin derivatives with acetic anhydride. Visnik KharkiVs’kogo Natsional’nogo UniVersitetu im. V. N. Karazina, 2002, 573, 62-77.
[62]
Borisov, A.V.; Gorobets, N.Y.; Yermolayev, S.A.; Zhuravel’, I.O.; Kovalenko, S.M.; Desenko, S.M. One-pot microwave-assisted synthesis of a benzopyrano[2,3-c]pyrazol-3(2H)-one library. J. Comb. Chem., 2007, 9(6), 909-911.
[http://dx.doi.org/10.1021/cc700090c] [PMID: 17727267]
[63]
Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(12), 1379-1410.
[http://dx.doi.org/10.1080/00397911.2013.828078]
[64]
Flores, A.F.C.; Martins, M.A.P.; Rosa, A.; Correia Flores, D.; Zanatta, N.; Bonacorsso, H.G. Haloacetylated enol ethers: 16[5] regiospecific synthesis of 5-trichloromethyl-pyrazoles. Synth. Commun., 2002, 32(10), 1585-1594.
[http://dx.doi.org/10.1081/SCC-120004150]
[65]
Martins, M.A.P.; Pereira, C.M.P.; Beck, P.; Machado, P.; Moura, S.; Teixeira, M.V.M.; Bonacorso, H.G.; Zanatta, N. Microwave-assisted synthesis of 5-trichloromethyl substituted 1-phenyl-1H-pyrazoles and 1,2-dimethylpyrazolium chlorides. Tetrahedron Lett., 2003, 44(35), 6669-6672.
[http://dx.doi.org/10.1016/S0040-4039(03)01633-2]
[66]
Martins, M.A.P.; Beck, P.; Machado, P.; Brondani, S.; Moura, S.; Zanatta, N.; Bonacorso, H.G.; Flores, A.F.C. Microwave-assisted synthesis of novel 5-trichloromethyl-4,5-dihydro-1H-1-pyrazole methyl esters under solvent free conditions. J. Braz. Chem. Soc., 2006, 17(2), 408-411.
[http://dx.doi.org/10.1590/S0103-50532006000200027]
[67]
Yadav, L.D.S.; Singh, S.; Singh, A. Novel clay-catalysed cyclisation of salicylaldehyde semicarbazones to 2H-benz[e]-1,3-oxazin-2-ones under microwave irradiation. Tetrahedron Lett., 2002, 43(47), 8551-8553.
[http://dx.doi.org/10.1016/S0040-4039(02)02065-8]
[68]
Martins, M.A.P.; Pereira, C.M.P.; Moura, S.; Frizzo, C.P.; Beck, P.; Zanatta, N.; Bonacorso, H.G.; Flores, A.F.C. Microwave assisted regiospecific synthesis of 5-trifluoromethyl-4,5-dihydropyrazoles and-pyrazoles. J. Heterocycl. Chem., 2007, 44(5), 1195-1199.
[http://dx.doi.org/10.1002/jhet.5570440537]
[69]
Martins, M.A.P.; Peres, R.L.; Frizzo, C.P.; Scapin, E.; Moreira, D.N.; Fiss, G.F.; Zanatta, N.; Bonacorso, H.G. Solvent-free route to Î2-enamino dichloromethyl ketones and application in the synthesis of novel 5-dichloromethyl-1H-pyrazoles. J. Heterocycl. Chem., 2009, 46(6), 1247-1251.
[http://dx.doi.org/10.1002/jhet.227]
[70]
Abdel-Aziz, H.A.; El-Zahabi, H.S.A.; Dawood, K.M. Microwave-assisted synthesis and in-vitro anti-tumor activity of 1,3,4-triaryl-5-N-arylpyrazole-carboxamides. Eur. J. Med. Chem., 2010, 45(6), 2427-2432.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.026] [PMID: 20207452]
[71]
Humphries, P.S.; Finefield, J.M. Microwave-assisted synthesis utilizing supported reagents: A rapid and versatile synthesis of 1,5-diarylpyrazoles. Tetrahedron Lett., 2006, 47(14), 2443-2446.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.100]
[72]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[73]
Manna, K.; Agrawal, Y.K. Microwave assisted synthesis of new indophenazine 1,3,5-trisubstruted pyrazoline derivatives of benzofuran and their antimicrobial activity. Bioorg. Med. Chem. Lett., 2009, 19(10), 2688-2692.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.161] [PMID: 19395261]
[74]
Althagafi, I.I.; Shaaban, M.R. Microwave assisted regioselective synthesis of novel pyrazoles and pyrazolopyridazines via fluorine containing building blocks. J. Mol. Struct., 2017, 1142, 122-129.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.047]
[75]
Selvam, T.P.; Kumar, P.V.; Saravanan, G.; Prakash, C.R. Microwave-assisted synthesis, characterization and biological activity of novel pyrazole derivatives. J. Saudi Chem. Soc., 2014, 18(6), 1015-1021.
[http://dx.doi.org/10.1016/j.jscs.2011.12.006]
[76]
Popov, A.V.; Kobelevskaya, V.A.; Larina, L.I.; Rozentsveig, I.B. Synthesis of poly-functionalized pyrazoles under Vilsmeier-Haack reaction conditions. ARKIVOC, 2019, 2019(6), 1-14.
[http://dx.doi.org/10.24820/ark.5550190.p010.934]
[77]
Yuvaraj, S.; Manju, S.L. Design and synthesis of novel pyrazol-3ylthiazoles. Arab. J. Chem., 2019, 12(7), 1623-1627.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.005]
[78]
Ivonin, S.P.; Kurpil’, B.B.; Grygorenko, O.O.; Volochnyuk, D.M. Reaction of hydrazones derived from electron-deficient ketones with Vilsmeier-Haack reagent. Heterocycl. Commun., 2014, 20(6), 351-354.
[http://dx.doi.org/10.1515/hc-2014-0176]
[79]
Sood, S.; Kumari, P.; Yadav, A.N.; Kumar, A.; Singh, K. Microwave‐assisted synthesis and biological evaluation of pyrazole‐4‐carbonitriles as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(7), 2936-2944.
[http://dx.doi.org/10.1002/jhet.4003]
[80]
Zhang, D.N.; Li, J.T.; Song, Y.L.; Liu, H.M.; Li, H.Y. Efficient one-pot three-component synthesis of N-(4-arylthiazol-2-yl) hydrazones in water under ultrasound irradiation. Ultrason. Sonochem., 2012, 19(3), 475-478.
[http://dx.doi.org/10.1016/j.ultsonch.2011.10.017] [PMID: 22119427]
[81]
Borcea, A.M. Ionuț I.; Crișan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624.
[http://dx.doi.org/10.3390/molecules26030624] [PMID: 33504100]
[82]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[83]
Kumari, P.; Sood, S.; Kumar, A.; Singh, K. Microwave‐assisted Vilsmeier‐Haack synthesis of Pyrazole‐4‐carbaldehydes. J. Heterocycl. Chem., 2020, 57(2), 796-804.
[http://dx.doi.org/10.1002/jhet.3824]
[84]
Anwer, K.E.; Sayed, G.H. Conventional and microwave reactions of 1,3‐diaryl‐5,4‐enaminonitrile‐pyrazole derivative with expected antimicrobial and anticancer activities. J. Heterocycl. Chem., 2020, 57(6), 2339-2353.
[http://dx.doi.org/10.1002/jhet.3946]
[85]
Welton, T. Solvents and sustainable chemistry. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2015, 471(2183), 20150502.
[http://dx.doi.org/10.1098/rspa.2015.0502] [PMID: 26730217]
[86]
Ganapathi, M.; Jayaseelan, D.; Guhanathan, S. Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - A green approach. Ecotoxicol. Environ. Saf., 2015, 121, 87-92.
[http://dx.doi.org/10.1016/j.ecoenv.2015.05.002] [PMID: 25979455]
[87]
Sohal, H.S.; Al Kaur, M. (DS)3 catalyzed, one-pot synthesis and antibacterial studies of tetrasubstituted 1,4-dihydropyridines in aqueous media. Pharma Chem., 2016, 8, 148-156.
[88]
Singh, N.; Sandhu, K.K.; Sohal, H.S.; Kaur, M. Environment friendly-one-pot synthesis of pyrano[2,3-c]pyrazoles in miceller aqueous solution under microwave irradiation. Mater. Today Proc., 2022.
[89]
Corre, L.L.; Tak-Tak, L.; Guillard, A.; Prestat, G.; Gravier-Pelletier, C.; Busca, P. Microwave-assisted preparation of 4-amino-3-cyano-5-methoxycarbonyl-N-arylpyrazoles as building blocks for the diversity-oriented synthesis of pyrazole-based polycyclic scaffolds. Org. Biomol. Chem., 2015, 13(2), 409-423.
[http://dx.doi.org/10.1039/C4OB01951B] [PMID: 25369050]
[90]
Pal, S.; Mareddy, J.; Devi, N.S. High speed synthesis of pyrazolones using microwave-assisted neat reaction technology. J. Braz. Chem. Soc., 2008, 19(6), 1207-1214.
[http://dx.doi.org/10.1590/S0103-50532008000600023]
[91]
Pradeep, M.; Vishnuvardhan, M.; Thalari, G. A simple and efficient microwave assisted synthesis of pyrrolidinyl-quinoline based pyrazoline derivatives and their antimicrobial activity. Chem. Data Collect., 2021, 32, 100666.
[http://dx.doi.org/10.1016/j.cdc.2021.100666]
[92]
Yazdani-Elah-Abadi, A.; Simin, N.; Morekian, R.; Heydari-Dahoei, H. Microwave-promoted facile and rapid access to novel spirooxindole-furo[2,3-c]pyrazole derivatives using pyridinium ylide-assisted domino reaction. Polycycl. Aromat. Compd., 2021, 41(1), 63-72.
[http://dx.doi.org/10.1080/10406638.2019.1570948]
[93]
Pagadala, R.; Kasi, V.; Shabalala, N.G.; Jonnalagadda, S.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water - A review. Arab. J. Chem., 2022, 15(1), 103544.
[http://dx.doi.org/10.1016/j.arabjc.2021.103544]
[94]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[95]
Yousef Tizhoosh, N.; Khataee, A.; Hassandoost, R.; Darvishi Cheshmeh Soltani, R.; Doustkhah, E. Ultrasound-engineered synthesis of WS2@CeO2 heterostructure for sonocatalytic degradation of tylosin. Ultrason. Sonochem., 2020, 67, 105114.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105114] [PMID: 32278247]
[96]
Arefi-Oskoui, S.; Khataee, A.; Safarpour, M.; Orooji, Y.; Vatanpour, V. A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason. Sonochem., 2019, 58, 104633.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104633] [PMID: 31450367]
[97]
Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, S.W.; Tiekink, E.R.T. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones. J. Mol. Struct., 2015, 1081, 201-210.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.026]
[98]
Kalaria, P.N.; Satasia, S.P.; Avalani, J.R.; Raval, D.K. Ultrasound-assisted one-pot four-component synthesis of novel 2-amino-3-cyanopyridine derivatives bearing 5-imidazopyrazole scaffold and their biological broadcast. Eur. J. Med. Chem., 2014, 83, 655-664.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.071] [PMID: 25010936]
[99]
Hojati, S.F.; Mohamadi, S. Ultrasound promoted green synthesis of spiro indoline-3,4′-pyrano[2,3-c]pyrazoles. Org. Prep. Proced. Int., 2020, 52(4), 304-310.
[http://dx.doi.org/10.1080/00304948.2020.1762458]
[100]
Sujeevan Reddy, G.; Babu Nallapati, S.; Sri Saranya, P.S.V.K.; Sridhar, B.; Bhat Giliyaru, V.; Chandrashekhar Hariharapura, R.; Gautham Shenoy, G.; Pal, M. Propargylamine (secondary) as a building block in indole synthesis involving ultrasound assisted Pd/Cu-catalyzed coupling-cyclization method: Unexpected formation of (pyrazole)imine derivatives. Tetrahedron Lett., 2018, 59(52), 4587-4592.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.037]
[101]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[102]
Lie, Ken Jie M.S.F.; Lau, M.M.L. Ultrasound assisted synthesis of pyrazole fatty ester derivatives from a key C18 keto-allenic ester. Chem. Phys. Lipids, 1999, 101(2), 237-242.
[http://dx.doi.org/10.1016/S0009-3084(99)00065-1]
[103]
Ghareb, N.; Elshihawy, H.A.; Abdel-Daim, M.M.; Helal, M.A. Novel pyrazoles and pyrazolo[1,2- a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations. Bioorg. Med. Chem. Lett., 2017, 27(11), 2377-2383.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.020] [PMID: 28427813]
[104]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles. Res. Chem. Intermed., 2017, 43(1), 15-28.
[http://dx.doi.org/10.1007/s11164-016-2602-z]
[105]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Gill, C.H. Ultrasound-mediated synthesis of novel 1,2,3-triazole-based pyrazole and pyrimidine derivatives as antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 3195-3201.
[http://dx.doi.org/10.1002/jhet.2935]
[106]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Jadhav, C.K.; Nipte, A.S.; Gill, C.H. Ultrasound-assisted synthesis of novel pyrazole and pyrimidine derivatives as antimicrobial agents. J. Heterocycl. Chem., 2018, 55(3), 756-762.
[http://dx.doi.org/10.1002/jhet.3105]
[107]
Dofe, V.S.; Sarkate, A.P.; Tiwari, S.V.; Lokwani, D.K.; Karnik, K.S.; Kale, I.A.; Dodamani, S.; Jalalpure, S.S.; Burra, P.V.L.S. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg. Med. Chem. Lett., 2020, 30(22), 127592.
[http://dx.doi.org/10.1016/j.bmcl.2020.127592] [PMID: 33010448]
[108]
Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.; Shi, D. A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(3), 708-712.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.012] [PMID: 21185215]
[109]
Shabalala, N.G.; Pagadala, R.; Jonnalagadda, S.B. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrason. Sonochem., 2015, 27, 423-429.
[http://dx.doi.org/10.1016/j.ultsonch.2015.06.005] [PMID: 26186863]
[110]
Liju, W.; Ablajan, K.; Jun, F. Rapid and efficient one-pot synthesis of spiro[indoline-3,4′-pyrano[2, 3-c]pyrazole] derivatives catalyzed by l-proline under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 113-118.
[http://dx.doi.org/10.1016/j.ultsonch.2014.05.013] [PMID: 24931425]
[111]
Becerra, D.; Abonia, R.; Castillo, J.C. Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules, 2022, 27(15), 4723.
[http://dx.doi.org/10.3390/molecules27154723] [PMID: 35897899]
[112]
More, K.A.; Gandhare, N.V.; Ali, P.S.; Pathan, N.B.; Al-Mousa, K.M. An expeditious one pot green synthesis of novel bioactive 1, 4-dihydropyridine derivatives at ambient temperature and molecular modelling. Curr. Opin. Green Sustain. Chem., 2021, 4, 1-7.
[113]
Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci., 2020, 21(13), 4618.
[http://dx.doi.org/10.3390/ijms21134618] [PMID: 32610556]
[114]
Nitulescu, G.M.; Matei, L.; Aldea, I.M.; Draghici, C.; Olaru, O.T.; Bleotu, C. Ultrasound-assisted synthesis and anticancer evaluation of new pyrazole derivatives as cell cycle inhibitors. Arab. J. Chem., 2019, 12(6), 816-824.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.006]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy