Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Extraction and Analysis of Lipid Raft Proteins with Detergent-and Non detergent-based Method

Author(s): Yuchu Chen, Hongbei Liu, Adu-Frimpong Michael, Chenlu Gu, Lu Zhao, Sheng Tian, Xiu Li, Xia Cao and Shanshan Tong*

Volume 19, Issue 7, 2023

Published on: 24 August, 2023

Page: [540 - 547] Pages: 8

DOI: 10.2174/1573412919666230816090557

Price: $65

Abstract

Introduction: Lipid raft is found on the cell membrane and is considered a microstructure rich in cholesterol, phospholipids and target proteins that are insoluble in nonionic detergents at low temperatures.

Methods: In this study, detergent and non-detergent methods were used to extract lipid rafts from different cells. With β-cyclodextrin as the negative control group, we analyzed and compared the effects of different extraction methods on the composition of lipid rafts in Caco-2 and U251 cells using three kinds of lysate, namely detergent method 1, detergent method 2 and non-detergent method, which could be extracted and collected via sucrose density gradient centrifugation. Western blotting and immunofluorescence were utilized to determine the location of lipid rafts via the proteins Caveolin-1 and Flotillin-1, which are the characteristic proteins P-gp and TrkA in cells. The total protein in the lipid raft was quantitatively determined through the BCA (detergent compatible) kit method.

Results: The results showed that the total amount of lipid raft proteins extracted via the detergent method was more than that of the non-detergent method, while the content of β-cyclodextrin control histone that caused disruption of lipid rafts structure was the lowest.

Conclusion: The detergent method extracted more abundant lipid rafts than the non-detergent method. Detergent method 2 did not only extract more fat raft layers, but also the extracted highest total protein content, wherein it demonstrated better extraction effect with more lipid raft layers and higher expression of target protein P-gp.

Graphical Abstract

[1]
Brown, D.A.; London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem., 2000, 275(23), 17221-17224.
[http://dx.doi.org/10.1074/jbc.R000005200] [PMID: 10770957]
[2]
Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature, 1997, 387(6633), 569-572.
[http://dx.doi.org/10.1038/42408] [PMID: 9177342]
[3]
Lee, I.H.; Imanaka, M.Y.; Modahl, E.H.; Torres-Ocampo, A.P. Lipid raft phase modulation by membrane-anchored proteins with inherent phase separation properties. ACS Omega, 2019, 4(4), 6551-6559.
[http://dx.doi.org/10.1021/acsomega.9b00327] [PMID: 31179407]
[4]
Levental, I. Lipid rafts come of age. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 420.
[http://dx.doi.org/10.1038/s41580-020-0252-x] [PMID: 32350456]
[5]
Wang, C.; Yu, Y.; Regen, S.L. Lipid raft formation: Key role of polyunsaturated phospholipids. Angew. Chem. Int. Ed., 2017, 56(6), 1639-1642.
[http://dx.doi.org/10.1002/anie.201611367] [PMID: 28067450]
[6]
Levental, I.; Levental, K.R.; Heberle, F.A. Lipid rafts: Controversies resolved, mysteries remain. Trends Cell Biol., 2020, 30(5), 341-353.
[http://dx.doi.org/10.1016/j.tcb.2020.01.009] [PMID: 32302547]
[7]
Rahman, M.A.; Kumar, R.; Sanchez, E.; Nazarko, T.Y. Lipid droplets and their autophagic turnover via the raft-like vacuolar microdomains. Int. J. Mol. Sci., 2021, 22(15), 8144.
[http://dx.doi.org/10.3390/ijms22158144] [PMID: 34360917]
[8]
Stephanie, E. The desmosome as model for lipid raft driven membrane domain organization. Biochim. Biophys. Acta Biomembr., 1862, 183392(9), 183392.
[http://dx.doi.org/10.1016/j.bbamem]
[9]
Rhee, H.J.; Ji, L.; Kim, S.H.; Lee, J. Human group V secretory phospholipase A2 is associated with lipid rafts and internalized in a flotillin-dependent pathway. Int. J. Mol. Med., 2013, 32(5), 1126-1136.
[http://dx.doi.org/10.3892/ijmm.2013.1492] [PMID: 24042857]
[10]
Julio, García Cordero.; Moisés, León Juárez. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS One, 2014, 9(3), 90704.
[http://dx.doi.org/10.1371/journal.pone.0090704]
[11]
Kim, J.M.; Cha, S.H.; Choi, Y.R.; Jou, I.; Joe, E.H.; Park, S.M. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci. Rep., 2016, 6(1), 28823.
[http://dx.doi.org/10.1038/srep28823] [PMID: 27346864]
[12]
Radhakrishnan, A.; McConnell, H. Condensed complexes in vesicles containing cholesterol and phospholipids. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12662-12666.
[http://dx.doi.org/10.1073/pnas.0506043102] [PMID: 16120676]
[13]
Krause, M.R.; Regen, S.L. The structural role of cholesterol in cell membranes: From condensed bilayers to lipid rafts. Acc. Chem. Res., 2014, 47(12), 3512-3521.
[http://dx.doi.org/10.1021/ar500260t] [PMID: 25310179]
[14]
Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 361-374.
[http://dx.doi.org/10.1038/nrm.2017.16] [PMID: 28356571]
[15]
Topu, A.A.; Kl, S. Erdoan.zgür; Deniz.Türkmen; Denizli, A. Inspirations of biomimetic affinity ligands: a review. ACS Omega, 2020, 7(37), 32897-32907.
[16]
Chi, H.; Tian, S.; Li, X.; Chen, Y.; Xu, Q.; Wang, Q.; Shi, W.; Adu-Frimpong, M.; Tong, S. Construction of lipid raft-coupled agarose gels as bioaffinity chromatography materials and validation with tropomyosin-related kinase A-targeted drugs. J. Chromatogr. A, 2023, 1691, 463803.
[http://dx.doi.org/10.1016/j.chroma.2023.463803] [PMID: 36731332]
[17]
Tong, S.; Sun, C.; Cao, X.; Zheng, Q.; Zhang, H.; Firempong, C.K.; Feng, Y.; Yang, Y.; Yu, J.; Xu, X. Development and thermodynamic evaluation of novel lipid raft stationary phase chromatography for screening potential antitumor agents. Biomed. Chromatogr., 2014, 28(12), 1615-1623.
[http://dx.doi.org/10.1002/bmc.3189] [PMID: 24706535]
[18]
Locke, D.; Liu, J.; Harris, A.L. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts. Biochemistry, 2005, 44(39), 13027-13042.
[http://dx.doi.org/10.1021/bi050495a] [PMID: 16185071]
[19]
Fridriksson, E.K.; Shipkova, P.A.; Sheets, E.D.; Holowka, D.; Baird, B.; McLafferty, F.W. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry, 1999, 38(25), 8056-8063.
[http://dx.doi.org/10.1021/bi9828324] [PMID: 10387050]
[20]
Engberg, O.; Lin, K.L.; Hautala, V.; Slotte, J.P.; Nyholm, T.K.M. Sphingomyelin acyl chains influence the formation of sphingomyelin- and cholesterol-encriched domains. Biophys. J., 2020, 119(5), 913-923.
[http://dx.doi.org/10.1016/j.bpj.2020.07.014] [PMID: 32755561]
[21]
Nyholm, T.K.M.; Engberg, O.; Hautala, V.; Tsuchikawa, H.; Lin, K.L.; Murata, M.; Slotte, J.P. Impact of acyl chain mismatch on the formation and properties of sphingomyelin cholesterol domains. Biophys. J., 2019, 117(9), 1577-1588.
[http://dx.doi.org/10.1016/j.bpj.2019.09.025] [PMID: 31610877]
[22]
Chhuon, C.; Zhang, S.Y.; Jung, V.; Lewandowski, D.; Lipecka, J.; Pawlak, A.; Sahali, D.; Ollero, M.; Guerrera, I.C. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J. Lipid Res., 2020, 61(11), 1512-1523.
[http://dx.doi.org/10.1194/jlr.D120000672] [PMID: 32769147]
[23]
Fabelo, N.; Martín, V.; Santpere, G.; Marín, R.; Torrent, L.; Ferrer, I.; Díaz, M. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med., 2011, 17(9-10), 1107-1118.
[http://dx.doi.org/10.2119/molmed.2011.00119] [PMID: 21717034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy