Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Design of Automatic Loading and Unloading Manipulator for CNC Gear Milling Machine

Author(s): Zhong Chen*, Xin Gao, Hu Yang, Zuxiao Song and Yongfang Wang

Volume 16, Issue 5, 2023

Published on: 02 October, 2023

Page: [335 - 344] Pages: 10

DOI: 10.2174/2212797616666230816090957

Price: $65

conference banner
Abstract

Background: At present, due to the widespread use of robotic arms for the automatic loading and unloading of CNC gear milling machines, there has been an increase in patents related to robotic arms. However, these robotic arms have issues of low efficiency and large space occupation. To solve these problems, a CNC gear milling machine with an automatic loading and unloading manipulator device needs to be designed.

Methods: This paper first designs the overall scheme of the automatic loading and unloading manipulator, and then uses Solidworks to establish a three-dimensional model. Finite element analysis software is used to analyze and simulate the deformation, stress distribution, and service life of the key components in the overall device. Finally, a prototype of the robotic arm is created based on the simulation optimization results.

Results: This paper designs a new type of automatic loading and unloading manipulator device for CNC gear milling machines, which is different from existing patents in that all its components are installed inside the machine tool protective cover. In production experiments, the operation was found to be stable and reliable, and the loading and unloading process was completed at a speed of 11s/time, consistently exceeding the manual maximum speed of 19s/time. The results indicate that the proposed clamp storage system and core rod perforation feeding method are effective.

Conclusion: The new design solves the problems of low efficiency and large space occupation in existing robotic arm patents.

[1]
Kalan S, Chauhan S, Coelho RF, et al. History of robotic surgery. J Robot Surg 2010; 4(3): 141-7.
[http://dx.doi.org/10.1007/s11701-010-0202-2] [PMID: 27638753]
[2]
Arakelian V. The history of the creation and development of hand-operated balanced manipulators(HOBM). Int Symp His Mach Mechan. Dordrecht: Springer 2004; pp. 347-56.
[http://dx.doi.org/10.1007/1-4020-2204-2_27]
[3]
Yamamoto T, Terada K, Ochiai A, Saito F, Asahara Y, Murase K. Development of Human Support Robot as the research platform of a domestic mobile manipulator 2019. https://researchmap.jp/tyama-moto0911/published_papers/42059990
[http://dx.doi.org/10.1186/s40648-019-0132-3]
[4]
Abouaïssa H, Chouraqui S. On the control of robot manipulator: A model-free approach. J Comput Sci 2019; 31: 6-16.
[http://dx.doi.org/10.1016/j.jocs.2018.12.011]
[5]
Sivčev S, Coleman J, Omerdić E, Dooly G, Toal D. Underwater manipulators: A review. Ocean Eng 2018; 163(1): 431-50.
[http://dx.doi.org/10.1016/j.oceaneng.2018.06.018]
[7]
Jin Q, Yang TL. Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators. J Mech Des 2004; 126(4): 625-39.
[http://dx.doi.org/10.1115/1.1758253]
[8]
Stock M, Miller K. Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot. J Mech Des 2003; 125(2): 292-301.
[http://dx.doi.org/10.1115/1.1563632]
[9]
Wang FY, Gao Y. Advanced studies of flexible robotic manipulators: modeling, design, control and applications. World Scientific 2003.
[http://dx.doi.org/10.1142/5290]
[10]
Marie S, Courteille E, Maurine P. Elasto-geometrical modeling and calibration of robot manipulators: Application to machining and forming applications. Mechanism Mach Theory 2013; 69: 13-43.
[http://dx.doi.org/10.1016/j.mechmachtheory.2013.05.003]
[11]
Glosser GD, Newman WS. The implementation of a natural admittance controller on an industrial manipulator. Proceedings of the 1994 IEEE International Conference on Robotics and Automation. 08-13 May 1994; San Diego, CA, USA. 1999; pp. 2: 1209-15. Available from: https://ieeexplore.ieee.org/document/351321?arnumber=351321
[12]
Jin L, Li S, Yu J, He J. Robot manipulator control using neural networks: A survey. Neurocomputing 2018; 285: 23-34.
[http://dx.doi.org/10.1016/j.neucom.2018.01.002]
[13]
Danthala S, Rao S, Mannepalli K. Robotic manipulator control by using machine learning algorithms: A review. TRANSSTEL J 2018; 8(5): 305-10. Available from: https://www.nstl.gov.cn/paper_detail.html?id=852516eb8217511c68f82fbc467c8e9a
[14]
Sudeept M, Surekha B. Comparative study of some new hybrid fuzzy algorithms for manipulator control. Jcont scieng 2007; 2007: 3. Available from: https://www.hindawi.com/journals/jcse/2007/075653/
[15]
Zeng PL, Wang SX, Qiu JJ, Ma SR, Wan XF. Flexible manipulator control based on singular perturbation theory study. Appl Mech Mater 2013; 346: 69-73.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.346.69]
[16]
Márquez R, Guerra TM, Bernal M, Kruszewski A. A non-quadratic Lyapunov functional for H∞ control of nonlinear systems via Takagi–Sugeno models. J Franklin Inst 2016; 353(4): 781-96.
[http://dx.doi.org/10.1016/j.jfranklin.2016.01.004]
[17]
Jones BA, McMahan W, Walker I. Design and analysis of a novel pneumatic manipulator. IFAC ProceVol 2014; 37(14): 687-92.
[http://dx.doi.org/10.1016/S1474-6670(17)31183-7]
[18]
Chang MK, Liou JJ, Chen ML. T–S fuzzy model-based tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles. Control Eng Pract 2011; 19(12): 1442-9.
[http://dx.doi.org/10.1016/j.conengprac.2011.08.002]
[19]
Van Damme M, Vanderborght B, Beyl P, et al. Sliding mode control of a Soft 2-DOF planar pneumatic manipulator. Int Appl Mech 2008; 44(10): 1191-9.
[http://dx.doi.org/10.1007/s10778-009-0134-6]
[20]
Chai CW, Chen YX, Wang YM. Design and research on the pneumatic packaging manipulator based on gt-designer configuration software. Adv Mat Res 2010; 174(10): 315-8.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.174.315]
[21]
Xu H, Tian J. Design of auto disturbance rejection control system for pneumatic manipulator based on PLC Technology. J Phys Conf Ser 2020; 1678(1): 012065.
[http://dx.doi.org/10.1088/1742-6596/1678/1/012065]
[22]
Zhang HY. The design of pneumatic manipulator based on PLC. Hydraulics Pneumatics & Seals 2013; 912-914: 723-6.
[23]
Brouwer DM, de Jong BR, Soemers HMJR. Design and modeling of a six DOFs MEMS-based precision manipulator. Precis Eng 2010; 34(2): 307-19.
[http://dx.doi.org/10.1016/j.precisioneng.2009.08.001]
[24]
Gao Z, Zhang D, Ge Y. Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. Robot Comput-Integr Manuf 2010; 26(2): 180-9.
[http://dx.doi.org/10.1016/j.rcim.2009.07.002]
[25]
Egota SB, Aneli N, Lorencin I, Saga M, Car Z. Path planning optimization of six-degree-of-freedom robotic manipulators using evolutionary algorithms. Int J Adv Robot Syst 2020; 17(2): 1-16. Available from: https://www.nstl.gov.cn/paper_detail.html?id=d282f2bf02abaa1456987a08003ac395
[26]
Chen C, Gayral T, Caro S, Chablat D, Moroz G, Abeywardena S. A six degree of freedom epicyclic-parallel manipulator. J Mech Robot 2012; 4(4): 041011. Available from https://www.zhangqiaokeyan.com/journal-foreigndetail/0704014650454.html
[http://dx.doi.org/10.1115/1.4007489]
[27]
Toz M, Kucuk S. Dexterous workspace optimization of an asymmetric six-degree of freedom Stewart–Gough platform type manipulator. Robot Auton Syst 2013; 61(12): 1516-28.
[http://dx.doi.org/10.1016/j.robot.2013.07.004]
[28]
Bouzgou K, Ahmed-Foitih Z. Workspace analysis and geometric modeling of 6 DOF Fanuc 200IC robot. Procedia Soc Behav Sci 2015; 182(13): 703-9.
[http://dx.doi.org/10.1016/j.sbspro.2015.04.817]
[29]
Kamel M, Alexis K, Siegwart R. Design and modeling of dexterous aerial manipulator. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 09-14 October 2016; Daejeon, Korea (South). 2016; pp. 4870-6. Available from: https://www.zhangqiaokeyan.com/academic-conferenceforeign_meeting-227035_thesis/020515587288.html
[http://dx.doi.org/10.1109/IROS.2016.7759715]
[30]
Behzadipour S, Khajepour A, Bouzgou K, Ahmed-Foitih ZA. A new cable-based parallel robot with three degrees of freedom. Multibody Syst Dyn 2005; 13(4): 371-83.
[http://dx.doi.org/10.1007/s11044-005-3985-6]
[31]
Dumlu A, Erenturk K. Trajectory tracking control for a 3-dof parallel manipulator using fractional-order $pi^d^$ control. IEEE Trans Ind Electron 2014; 61(7): 3417-26. Available from: https://ieeexplore.ieee.org/document/6582520
[http://dx.doi.org/10.1109/TIE.2013.2278964]
[32]
Kong X, Gosselin CM. Type synthesis of three-degree-of-freedom spherical parallel manipulators. Int J Robot Res 2004; 23(3): 237-45. Available from: https://journals.sagepub.com/doi/abs/10.1177/0278364904041562
[http://dx.doi.org/10.1177/0278364904041562]
[33]
Fan KC, Wang H, Zhao JW, Chang TH. Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool. Int J Mach Tools Manuf 2003; 43(15): 1561-9.
[http://dx.doi.org/10.1016/S0890-6955(03)00202-5]
[34]
Ding X, Zhang SH, Zhu MJ. An improved control method for heavy-duty truss robot. Advanced Science and Industry Research CenterProceedings of 2019 2nd International Conference on Informatics, Control and Automation (ICA 2019). 26-27 May 2019; Hangzhou, China. 2019; pp. 177-84. Available from: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=LRCM201905001030
[http://dx.doi.org/10.12783/dtcse/ica2019/30786]
[35]
Wu YL, Huang HL, Yang XJ, Li B, Jia GL, Cao QD. Design and analysis of a quadrangular truss-shaped deployable robotic manipulator for grasping large scale object. 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). 25-27 October 2018; Shenzhen, China. 2018; pp. 460-5. Available from: https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting-235660_thesis/020515925504.html
[http://dx.doi.org/10.1109/CBS.2018.8612289]
[36]
Macdonald C, Balakrishnan S, Moussavi Z. Development of a low-cost robotic manipulator and its application to human motor control studies. IASTED International Conference on Control and Applications. 1-6. Available from: https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting-253186_thesis/0705018125807.html
[37]
Sadati N, Elhamifar E. Semi-decentralized control of multi-agent systems based on redundant manipulator optimization methods 2006. Available from: https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting-208651_thesis/070509980933.html
[http://dx.doi.org/10.1109/AMC.2006.1631671]
[38]
Tian C, Fang Y, Ge QJ. Structural synthesis of parallel manipulators with coupling sub-chains. Mechanism Mach Theory 2017; 118: 84-99.
[http://dx.doi.org/10.1016/j.mechmachtheory.2017.07.014]
[39]
Rackl M, Top F, Günthner WA. DEM study on the interaction of an agitator with a screw-conveyor-discharged hopper. PARTEC 2016 (International Congress on Particle Technology). Nuremberg, Germany.
[40]
Akbar H, Prabuwono AS. The design and development of automated visual inspection system for press part sorting. 2008 International Conference on Computer Science and Information Technology. 29 August 2008 - 02 September 2008; Singapore. 2008; pp. 683-6. Available from: https://ieeexplore.ieee.org/document/4624954
[http://dx.doi.org/10.1109/ICCSIT.2008.100]
[41]
Oluwajobi A, Chen X. The effect of interatomic potentials on the onset of plasticity in the molecular dynamics (md) simulation of nanometric machining. Key Eng Mater 2013; 535-536: 330-3.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.535-536.330]
[42]
Reutov AA, Averchenkov VI, Rytov MY, Fedorov VP. Simulation of conveyor speed relay control systems. Herald of the Bauman Moscow State Technical University Series Instrument Engineering 2019; (2 (125)): 76-90.
[http://dx.doi.org/10.18698/0236-3933-2019-2-76-90]
[43]
Li YJ, Sui PJ, Zhang Q, Li CC, He Y. The review of workpiece loading and unloading robot in the catenary shot blasting. Appl Mech Mater 2014; 496-500: 578-81.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.496-500.578]
[44]
Song R, Ye YC, Sun Y, Zhang K, Dong B. Design of automatic loading and unloading system for freight car handling based on intelligent control. 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). 28-29 February 2020; Phuket, Thailand. 2020; pp. 425-31. Available from: https://ieeexplore.ieee.org/document/9050243
[45]
Shan Z, Di S. Loading-unloading test analysis of anisotropic columnar jointed basalts. J Zhejiang Univ Sci A 2013; 14(8): 603-14.
[http://dx.doi.org/10.1631/jzus.A1200261]
[46]
Longbiao L, Yingdong S, Youchao S. Modeling loading/unloading hysteresis behavior of unidirectional c/sic ceramic matrix composites. Appl Compos Mater 2013; 20(4): 655-72.
[http://dx.doi.org/10.1007/s10443-012-9294-3]
[47]
Zhang CH. New Machine Tool Loading and Unloading Equipment Based on Robot. Digital Technology & Application 2019.
[48]
Li Q, Adriaansen AC, Udding JT, Pogromsky AY. Design and control of automated guided vehicle systems: A case study. IFAC Procee Vol 2011; 44(1): 13852-7.
[http://dx.doi.org/10.3182/20110828-6-IT-1002.01232]
[49]
Park D, Kim H, Hoshi Y, Erickson Z, Kapusta A, Kemp CC. A multimodal execution monitor with anomaly classification for robot- assisted feeding. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 24-28 September 2017; ancouver, BC, Canada. 2017; pp. 5406-13. Available from: https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting-227487_thesis/020516331762.html
[http://dx.doi.org/10.1109/IROS.2017.8206437]
[50]
Mai NA, Duong XB. Algorithm for improving feeding rates of industrial welding robot ta 1400 in combination with a turntable frame. J Comp Sci Cybern 2020; 36(3): 285-94.
[http://dx.doi.org/10.15625/1813-9663/36/3/14968]
[51]
Liu BC, Institude SP. Research on Feeding System With Industrial Robot. Aviation Precision Manufacturing Technology 2018.
[52]
Nagata F, Yamane Y, Okada Y, Kusano T, Watanabe K, Habib MK. Development of post-processor approach for an industrial robot FANUC R2000iC. Artif Life Robot 2018; 23(2): 186-91.
[http://dx.doi.org/10.1007/s10015-017-0411-0]
[53]
Mangala NK. Integration and control of feeding devices. Int J Manag IT Eng 2012.
[54]
Gao W. A kind of design for intelligent photoelectric tracing trolley. Appl Mech Mater 2013; 300-301: 1600-3.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.300-301.1600]
[55]
Qi Z, Zhang Q, Yong Z, Yuantao S. Critical technology of automatic loading & unloading container of dual-trolley quayside container crane. Hoisting and Conveying Machinery 2016.
[56]
Mahil A, Rajput DS. Design of an Automatic Trolley Bachelor of Technology. National Institute of Technology 2015.
[57]
Wang T, Wu X, Liu N, Jiang X, Lin FQ. The handling trolley based on the RT-Thread and gesture control. International Conference on Electronic Information Technology (EIT 2022) 12254: 53-9.
[58]
You Y, Liu M, Ma H, et al. Investigation of the vibration sorting of non-spherical particles based on DEM simulation. Powder Technol 2018; 325(1): 316-32.
[http://dx.doi.org/10.1016/j.powtec.2017.11.002]
[59]
Martinez-Pedrero F, Tierno P. Magnetic propulsion of self-assembled colloidal carpets: Efficient cargo transport via a conveyor-belt effect. Phys Rev Appl 2015; 3(5): 051003.
[http://dx.doi.org/10.1103/PhysRevApplied.3.051003]
[60]
Zhao Y, Mine JG. Research on positioning system and automatic feeding of belt conveyor trolley. World Nonferrous Metals 2018.
[61]
Bakker M, Maio FD, Lotfi S, Bakker M, Hu M, Vahidi A. Feasibility of surface sampling in automated inspection of concrete aggregates during bulk transport on a conveyor. HISER International Conference: Advances in Recycling and Management of Construction and Demolition Waste. 21-23 June; Delft, The Netherlands. 2017.
[62]
Zheng Q, Liu P, Fang Y. General introduction of design and application of belt conveyor in the scrap iron feeding system. Modern Machinery 2010.
[63]
Shin D, Seitz F, Khatib O, Cutkosky MR. Analysis of torque capacities in hybrid actuation for human-friendly robot design. IEEE International Conference on Robotics & Automation IEEE. 03-07 May 2010; Anchorage, AK, USA. 2017; pp. 799-804. https://ieeexplore.ieee.org/document/5509628
[64]
Ha S, Coros S, Alspach A, Kim J, Yamane K. Research D. joint optimization of robot design and motion parameters using the implicit function theorem. Robotics: Science and Systems 2017; 2017.
[65]
Bin A, Rashid Tipu M. Design and Fabrication of Multi-speed Bicycle Sprocket on CNC Milling Machine. Int J Ind Eng 2020; 7(2)
[66]
Mardhia SA, Haji D. Design and fabricate of portable cnc milling machine 2013.
[67]
Frias A H, Arana MU, Petuya V, Martin EAS. Literature review of parallel manipulators Practical applications and design criteria in kinematics 2015.
[68]
Sun L, Yang S, Zhao P, Wu P, Long X, Jiang Z. Dynamic and static analysis of the key vertical parts of a large scale ultra-precision optical aspherical machine tool. Procedia CIRP 2015; 27: 247-53.
[http://dx.doi.org/10.1016/j.procir.2015.04.073]
[69]
Shen J. Optimization design and comprehensive performance analysis of bfpc gantry machine framework components. Jixie Gongcheng Xuebao 2019; 55(9): 127.
[http://dx.doi.org/10.3901/JME.2019.09.127]
[70]
Yu Y, Gao J, Xu P, Li Y. Multi-objective optimization design and performance analysis of machine tool worktable filled with BFPC. IOP Conf Series Mater Sci Eng 2018; 439(4): 042005.
[http://dx.doi.org/10.1088/1757-899X/439/4/042005]
[71]
Rothwell A. Optimization with finite element analysis. Sol Mech Appl 2017; 242: 283-96.
[http://dx.doi.org/10.1007/978-3-319-55197-5_9]
[72]
Kennedy GJ, Martins JRRA. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elem Anal Des 2014; 87: 56-73.
[http://dx.doi.org/10.1016/j.finel.2014.04.011]
[73]
Yang J, Cai T. Finite element analysis and structure optimization on beam in super heavy duty CNC gantry movable boring- milling machin. Manufacturing Technology & Machine Tool 2016.
[74]
Gao DQ, Zhang F, Mao ZY, Lin H, Yi JM. Application of honeycomb structure in machine tool table. Adv Mat Res 2011; 308-310: 1233-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.308-310.1233]
[75]
Hwang YL, Ta TN, Cheng JK. The friction effects for contact force analysis of three axes cnc machine tool. Key Eng Mater 2017; 739: 12-7.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.739.12]
[76]
Guo Z, Xu Y, Man J, Xin Z. Research on weak mode structure of CNC bevel gear miller. JTianj UniSci Tech 2008.
[77]
Research on reliability modeling of cnc system based on association rule mining. Procedia Manuf 2017; 11: 1162-9.
[http://dx.doi.org/10.1016/j.promfg.2017.07.240]
[78]
Sheng ZQ, Zhu ZX, Shi XD, Zhang CB. Research on modular division method of cnc machine tool. Adv Mat Res 2012; 503-504: 78-81.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.503-504.78]
[79]
Sun Q, Sun Y, Li L. Strength analysis and tooth shape optimization for involute gear with a few teeth. Adv Mech Eng 2018; 10(1)
[http://dx.doi.org/10.1177/1687814017751957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy