Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Systematic Analysis of the Therapy Resistance Genes and their Prognostic Relevance in Cervical Cancer

Author(s): Sangavi Eswaran, Mythili Padavu, Dileep Kumar and Shama Prasada Kabekkodu*

Volume 29, Issue 25, 2023

Published on: 04 September, 2023

Page: [2018 - 2032] Pages: 15

DOI: 10.2174/1381612829666230816100623

Price: $65

conference banner
Abstract

Introduction: Critical issues in the therapeutic management of cervical cancer (CC) include therapy resistance and treatment failure. The development of therapy resistance is a multifaceted, progressive process, including genetic and epigenetic abnormalities. The present study aimed to identify genes that may contribute to therapy resistance in CC.

Materials and Methods: We have created an extensive list of the genes in cancer that are therapy-resistant using a text-mining approach. The list was compared with the TCGA-CESC dataset to identify the differentially expressed therapy resistance genes (DETRGs) in CC. We used online resources (UALCAN, DNMIVD, cBio- Portal, HCMDB, OncoDB, ShinyGO, HPA, KM Plotter, TIMER, and DGIdb) to determine the potential association between methylation and expression of therapy resistance genes with the prognosis and clinical outcomes in CC.

Results: The systematic analysis identified 71 out of 91 DETRGs showed aberrant DNA methylation. The overlapping analysis identified 25 genes to show an inverse correlation between methylation and expression. Further, differential expression or methylation could be helpful in CC staging, HPV association, prediction of metastasis and prognosis. The study identified seven driver genes in CC. The PPIN identifies ten hub genes (HGs) associated with CC staging, cancer hallmarks, and prognosis to affect long-term survival.

Conclusion: Our thorough investigation uncovered several novel genes and pathways that might contribute to therapy resistance in CC. The genes identified in our study may serve as a biomarker, prognostic indicator, and therapeutic target in CC.

« Previous
[1]
Canfell K, Kim JJ, Brisson M, et al. Mortality impact of achieving WHO cervical cancer elimination targets: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 2020; 395(10224): 591-603.
[http://dx.doi.org/10.1016/S0140-6736(20)30157-4] [PMID: 32007142]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Chan CK, Aimagambetova G, Ukybassova T, Kongrtay K, Azizan A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination-review of current perspectives. J Oncol 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/3257939] [PMID: 31687023]
[4]
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2021; 157: 103178.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103178] [PMID: 33279812]
[5]
Zhu X, Zhu H, Luo H, Zhang W, Shen Z, Hu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 2016; 10: 1885-95.
[http://dx.doi.org/10.2147/DDDT.S106412] [PMID: 27354763]
[6]
Gheorghe AS, Dumitrescu EA, Komporaly IA, Mihăilă RI, Lungulescu CV, Stănculeanu DL. New targeted therapies and combinations of treatments for cervical, endometrial, and ovarian cancers: A year in review. Curr Oncol 2022; 29(4): 2835-47.
[http://dx.doi.org/10.3390/curroncol29040231] [PMID: 35448205]
[7]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[8]
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2(2): 141-60.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[9]
Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017; 19(8): 649-58.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[10]
Tate JG, Bamford S, Jubb HC, et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res 2019; 47(D1): D941-7.
[http://dx.doi.org/10.1093/nar/gky1015] [PMID: 30371878]
[11]
Zheng G, Ma Y, Zou Y, Yin A, Li W, Dong D. HCMDB: The human cancer metastasis database. Nucleic Acids Res 2018; 46(D1): D950-5.
[http://dx.doi.org/10.1093/nar/gkx1008] [PMID: 29088455]
[12]
Cheng X, Liu Y, Wang J, et al. cSurvival: A web resource for biomarker interactions in cancer outcomes and in cell lines. Brief Bioinform 2022; 23(3): bbac090.
[http://dx.doi.org/10.1093/bib/bbac090] [PMID: 35368077]
[13]
Ge SX, Jung D, Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020; 36(8): 2628-9.
[http://dx.doi.org/10.1093/bioinformatics/btz931] [PMID: 31882993]
[14]
Eswaran S, Adiga D, Khan GN, Sriharikrishnaa S, Kabekkodu SP. Comprehensive analysis of the exocytosis pathway genes in cervical cancer. Am J Med Sci 2022; 363(6): 526-37.
[http://dx.doi.org/10.1016/j.amjms.2021.12.008] [PMID: 34995576]
[15]
Meneur C, Eswaran S, Adiga D, et al. Analysis of nuclear encoded mitochondrial gene networks in cervical cancer. Asian Pac J Cancer Prev 2021; 22(6): 1799-811.
[http://dx.doi.org/10.31557/APJCP.2021.22.6.1799] [PMID: 34181336]
[16]
Sriharikrishnaa S, Shukla V, Khan GN, Eswaran S, Adiga D, Kabekkodu SP. Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer. Reprod Biol 2021; 21(1): 100482.
[http://dx.doi.org/10.1016/j.repbio.2021.100482] [PMID: 33548740]
[17]
Kumar R, Chaudhary K, Gupta S, et al. CancerDR: Cancer drug resistance database. Sci Rep 2013; 3(1): 1445.
[http://dx.doi.org/10.1038/srep01445] [PMID: 23486013]
[18]
Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: Update 2019. Nucleic Acids Res 2019; 47(D1): D948-54.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[19]
Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016; 166(3): 740-54.
[http://dx.doi.org/10.1016/j.cell.2016.06.017] [PMID: 27397505]
[20]
Chou PH, Liao WC, Tsai KW, Chen KC, Yu JS, Chen TW. TACCO, a database connecting transcriptome alterations, pathway alterations and clinical outcomes in cancers. Sci Rep 2019; 9(1): 3877.
[http://dx.doi.org/10.1038/s41598-019-40629-z] [PMID: 30846808]
[21]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[22]
Tang G, Cho M, Wang X. OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res 2022; 50(D1): D1334-9.
[http://dx.doi.org/10.1093/nar/gkab970] [PMID: 34718715]
[23]
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019; 47(W1): W556-60.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[24]
Ding W, Chen J, Feng G, et al. DNMIVD: DNA methylation interactive visualization database. Nucleic Acids Res 2020; 48(D1): D856-62.
[http://dx.doi.org/10.1093/nar/gkz830] [PMID: 31598709]
[25]
Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep 2021; 11(1): 6047.
[http://dx.doi.org/10.1038/s41598-021-84787-5] [PMID: 33723286]
[26]
Goswami CP, Nakshatri H. PROGgeneV2: Enhancements on the existing database. BMC Cancer 2014; 14(1): 970.
[http://dx.doi.org/10.1186/1471-2407-14-970] [PMID: 25518851]
[27]
Liu SH, Shen PC, Chen CY, et al. DriverDBv3: A multi-omics database for cancer driver gene research. Nucleic Acids Res 2020; 48(D1): D863-70.
[PMID: 31701128]
[28]
Agarwal SM, Raghav D, Singh H, Raghava GPS. CCDB: A curated database of genes involved in cervix cancer. Nucleic Acids Res 2011; 39(S1): D975-9.
[http://dx.doi.org/10.1093/nar/gkq1024] [PMID: 21045064]
[29]
Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2(5): 401-4.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[30]
Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: A web server for gene set cancer analysis. Bioinformatics 2018; 34(21): 3771-2.
[http://dx.doi.org/10.1093/bioinformatics/bty411] [PMID: 29790900]
[31]
Thul PJ, Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci 2018; 27(1): 233-44.
[http://dx.doi.org/10.1002/pro.3307] [PMID: 28940711]
[32]
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 2020; 48(W1): W509-14.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[33]
Zhang D, Huo D, Xie H, et al. CHG: A systematically integrated database of cancer hallmark genes. Front Genet 2020; 11: 29.
[http://dx.doi.org/10.3389/fgene.2020.00029] [PMID: 32117445]
[34]
Cotto KC, Wagner AH, Feng YY, et al. DGIdb 3.0: A redesign and expansion of the drug-gene interaction database. Nucleic Acids Res 2018; 46(D1): D1068-73.
[http://dx.doi.org/10.1093/nar/gkx1143] [PMID: 29156001]
[35]
Piñeiro-Yáñez E, Reboiro-Jato M, Gómez-López G, et al. PanDrugs: A novel method to prioritize anticancer drug treatments according to individual genomic data. Genome Med 2018; 10(1): 41.
[http://dx.doi.org/10.1186/s13073-018-0546-1] [PMID: 29301565]
[36]
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016; 44(D1): D380-4.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[37]
Chakravarty D, Gao J, Phillips S, et al. OncoKB: A precision oncology knowledge base. JCO Precis Oncol 2017; 2017(1): 1-16.
[http://dx.doi.org/10.1200/PO.17.00011] [PMID: 28890946]
[38]
Kabekkodu SP, Bhat S, Radhakrishnan R, et al. DNA promoter methylation-dependent transcription of the double C2-like domain β (DOC2B) gene regulates tumor growth in human cervical cancer. J Biol Chem 2014; 289(15): 10637-49.
[http://dx.doi.org/10.1074/jbc.M113.491506] [PMID: 24570007]
[39]
Bhat S, Kabekkodu SP, Adiga D, et al. ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancer. Cell Biol Toxicol 2021; 37(5): 731-49.
[http://dx.doi.org/10.1007/s10565-021-09582-4] [PMID: 33566221]
[40]
Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol 2016; 27(4): e43.
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[41]
Wang N, Hou MS, Zhan Y, Shen XB, Xue HY. MALAT1 promotes cisplatin resistance in cervical cancer by activating the PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 2018; 22(22): 7653-9.
[PMID: 30536307]
[42]
Mahapatra E, Das S, Biswas S, et al. Insights of cisplatin resistance in cervical cancer: A decision making for cellular survival. Cervical Cancer. IntechOpen 2021.
[http://dx.doi.org/10.5772/intechopen.98489]
[43]
Cosper PF, McNair C, González I, et al. Decreased local immune response and retained HPV gene expression during chemoradiotherapy are associated with treatment resistance and death from cervical cancer. Int J Cancer 2020; 146(7): 2047-58.
[http://dx.doi.org/10.1002/ijc.32793] [PMID: 31732968]
[44]
Choi CH, Chung JY, Kim JH, Kim BG, Hewitt SM. Expression of fibroblast growth factor receptor family members is associated with prognosis in early stage cervical cancer patients. J Transl Med 2016; 14(1): 124.
[http://dx.doi.org/10.1186/s12967-016-0874-0] [PMID: 27154171]
[45]
Ye M, Li J, Zhou C, et al. The association between methylated CDKN2A and cervical carcinogenesis, and its diagnostic value in cervical cancer: A meta-analysis. Ther Clin Risk Manag 2016; 12: 1249-60.
[http://dx.doi.org/10.2147/TCRM.S108094] [PMID: 27574435]
[46]
Luan Y, Zhang W, Xie J, Mao J. CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway. Clin Transl Oncol 2021; 23(2): 222-8.
[http://dx.doi.org/10.1007/s12094-020-02409-4] [PMID: 32594303]
[47]
Gutiontov SI, Turchan WT, Spurr LF, et al. CDKN2A loss-of- function predicts immunotherapy resistance in non-small cell lung cancer. Sci Rep 2021; 11(1): 20059.
[http://dx.doi.org/10.1038/s41598-021-99524-1] [PMID: 34625620]
[48]
Chakraborty S, Utter MB, Frias MA, Foster DA. Cancer cells with defective RB and CDKN2A are resistant to the apoptotic effects of rapamycin. Cancer Lett 2021; 522: 164-70.
[http://dx.doi.org/10.1016/j.canlet.2021.09.020] [PMID: 34563639]
[49]
Jiang L, Chan JYW, Fung KP. Epigenetic loss of CDH1 correlates with multidrug resistance in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 422(4): 739-44.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.072] [PMID: 22634315]
[50]
Sharma A, Kaur H, De R, Srinivasan R, Pal A, Bhattacharyya S. Knockdown of E-cadherin induces cancer stem-cell-like phenotype and drug resistance in cervical cancer cells. Biochem Cell Biol 2021; 99(5): 587-95.
[http://dx.doi.org/10.1139/bcb-2020-0592] [PMID: 33677985]
[51]
Wang W, Wang L, Mizokami A, et al. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. Chin J Cancer 2017; 36(1): 35.
[http://dx.doi.org/10.1186/s40880-017-0203-x] [PMID: 28356132]
[52]
Traidej M, Chen L, Yu D, Agrawal S, Chen J. The roles of E6-AP and MDM2 in p53 regulation in human papillomavirus-positive cervical cancer cells. Antisense Nucleic Acid Drug Dev 2000; 10(1): 17-27.
[http://dx.doi.org/10.1089/oli.1.2000.10.17] [PMID: 10726657]
[53]
Ou M, Xu X, Chen Y, et al. MDM2 induces EMT via the B-Raf signaling pathway through 14-3-3. Oncol Rep 2021; 46(1): 1-9.
[http://dx.doi.org/10.3892/or.2021.8071] [PMID: 33955525]
[54]
Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 2008; 14(17): 5318-24.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5136] [PMID: 18765522]
[55]
Rhiem K, Fischer C, Bosse K, Wappenschmidt B, Schmutzler RK. Increased risk of cervical cancer in high-risk families with and without mutations in the BRCA1 and BRCA2 genes. J Clin Oncol 2007; 25(18_suppl): 5588.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.5588]
[56]
Balacescu O, Balacescu L, Tudoran O, et al. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer 2014; 14(1): 246.
[http://dx.doi.org/10.1186/1471-2407-14-246] [PMID: 24708616]
[57]
Zhang Y, Li X, Zhang J, Mao L. E6 hijacks KDM5C/lnc_000231/miR-497-5p/CCNE1 axis to promote cervical cancer progression. J Cell Mol Med 2020; 24(19): 11422-33.
[http://dx.doi.org/10.1111/jcmm.15746] [PMID: 32818316]
[58]
Liu JJ, Ho JY, Lee HW, et al. Inhibition of phosphatidylinositol 3-kinase (PI3K) signaling synergistically potentiates antitumor efficacy of paclitaxel and overcomes paclitaxel-mediated resistance in cervical cancer. Int J Mol Sci 2019; 20(14): 3383.
[http://dx.doi.org/10.3390/ijms20143383] [PMID: 31295843]
[59]
Tian X, Wang X, Cui Z, et al. A fifteen-gene classifier to predict neoadjuvant chemotherapy responses in patients with stage IB to IIB squamous cervical cancer. Adv Sci 2021; 8(10): 2001978.
[http://dx.doi.org/10.1002/advs.202001978] [PMID: 34026427]
[60]
Xiong Y, Li T, Assani G, et al. Ribociclib, a selective cyclin D kinase 4/6 inhibitor, inhibits proliferation and induces apoptosis of human cervical cancer in vitro and in vivo. Biomed Pharmacother 2019; 112: 108602.
[http://dx.doi.org/10.1016/j.biopha.2019.108602] [PMID: 30784916]
[61]
Liu Y, Zhao R, Fang S, Li Q, Jin Y, Liu B. Abemaciclib sensitizes HPV-negative cervical cancer to chemotherapy via specifically suppressing CDK4/6-Rb-E2F and mTOR pathways. Fundam Clin Pharmacol 2021; 35(1): 156-64.
[http://dx.doi.org/10.1111/fcp.12574] [PMID: 32446293]
[62]
Bhat S, Adiga D, Shukla V, Guruprasad KP, Kabekkodu SP, Satyamoorthy K. Metastatic suppression by DOC2B is mediated by inhibition of epithelial-mesenchymal transition and induction of senescence. Cell Biol Toxicol 2022; 38(2): 237-58.
[http://dx.doi.org/10.1007/s10565-021-09598-w] [PMID: 33758996]
[63]
Qin X, Guo H, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol 2019; 20(1): 12.
[http://dx.doi.org/10.1186/s13059-018-1604-0] [PMID: 30642385]
[64]
Yoshimoto Y, Sasaki Y, Murata K, et al. Mutation profiling of uterine cervical cancer patients treated with definitive radiotherapy. Gynecol Oncol 2020; 159(2): 546-53.
[http://dx.doi.org/10.1016/j.ygyno.2020.08.020] [PMID: 32951893]
[65]
Szymczyk J, Sluzalska KD, Materla I, Opalinski L, Otlewski J, Zakrzewska M. FGF/FGFR-dependent molecular mechanisms underlying anti-cancer drug resistance. Cancers 2021; 13(22): 5796.
[http://dx.doi.org/10.3390/cancers13225796] [PMID: 34830951]
[66]
Servetto A, Kollipara R, Formisano L, et al. Nuclear FGFR1 regulates gene transcription and promotes antiestrogen resistance in ER+ breast cancer. Clin Cancer Res 2021; 27(15): 4379-96.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3905] [PMID: 34011560]
[67]
Cheng YM, Chou CY, Hsu YC, Chen MJ. Influence of HPV16 E6/7 on the expression of FGF2 and FGFR type B in cervical carcinogenesis. Reprod Sci 2012; 19(6): 580-6.
[http://dx.doi.org/10.1177/1933719111432874] [PMID: 22421447]
[68]
Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer 2020; 11(8): 2000-7.
[http://dx.doi.org/10.7150/jca.40531] [PMID: 32127928]
[69]
Gyanchandani R, Ortega Alves MV, Myers JN, Kim S. A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma. Mol Cancer Res 2013; 11(12): 1585-96.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0358] [PMID: 24092775]
[70]
Lv Q, Guan S, Zhu M, Huang H, Wu J, Dai X. FGFR1 is associated with tamoxifen resistance and poor prognosis of ER-Positive breast cancers by suppressing ER protein expression. Technol Cancer Res Treat 2021; 20: 15330338211004935.
[http://dx.doi.org/10.1177/15330338211004935] [PMID: 33783288]
[71]
Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 2010; 3(3): 572-99.
[http://dx.doi.org/10.3390/ph3030572] [PMID: 27713269]
[72]
Longatto-Filho A, Pinheiro C, Martinho O, et al. Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma. BMC Cancer 2009; 9(1): 212.
[http://dx.doi.org/10.1186/1471-2407-9-212] [PMID: 19563658]
[73]
Laimer D, Dolznig H, Kollmann K, et al. PDGFR blockade is a rational and effective therapy for NPM-ALK–driven lymphomas. Nat Med 2012; 18(11): 1699-704.
[http://dx.doi.org/10.1038/nm.2966] [PMID: 23064464]
[74]
Mersch J, Jackson MA, Park M, et al. Erratum: Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian (Cancer. 2015; 121 (269-275)). Cancer 2015; 121(14): 2474-5.
[http://dx.doi.org/10.1002/cncr.29357] [PMID: 26132389]
[75]
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F. Differences in PARP inhibitors for the treatment of ovarian cancer: Mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci 2021; 22(8): 4203.
[http://dx.doi.org/10.3390/ijms22084203] [PMID: 33921561]
[76]
Rytelewski M, Tong JG, Buensuceso A, et al. BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol Oncol 2014; 8(8): 1429-40.
[http://dx.doi.org/10.1016/j.molonc.2014.05.017] [PMID: 24974076]
[77]
Pishvaian MJ, Biankin AV, Bailey P, et al. BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. Br J Cancer 2017; 116(8): 1021-6.
[http://dx.doi.org/10.1038/bjc.2017.40] [PMID: 28291774]
[78]
Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer. EBioMedicine 2016; 8: 30-9.
[http://dx.doi.org/10.1016/j.ebiom.2016.04.017] [PMID: 27428416]
[79]
Slattery ML, Lundgreen A, Herrick JS, Wolff RK. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer. Mutat Res 2011; 706(1-2): 13-20.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.10.005] [PMID: 21035469]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy