Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Intermittent Fasting against Cancer Development and Progression: Highlighting Potential Anticancer Molecular Mechanisms

Author(s): Evmorfia Psara, Efthymios Poulios, Sousana K. Papadopoulou, Maria Tolia, Georgios K. Vasios and Constantinos Giaginis*

Volume 23, Issue 17, 2023

Published on: 25 August, 2023

Page: [1889 - 1909] Pages: 21

DOI: 10.2174/1871520623666230816090229

Price: $65

conference banner
Abstract

Background: Intermittent fasting (IF) diets have been popular since the last few decades because of their provable clinical efficiency on weight control of the subjects. These diet types are generally safe, resulting in health promoting effects against several human diseases like cardiovascular diseases, diabetes mellitus, neurogenerative disorders and cancer.

Objective: To review whether IF can act against cancer development and progression, highlighting potential anticancer molecular mechanisms in clinical studies.

Methods: Applied summarization of the available clinical studies investigating the effectiveness of IF against cancer development and progression and cancer-induced indicators. Scientific databases, e.g., PubMed, and Scopus, were comprehensively searched using relative words to identify in vivo and in vitro data, as well as clinical studies.

Results: IF seems to exert health-promoting effects in cancer patients through induction of autophagy, which enhances the in vivo suppression of tumor development, by chemotherapy. IF provokes tumors to chemotherapy and defends the normal cells from its adverse side effects, increasing the immune response. In addition, it enhances the cytotoxic CD8(+) tumor-infiltrating lymphocytes and the bone marrow lymphoid progenitor cells, delaying the cancer progression. IF reduces oxidative stress via repression of translation and induces cellular apoptosis. Fasting exerts anti-aging properties modulating the secretion of IGF-1, IGFBP-1, glucose, and insulin while, at the same time, it integrates cell adaptive responses and activates cell signaling pathways which stimulates antioxidant defenses, DNA repairment, control of protein quality, mitochondrial synthesis while decreasing inflammation.

Conclusion: IF appears to exert health promoting effects against cancer development and progression, suppressing several kinds of cancer. There are well-recognized and not well-recognized molecular processes accentuating its anticancer outcomes; however, well-designed clinical trials and further molecular studies are strongly recommended.

Next »
Graphical Abstract

[1]
Mandal, S.; Simmons, N.; Awan, S.; Chamari, K.; Ahmed, I. Intermittent fasting: Eating by the clock for health and exercise performance. BMJ Open Sport Exerc. Med., 2022, 8(1), e001206.
[http://dx.doi.org/10.1136/bmjsem-2021-001206] [PMID: 35070352]
[2]
Varady, K.A.; Roohk, D.J.; McEvoy-Hein, B.K.; Gaylinn, B.D.; Thorner, M.O.; Hellerstein, M.K. Modified alternate‐day fasting regimens reduce cell proliferation rates to a similar extent as daily calorie restriction in mice. FASEB J., 2008, 22(6), 2090-2096.
[http://dx.doi.org/10.1096/fj.07-098178] [PMID: 18184721]
[3]
Duregon, E.; Pomatto-Watson, L.C.D.D.; Bernier, M.; Price, N.L.; de Cabo, R. Intermittent fasting: From calories to time restriction. Geroscience, 2021, 43(3), 1083-1092.
[http://dx.doi.org/10.1007/s11357-021-00335-z] [PMID: 33686571]
[4]
Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med., 2016, 14(1), 290.
[http://dx.doi.org/10.1186/s12967-016-1044-0] [PMID: 27737674]
[5]
Morimoto, L.M.; White, E.; Chen, Z.; Chlebowski, R.T.; Hays, J.; Kuller, L.; Lopez, A.M.; Manson, J.; Margolis, K.L.; Muti, P.C.; Stefan-ick, M.L.; McTiernan, A. Obesity, body size, and risk of postmenopausal breast cancer: The Women’s Health Initiative (United States). Cancer Causes Control, 2002, 13(8), 741-751.
[http://dx.doi.org/10.1023/A:1020239211145] [PMID: 12420953]
[6]
International Agency for Research on Cancer; World Health Organization, 2020.
[7]
Nowosad, K.; Sujka, M. Effect of various types of intermittent fasting (IF) on weight loss and improvement of diabetic parameters in hu-man. Curr. Nutr. Rep., 2021, 10(2), 146-154.
[http://dx.doi.org/10.1007/s13668-021-00353-5] [PMID: 33826120]
[8]
Wahl, D.; LaRocca, T.J. Transcriptomic effects of healthspan-promoting dietary interventions: Current evidence and future directions. Front. Nutr., 2021, 8, 712129.
[http://dx.doi.org/10.3389/fnut.2021.712129] [PMID: 34447778]
[9]
Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; Di Biase, S.; Mirzaei, H.; Mirisola, M.G.; Childress, P.; Ji, L.; Groshen, S.; Penna, F.; Odetti, P.; Perin, L.; Conti, P.S.; Ikeno, Y.; Kennedy, B.K.; Co-hen, P.; Morgan, T.E.; Dorff, T.B.; Longo, V.D. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cogni-tive performance, and healthspan. Cell Metab., 2015, 22(1), 86-99.
[http://dx.doi.org/10.1016/j.cmet.2015.05.012] [PMID: 26094889]
[10]
Abdullahi Bagudu, K.; Noreen, S.; Rizwan, B.; Bashir, S.; Khan, M.; Chishti, K.; Hussain, S.; Wahid, S. Intermittent fasting effect on weight loss. Syst. Rev., 2021.
[11]
Abdellatif, M.; Sedej, S.; Carmona-Gutierrez, D.; Madeo, F.; Kroemer, G. Autophagy in cardiovascular aging. Circ. Res., 2018, 123(7), 803-824.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312208] [PMID: 30355077]
[12]
Ahmad, A.; Khan, M.U.; Aslani, P. The role of religion, spirituality and fasting in coping with diabetes among indian migrants in Australia: A qualitative exploratory study. J. Relig. Health, 2022, 61(3), 1994-2017.
[http://dx.doi.org/10.1007/s10943-021-01438-9] [PMID: 34617198]
[13]
AlAbdan, N.A.; Almohammed, O.A.; Altukhaim, M.S.; Farooqui, M.A.; Abdalla, M.I.; Al Otaibi, H.Q.; Alshuraym, N.R.; Alghusun, S.N.; Alotaibi, L.H.; Alsayyari, A.A. Fasting during Ramadan and acute kidney injury (AKI): A retrospective, propensity matched cohort study. BMC Nephrol., 2022, 23(1), 54.
[http://dx.doi.org/10.1186/s12882-022-02674-1] [PMID: 35125093]
[14]
Aadil, N.; Houti, I.E.; Moussamih, S. Drug intake during Ramadan. BMJ, 2004, 329(7469), 778-782.
[http://dx.doi.org/10.1136/bmj.329.7469.778] [PMID: 15459052]
[15]
Grindrod, K.; Alsabbagh, W. Managing medications during Ramadan fasting. Can. Pharm. J., 2017, 150(3), 146-149.
[http://dx.doi.org/10.1177/1715163517700840] [PMID: 28507649]
[16]
Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab., 2014, 19(2), 181-192.
[http://dx.doi.org/10.1016/j.cmet.2013.12.008] [PMID: 24440038]
[17]
Crudele, L.; Piccinin, E.; Moschetta, A. Visceral adiposity and cancer: Role in pathogenesis and prognosis. Nutrients, 2021, 13(6), 2101.
[http://dx.doi.org/10.3390/nu13062101] [PMID: 34205356]
[18]
Bloom, W.L. Fasting as an introduction to the treatment of obesity. Metabolism, 1959, 8(3), 214-220.
[PMID: 13656492]
[19]
Vidoni, C.; Ferraresi, A.; Esposito, A.; Maheshwari, C.; Dhanasekaran, D.N.; Mollace, V.; Isidoro, C. Calorie restriction for cancer preven-tion and therapy: Mechanisms, expectations, and efficacy. J. Cancer Prev., 2021, 26(4), 224-236.
[http://dx.doi.org/10.15430/JCP.2021.26.4.224] [PMID: 35047448]
[20]
Schlesinger, S.; Neuenschwander, M.; Barbaresko, J.; Lang, A.; Maalmi, H.; Rathmann, W.; Roden, M.; Herder, C. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: Umbrella review of meta-analyses of prospective studies. Diabetologia, 2022, 65(2), 275-285.
[http://dx.doi.org/10.1007/s00125-021-05592-3] [PMID: 34718834]
[21]
Galati, L.; Chiocca, S.; Duca, D.; Tagliabue, M.; Simoens, C.; Gheit, T.; Arbyn, M.; Tommasino, M. HPV and head and neck cancers: Towards early diagnosis and prevention. Tumour virus Res., 2022, 14, 200245.
[http://dx.doi.org/10.1016/j.tvr.2022.200245]
[22]
Gouveia, H.J.C.B.; Urquiza-Martínez, M.V.; Manhães-de-Castro, R.; Costa-de-Santana, B.J.R.; Villarreal, J.P.; Mercado-Camargo, R.; Torner, L.; de Souza Aquino, J.; Toscano, A.E.; Guzmán-Quevedo, O. Effects of the treatment with flavonoids on metabolic syndrome components in humans: A systematic review focusing on mechanisms of action. Int. J. Mol. Sci., 2022, 23(15), 8344.
[http://dx.doi.org/10.3390/ijms23158344] [PMID: 35955475]
[23]
Majewski, M.; Mertowska, P.; Mertowski, S.; Smolak, K.; Grywalska, E.; Torres, K. Microbiota and the immune system—actors in the gastric cancer story. Cancers., 2022, 14(15), 3832.
[http://dx.doi.org/10.3390/cancers14153832] [PMID: 35954495]
[24]
Peixoto, R.D.A.; Oliveira, L.J.C.; Passarini, T.M.; Andrade, A.C.; Diniz, P.H.; Prolla, G.; Amorim, L.C.; Gil, M.; Lino, F.; Garicochea, B.; Jácome, A.; Ng, K. Vitamin D and colorectal cancer – A practical review of the literature. In: Cancer Treat. Res. Commun; , 2022; 32, p. 100616.
[http://dx.doi.org/10.1016/j.ctarc.2022.100616] [PMID: 35940119]
[25]
Zhao, Y.; Zhao, W.; Li, J.; Lin, S.; Li, L.; Ren, Z.; Lu, J.; Xing, X.; Liu, X. Effect of dietary consumption on the survival of esophageal squamous cell carcinoma: A prospective cohort study. Eur. J. Clin. Nutr., 2022, 77(1), 55-64.
[http://dx.doi.org/10.1038/s41430-022-01194-3] [PMID: 35974139]
[26]
Nishioka, S.; Aragane, H.; Suzuki, N.; Yoshimura, Y.; Fujiwara, D.; Mori, T.; Kanehisa, Y.; Iida, Y.; Higashi, K.; Yoshimura-Yokoi, Y.; Sato, C.; Toyota, M.; Tanaka, M.; Ishii, Y.; Kosaka, S.; Kumagae, N.; Fujimoto, A.; Omura, K.; Yoshida, S.; Wakabayashi, H.; Momosaki, R. Clinical practice guidelines for rehabilitation nutrition in cerebrovascular disease, hip fracture, cancer, and acute illness: 2020 update. Clin. Nutr. ESPEN, 2021, 43, 90-103.
[http://dx.doi.org/10.1016/j.clnesp.2021.02.018] [PMID: 34024570]
[27]
Laviano, A. Current guidelines for nutrition therapy in cancer: The arrival of a long journey or the starting point? JPEN. J. Parenter. Enteral Nutr., 2021, 45(S2), 12-15.
[http://dx.doi.org/10.1002/jpen.2288] [PMID: 34897734]
[28]
Fontana, L.; Villareal, D.T.; Das, S.K.; Smith, S.R.; Meydani, S.N.; Pittas, A.G.; Klein, S.; Bhapkar, M.; Rochon, J.; Ravussin, E.; Holloszy, J.O. Effects of 2‐year calorie restriction on circulating levels of IGF‐1, IGF‐binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell, 2016, 15(1), 22-27.
[http://dx.doi.org/10.1111/acel.12400] [PMID: 26443692]
[29]
Lee, C.; Longo, V.D. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene, 2011, 30(30), 3305-3316.
[http://dx.doi.org/10.1038/onc.2011.91] [PMID: 21516129]
[30]
Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; Zhou, Y.; Piccio, L. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab., 2018, 27(6), 1222-1235.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.05.006] [PMID: 29874567]
[31]
Kang, D.H. Oxidative stress, DNA damage, and breast cancer. AACN Clin. Issues, 2002, 13(4), 540-549.
[http://dx.doi.org/10.1097/00044067-200211000-00007] [PMID: 12473916]
[32]
McAllister, M.J.; Pigg, B.L.; Renteria, L.I.; Waldman, H.S. Time-restricted feeding improves markers of cardiometabolic health in physi-cally active college-age men: a 4-week randomized pre-post pilot study. Nutr. Res., 2020, 75, 32-43.
[http://dx.doi.org/10.1016/j.nutres.2019.12.001] [PMID: 31955013]
[33]
Lo Re, O.; Panebianco, C.; Porto, S.; Cervi, C.; Rappa, F.; Di Biase, S.; Caraglia, M.; Pazienza, V.; Vinciguerra, M. Fasting inhibits hepatic stellate cells activation and potentiates anti‐cancer activity of Sorafenib in hepatocellular cancer cells. J. Cell. Physiol., 2018, 233(2), 1202-1212.
[http://dx.doi.org/10.1002/jcp.25987] [PMID: 28471474]
[34]
Shi, Y.; Felley-Bosco, E.; Marti, T.M.; Orlowski, K.; Pruschy, M.; Stahel, R.A. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer, 2012, 12(1), 571.
[http://dx.doi.org/10.1186/1471-2407-12-571] [PMID: 23211021]
[35]
Bianchi, G.; Martella, R.; Ravera, S.; Marini, C.; Capitanio, S.; Orengo, A.; Emionite, L.; Lavarello, C.; Amaro, A.; Petretto, A.; Pfeffer, U.; Sambuceti, G.; Pistoia, V.; Raffaghello, L.; Longo, V.D. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget, 2015, 6(14), 11806-11819.
[http://dx.doi.org/10.18632/oncotarget.3688] [PMID: 25909219]
[36]
Leite, T.C.; Watters, R.J.; Weiss, K.R.; Intini, G. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. J. Transl. Med., 2021, 19(1), 450.
[http://dx.doi.org/10.1186/s12967-021-03122-8] [PMID: 34715874]
[37]
Brandhorst, S.; Longo, V.D. Fasting and caloric restriction in cancer prevention and treatment. Recent Results Cancer Res., 2016, 207, 241-266.
[http://dx.doi.org/10.1007/978-3-319-42118-6_12]
[38]
Greer, E.L.; Dowlatshahi, D.; Banko, M.R.; Villen, J.; Hoang, K.; Blanchard, D.; Gygi, S.P.; Brunet, A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol., 2007, 17(19), 1646-1656.
[http://dx.doi.org/10.1016/j.cub.2007.08.047] [PMID: 17900900]
[39]
Lee, S.J.; Murphy, C.T.; Kenyon, C. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab., 2009, 10(5), 379-391.
[http://dx.doi.org/10.1016/j.cmet.2009.10.003] [PMID: 19883616]
[40]
Han, Y.M.; Ramprasath, T.; Zou, M.H. β-hydroxybutyrate and its metabolic effects on age-associated pathology. Exp. Mol. Med., 2020, 52(4), 548-555.
[http://dx.doi.org/10.1038/s12276-020-0415-z] [PMID: 32269287]
[41]
Cantó, C.; Auwerx, J. Calorie restriction: Is AMPK a key sensor and effector? Physiology, 2011, 26(4), 214-224.
[http://dx.doi.org/10.1152/physiol.00010.2011] [PMID: 21841070]
[42]
Ruderman, N.B.; Julia, Xu X.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab., 2010, 298(4), E751-E760.
[http://dx.doi.org/10.1152/ajpendo.00745.2009] [PMID: 20103737]
[43]
Zhang, Y.; Wang, X.; Zhou, M.; Kang, C.; Lang, H.; Chen, M.; Hui, S.; Wang, B.; Mi, M. Crosstalk between gut microbiota and Sirtuin-3 in colonic inflammation and tumorigenesis. Exp. Mol. Med., 2018, 50(4), 1-11.
[http://dx.doi.org/10.1038/s12276-017-0002-0] [PMID: 29650970]
[44]
Poulose, N.; Raju, R. Sirtuin regulation in aging and injury. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(11), 2442-2455.
[http://dx.doi.org/10.1016/j.bbadis.2015.08.017] [PMID: 26303641]
[45]
Nagpal, R.; Mainali, R.; Ahmadi, S.; Wang, S.; Singh, R.; Kavanagh, K.; Kitzman, D.W.; Kushugulova, A.; Marotta, F.; Yadav, H. Gut mi-crobiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging, 2018, 4(4), 267-285.
[http://dx.doi.org/10.3233/NHA-170030] [PMID: 29951588]
[46]
Lakhan, S.E.; Kirchgessner, A. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. J. Transl. Med., 2011, 9(1), 202.
[http://dx.doi.org/10.1186/1479-5876-9-202] [PMID: 22115311]
[47]
Makwana, K.; Patel, S.A.; Velingkaar, N.; Ebron, J.S.; Shukla, G.C.; Kondratov, R.V. Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13. Aging, 2017, 9(7), 1825-1843.
[http://dx.doi.org/10.18632/aging.101270] [PMID: 28783714]
[48]
Pietrocola, F.; Pol, J.; Vacchelli, E.; Rao, S.; Enot, D.P.; Baracco, E.E.; Levesque, S.; Castoldi, F.; Jacquelot, N.; Yamazaki, T.; Senovilla, L.; Marino, G.; Aranda, F.; Durand, S.; Sica, V.; Chery, A.; Lachkar, S.; Sigl, V.; Bloy, N.; Buque, A.; Falzoni, S.; Ryffel, B.; Apetoh, L.; Di Virgilio, F.; Madeo, F.; Maiuri, M.C.; Zitvogel, L.; Levine, B.; Penninger, J.M.; Kroemer, G. Caloric restriction mimetics enhance anti-cancer immunosurveillance. Cancer Cell, 2016, 30(1), 147-160.
[http://dx.doi.org/10.1016/j.ccell.2016.05.016] [PMID: 27411589]
[49]
Safdie, F.M.; Dorff, T.; Quinn, D.; Fontana, L.; Wei, M.; Lee, C.; Cohen, P.; Longo, V.D. Fasting and cancer treatment in humans: A case series report. Aging, 2009, 1(12), 988-1007.
[http://dx.doi.org/10.18632/aging.100114] [PMID: 20157582]
[50]
Lee, C.; Safdie, F.M.; Raffaghello, L.; Wei, M.; Madia, F.; Parrella, E.; Hwang, D.; Cohen, P.; Bianchi, G.; Longo, V.D. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res., 2010, 70(4), 1564-1572.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3228] [PMID: 20145127]
[51]
Yakar, S.; Liu, J.L.; Stannard, B.; Butler, A.; Accili, D.; Sauer, B.; LeRoith, D. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci., 1999, 96(13), 7324-7329.
[http://dx.doi.org/10.1073/pnas.96.13.7324] [PMID: 10377413]
[52]
Kari, F.W.; Dunn, S.E.; French, J.E.; Barrett, J.C. Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J. Nutr. Health Aging, 1999, 3(2), 92-101.
[PMID: 10885804]
[53]
Chang, S.; Hursting, S.D.; Contois, J.H.; Strom, S.S.; Yamamura, Y.; Babaian, R.J.; Troncoso, P.; Scardino, P.T.; Wheeler, T.M.; Amos, C.I.; Spitz, M.R. Leptin and prostate cancer. Prostate, 2001, 46(1), 62-67.
[http://dx.doi.org/10.1002/1097-0045(200101)46:1<62:AID-PROS1009>3.0.CO;2-V] [PMID: 11170133]
[54]
Cadoni, E.; Marongiu, F.; Fanti, M.; Serra, M.; Laconi, E. Caloric restriction delays early phases of carcinogenesis via effects on the tissue microenvironment. Oncotarget, 2017, 8(22), 36020-36032.
[http://dx.doi.org/10.18632/oncotarget.16421] [PMID: 28415598]
[55]
Sharma, H.S.; Nyberg, F.; Gordh, T.; Alm, P.; Westman, J. Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. Amino Acids, 2000, 19(1), 351-361.
[http://dx.doi.org/10.1007/s007260070066] [PMID: 11026506]
[56]
Kozal, K.; Jóźwiak, P.; Krześlak, A. Contemporary perspectives on the warburg effect inhibition in cancer therapy. Cancer Contr., 2021, 28.
[http://dx.doi.org/10.1177/10732748211041243] [PMID: 34554006]
[57]
Strickaert, A.; Saiselet, M.; Dom, G.; De Deken, X.; Dumont, J.E.; Feron, O.; Sonveaux, P.; Maenhaut, C. Cancer heterogeneity is not com-patible with one unique cancer cell metabolic map. Oncogene, 2017, 36(19), 2637-2642.
[http://dx.doi.org/10.1038/onc.2016.411] [PMID: 27797377]
[58]
Sun, P.; Wang, H.; He, Z.; Chen, X.; Wu, Q.; Chen, W.; Sun, Z.; Weng, M.; Zhu, M.; Ma, D.; Miao, C. Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages. Oncotarget, 2017, 8(43), 74649-74660.
[http://dx.doi.org/10.18632/oncotarget.20301] [PMID: 29088814]
[59]
Zhou, L.; Zhang, Z.; Nice, E.; Huang, C.; Zhang, W.; Tang, Y. Circadian rhythms and cancers: The intrinsic links and therapeutic poten-tials. J. Hematol. Oncol., 2022, 15(1), 21.
[http://dx.doi.org/10.1186/s13045-022-01238-y] [PMID: 35246220]
[60]
Cathcart, P.; Craddock, C.; Stebbing, J. Fasting: Starving cancer. Lancet Oncol., 2017, 18(4), 431.
[http://dx.doi.org/10.1016/S1470-2045(17)30196-1] [PMID: 28368246]
[61]
Salvadori, G.; Mirisola, M.G.; Longo, V.D. Intermittent and periodic fasting, hormones, and cancer prevention. Cancers, 2021, 13(18), 4587.
[http://dx.doi.org/10.3390/cancers13184587] [PMID: 34572814]
[62]
Cheng, C.W.; Adams, G.B.; Perin, L.; Wei, M.; Zhou, X.; Lam, B.S.; Da Sacco, S.; Mirisola, M.; Quinn, D.I.; Dorff, T.B.; Kopchick, J.J.; Longo, V.D. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppres-sion. Cell Stem Cell, 2014, 14(6), 810-823.
[http://dx.doi.org/10.1016/j.stem.2014.04.014] [PMID: 24905167]
[63]
Di Biase, S.; Lee, C.; Brandhorst, S.; Manes, B.; Buono, R.; Cheng, C.W.; Cacciottolo, M.; Martin-Montalvo, A.; de Cabo, R.; Wei, M.; Morgan, T.E.; Longo, V.D. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell, 2016, 30(1), 136-146.
[http://dx.doi.org/10.1016/j.ccell.2016.06.005] [PMID: 27411588]
[64]
Jardé, T.; Perrier, S.; Vasson, M.P.; Caldefie-Chézet, F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur. J. Cancer, 2011, 47(1), 33-43.
[http://dx.doi.org/10.1016/j.ejca.2010.09.005] [PMID: 20889333]
[65]
Shim, H.S.; Wei, M.; Brandhorst, S.; Longo, V.D. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res., 2015, 75(6), 1056-1067.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2249] [PMID: 25614517]
[66]
Di Biase, S.; Shim, H.S.; Kim, K.H.; Vinciguerra, M.; Rappa, F.; Wei, M.; Brandhorst, S.; Cappello, F.; Mirzaei, H.; Lee, C.; Longo, V.D. Correction: Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol., 2017, 15(5), e1002603.
[http://dx.doi.org/10.1371/journal.pbio.1002603] [PMID: 28459830]
[67]
Andrikopoulos, S.; Blair, A.R.; Deluca, N.; Fam, B.C.; Proietto, J. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab., 2008, 295(6), E1323-E1332.
[http://dx.doi.org/10.1152/ajpendo.90617.2008] [PMID: 18812462]
[68]
Di Biase, S.; Longo, V.D. Fasting-induced differential stress sensitization in cancer treatment. Mol. Cell. Oncol., 2016, 3(3), e1117701.
[http://dx.doi.org/10.1080/23723556.2015.1117701] [PMID: 27314084]
[69]
Faris, A.I.E.; Kacimi, S.; Al-Kurd, R.A.; Fararjeh, M.A.; Bustanji, Y.K.; Mohammad, M.K.; Salem, M.L. Intermittent fasting during Rama-dan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr. Res., 2012, 32(12), 947-955.
[http://dx.doi.org/10.1016/j.nutres.2012.06.021] [PMID: 23244540]
[70]
Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.I.; Rafaniello, C.; Giugliano, D. Metabolic syndrome and postmeno-pausal breast cancer. Menopause, 2013, 20(12), 1301-1309.
[http://dx.doi.org/10.1097/GME.0b013e31828ce95d] [PMID: 23571527]
[71]
Hikita, H.; Nuwaysir, E.F.; Vaughan, J.; Babcock, K.; Haas, M.J.; Dragan, Y.P.; Pitot, H.C. The effect of short-term fasting, phenobarbital and refeeding on apoptotic loss, cell replication and gene expression in rat liver during the promotion stage. Carcinogenesis, 1998, 19(8), 1417-1425.
[http://dx.doi.org/10.1093/carcin/19.8.1417] [PMID: 9744538]
[72]
Thakkar, N.; Shin, Y.B.; Sung, H.K. Nutritional regulation of mammary tumor microenvironment. Front. Cell Dev. Biol., 2022, 10, 803280.
[http://dx.doi.org/10.3389/fcell.2022.803280] [PMID: 35186923]
[73]
Kim, K.H.; Kim, Y.H.; Son, J.E.; Lee, J.H.; Kim, S.; Choe, M.S.; Moon, J.H.; Zhong, J.; Fu, K.; Lenglin, F.; Yoo, J.A.; Bilan, P.J.; Klip, A.; Nagy, A.; Kim, J.R.; Park, J.G.; Hussein, S.M.I.; Doh, K.O.; Hui, C.; Sung, H.K. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res., 2017, 27(11), 1309-1326.
[http://dx.doi.org/10.1038/cr.2017.126] [PMID: 29039412]
[74]
Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer, 2018, 18(11), 707-719.
[http://dx.doi.org/10.1038/s41568-018-0061-0] [PMID: 30327499]
[75]
Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F.M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; Hwang, S.; Merlino, A.; Emi-onite, L.; de Cabo, R.; Longo, V.D. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med., 2012, 4(124), 124ra27.
[http://dx.doi.org/10.1126/scitranslmed.3003293] [PMID: 22323820]
[76]
Wilson, R.L.; Kang, D.W.; Christopher, C.N.; Crane, T.E.; Dieli-Conwright, C.M. Fasting and exercise in oncology: Potential synergism of combined interventions. Nutrients, 2021, 13(10), 3421.
[http://dx.doi.org/10.3390/nu13103421] [PMID: 34684421]
[77]
Jaspers, R.T.; Zillikens, M.C.; Friesema, E.C.H.; Paoli, G.; Bloch, W.; Uitterlinden, A.G.; Goglia, F.; Lanni, A.; Lange, P. Exercise, fasting, and mimetics: Toward beneficial combinations? FASEB J., 2017, 31(1), 14-28.
[http://dx.doi.org/10.1096/fj.201600652r] [PMID: 27729415]
[78]
Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab., 2014, 25(1), 42-52.
[http://dx.doi.org/10.1016/j.tem.2013.09.002] [PMID: 24140022]
[79]
Sulli, G.; Lam, M.T.Y.; Panda, S. Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer, 2019, 5(8), 475-494.
[http://dx.doi.org/10.1016/j.trecan.2019.07.002] [PMID: 31421905]
[80]
Nicolò, E.; Trapani, D.; Berton Giachetti, P.P.M.; Zagami, P.; Curigliano, G. Fed or fasted state for oral therapies in breast cancer treat-ment? A comprehensive review of clinical practice recommendations. Cancer Treat. Rev., 2021, 100, 102281.
[http://dx.doi.org/10.1016/j.ctrv.2021.102281] [PMID: 34500366]
[81]
Caffa, I.; D’Agostino, V.; Damonte, P.; Soncini, D.; Cea, M.; Monacelli, F.; Odetti, P.; Ballestrero, A.; Provenzani, A.; Longo, V.D.; Nencioni, A. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition. Oncotarget, 2015, 6(14), 11820-11832.
[http://dx.doi.org/10.18632/oncotarget.3689] [PMID: 25909220]
[82]
Lu, Z.; Xie, J.; Wu, G.; Shen, J.; Collins, R.; Chen, W.; Kang, X.; Luo, M.; Zou, Y.; Huang, L.J.S.; Amatruda, J.F.; Slone, T.; Winick, N.; Scherer, P.E.; Zhang, C.C. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med., 2017, 23(1), 79-90.
[http://dx.doi.org/10.1038/nm.4252] [PMID: 27941793]
[83]
Phadngam, S.; Castiglioni, A.; Ferraresi, A.; Morani, F.; Follo, C.; Isidoro, C. PTEN dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit glucose consumption in cancer cells. Oncotarget, 2016, 7(51), 84999-85020.
[http://dx.doi.org/10.18632/oncotarget.13113] [PMID: 27829222]
[84]
Sundaram, S.; Yan, L. Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutr. Res., 2018, 59, 72-79.
[http://dx.doi.org/10.1016/j.nutres.2018.07.014] [PMID: 30442235]
[85]
Macis, D.; Guerrieri-Gonzaga, A.; Gandini, S. Circulating adiponectin and breast cancer risk: A systematic review and meta-analysis. Int. J. Epidemiol., 2014, 43(4), 1226-1236.
[http://dx.doi.org/10.1093/ije/dyu088] [PMID: 24737805]
[86]
Palhinha, L.; Liechocki, S.; Hottz, E.D.; Pereira, J.A.S.; de Almeida, C.J.; Moraes-Vieira, P.M.M.; Bozza, P.T.; Maya-Monteiro, C.M. Lep-tin induces proadipogenic and proinflammatory signaling in adipocytes. Front. Endocrinol., 2019, 10, 841.
[http://dx.doi.org/10.3389/fendo.2019.00841] [PMID: 31920961]
[87]
Sierra-Honigmann, M.R.; Nath, A.K.; Murakami, C.; García-Cardeña, G.; Papapetropoulos, A.; Sessa, W.C.; Madge, L.A.; Schechner, J.S.; Schwabb, M.B.; Polverini, P.J.; Flores-Riveros, J.R. Biological action of leptin as an angiogenic factor. Science, 1998, 281(5383), 1683-1686.
[http://dx.doi.org/10.1126/science.281.5383.1683] [PMID: 9733517]
[88]
Cao, H.; Huang, Y.; Wang, L.; Wang, H.; Pang, X.; Li, K.; Dang, W.; Tang, H.; Wei, L.; Su, M.; Tang, C.; Chen, T. Leptin promotes migra-tion and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages. Oncotarget, 2016, 7(40), 65441-65453.
[http://dx.doi.org/10.18632/oncotarget.11761] [PMID: 27588409]
[89]
Goodwin, P.J.; Ennis, M.; Fantus, I.G.; Pritchard, K.I.; Trudeau, M.E.; Koo, J.; Hood, N. Is leptin a mediator of adverse prognostic effects of obesity in breast cancer? J. Clin. Oncol., 2005, 23(25), 6037-6042.
[http://dx.doi.org/10.1200/JCO.2005.02.048] [PMID: 16135472]
[90]
Delort, L.; Rossary, A.; Farges, M.C.; Vasson, M.P.; Caldefie-Chézet, F. Leptin, adipocytes and breast cancer: Focus on inflammation and anti-tumor immunity. Life Sci., 2015, 140, 37-48.
[http://dx.doi.org/10.1016/j.lfs.2015.04.012] [PMID: 25957709]
[91]
Weng, M.; Chen, W.; Chen, X.; Lu, H.; Sun, Z.; Yu, Q.; Sun, P.; Xu, Y.; Zhu, M.; Jiang, N.; Zhang, J.; Zhang, J.; Song, Y.; Ma, D.; Zhang, X.; Miao, C. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat. Commun., 2020, 11(1), 1869.
[http://dx.doi.org/10.1038/s41467-020-15795-8] [PMID: 32313017]
[92]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[93]
Chung, S.J.; Nagaraju, G.P.; Nagalingam, A.; Muniraj, N.; Kuppusamy, P.; Walker, A.; Woo, J.; Győrffy, B.; Gabrielson, E.; Saxena, N.K.; Sharma, D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy, 2017, 13(8), 1386-1403.
[http://dx.doi.org/10.1080/15548627.2017.1332565] [PMID: 28696138]
[94]
Bachelot, T.; Ray-Coquard, I.; Menetrier-Caux, C.; Rastkha, M.; Duc, A.; Blay, J-Y. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer, 2003, 88(11), 1721-1726.
[http://dx.doi.org/10.1038/sj.bjc.6600956] [PMID: 12771987]
[95]
Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumula-tion in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[96]
Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest., 2007, 117(1), 175-184.
[http://dx.doi.org/10.1172/JCI29881] [PMID: 17200717]
[97]
Shivappa, N.; Hébert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations be-tween dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr., 2015, 113(4), 665-671.
[http://dx.doi.org/10.1017/S000711451400395X] [PMID: 25639781]
[98]
Yeung, C.Y.; Tso, A.W.K.; Xu, A.; Wang, Y.; Woo, Y.C.; Lam, T.H.; Lo, S.V.; Fong, C.H.Y.; Wat, N.M.S.; Woo, J.; Cheung, B.M.Y.; Lam, K.S.L. Pro-inflammatory adipokines as predictors of incident cancers in a Chinese cohort of low obesity prevalence in Hong Kong. PLoS One, 2013, 8(10), e78594.
[http://dx.doi.org/10.1371/journal.pone.0078594] [PMID: 24205276]
[99]
Kim, J.; Guan, K.L. Amino acid signaling in TOR activation. Annu. Rev. Biochem., 2011, 80(1), 1001-1032.
[http://dx.doi.org/10.1146/annurev-biochem-062209-094414] [PMID: 21548787]
[100]
Christensen, R.A.G.; Kirkham, A.A. Time-restricted eating: A novel and simple dietary intervention for primary and secondary prevention of breast cancer and cardiovascular disease. Nutrients, 2021, 13(10), 3476.
[http://dx.doi.org/10.3390/nu13103476] [PMID: 34684476]
[101]
Zeng, Q.; Dong, S.Y.; Sun, X.N.; Xie, J.; Cui, Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz. J. Med. Biol. Res., 2012, 45(7), 591-600.
[http://dx.doi.org/10.1590/S0100-879X2012007500059] [PMID: 22510779]
[102]
Vance, V.; Mourtzakis, M.; McCargar, L.; Hanning, R. Weight gain in breast cancer survivors: prevalence, pattern and health consequenc-es. Obes. Rev., 2011, 12(4), 282-294.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00805.x] [PMID: 20880127]
[103]
Gabel, K.; Varady, K.A. Current research: Effect of time restricted eating on weight and cardiometabolic health. J. Physiol., 2022, 600(6), 1313-1326.
[http://dx.doi.org/10.1113/JP280542] [PMID: 33002219]
[104]
Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; Taub, P.R. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab., 2020, 31(1), 92-104.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.11.004] [PMID: 31813824]
[105]
Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L.; Piacente, F.; Tagliafico, A.; Cilli, M.; Mastracci, L.; Vellone, V.G.; Piazza, S.; Cremonini, A.L.; Gradaschi, R.; Mantero, C.; Passalacqua, M.; Ballestrero, A.; Zoppoli, G.; Cea, M.; Arrighi, A.; Odetti, P.; Monacelli, F.; Salvadori, G.; Cortellino, S.; Clevers, H.; De Braud, F.; Sukkar, S.G.; Provenzani, A.; Longo, V.D.; Nencioni, A. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature, 2020, 583(7817), 620-624.
[http://dx.doi.org/10.1038/s41586-020-2502-7] [PMID: 32669709]
[106]
DeVita, V.T.; Steven, A.R. MD DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology (Cancer Principles and Practice of Oncology), 11th Edition; , 2019.
[107]
Pinho, C.P.S.; Diniz, A.S.; Arruda, I.K.G.; Leite, A.P.D.L.; Rodrigues, I.G. Effects of weight loss on adipose visceral and subcutaneous tissue in overweight adults. Clin. Nutr., 2018, 37(4), 1252-1258.
[http://dx.doi.org/10.1016/j.clnu.2017.05.011] [PMID: 28571712]
[108]
Bauersfeld, S.P.; Kessler, C.S.; Wischnewsky, M.; Jaensch, A.; Steckhan, N.; Stange, R.; Kunz, B.; Brückner, B.; Sehouli, J.; Michalsen, A. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study. BMC Cancer, 2018, 18(1), 476.
[http://dx.doi.org/10.1186/s12885-018-4353-2] [PMID: 29699509]
[109]
Dorff, T.B.; Groshen, S.; Garcia, A.; Shah, M.; Tsao-Wei, D.; Pham, H.; Cheng, C.W.; Brandhorst, S.; Cohen, P.; Wei, M.; Longo, V.; Quinn, D.I. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer, 2016, 16(1), 360.
[http://dx.doi.org/10.1186/s12885-016-2370-6] [PMID: 27282289]
[110]
Smith, W.J.; Underwood, L.E.; Clemmons, D.R. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J. Clin. Endocrinol. Metab., 1995, 80(2), 443-449.
[http://dx.doi.org/10.1210/jcem.80.2.7531712] [PMID: 7531712]
[111]
de Groot, S.; Vreeswijk, M.P.G.; Welters, M.J.P.; Gravesteijn, G.; Boei, J.J.W.A.; Jochems, A.; Houtsma, D.; Putter, H.; van der Hoeven, J.J.M.; Nortier, J.W.R.; Pijl, H.; Kroep, J.R. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study. BMC Cancer, 2015, 15(1), 652.
[http://dx.doi.org/10.1186/s12885-015-1663-5] [PMID: 26438237]
[112]
Chan, L.N.; Chen, Z.; Braas, D.; Lee, J.W.; Xiao, G.; Geng, H.; Cosgun, K.N.; Hurtz, C.; Shojaee, S.; Cazzaniga, V.; Schjerven, H.; Ernst, T.; Hochhaus, A.; Kornblau, S.M.; Konopleva, M.; Pufall, M.A.; Cazzaniga, G.; Liu, G.J.; Milne, T.A.; Koeffler, H.P.; Ross, T.S.; Sánchez-García, I.; Borkhardt, A.; Yamamoto, K.R.; Dickins, R.A.; Graeber, T.G.; Müschen, M. Metabolic gatekeeper function of B-lymphoid tran-scription factors. Nature, 2017, 542(7642), 479-483.
[http://dx.doi.org/10.1038/nature21076] [PMID: 28192788]
[113]
Dupertuis, Y.M.; Meguid, M.M.; Pichard, C. Colon cancer therapy: New perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(4), 427-432.
[http://dx.doi.org/10.1097/MCO.0b013e3281e2c9d4] [PMID: 17563460]
[114]
Scheim, D.E. Cytotoxicity of unsaturated fatty acids in fresh human tumor explants: concentration thresholds and implications for clinical efficacy. Lipids Health Dis., 2009, 8(1), 54.
[http://dx.doi.org/10.1186/1476-511X-8-54] [PMID: 20003514]
[115]
Comba, A.; Lin, Y.H.; Eynard, A.R.; Valentich, M.A.; Fernandez-Zapico, M.E.; Pasqualini, M.E. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev., 2011, 30(3-4), 325-342.
[http://dx.doi.org/10.1007/s10555-011-9308-x] [PMID: 22048864]
[116]
Dashti, S.G.; Simpson, J.A.; Viallon, V.; Karahalios, A.; Moreno-Betancur, M.; Brasky, T.; Pan, K.; Rohan, T.E.; Shadyab, A.H.; Thom-son, C.A.; Wild, R.A.; Wassertheil-Smoller, S.; Ho, G.Y.F.; Strickler, H.D.; English, D.R.; Gunter, M.J. Adiposity and breast, endometrial, and colorectal cancer risk in postmenopausal women: Quantification of the mediating effects of leptin, C‐reactive protein, fasting insulin, and estradiol. Cancer Med., 2022, 11(4), 1145-1159.
[http://dx.doi.org/10.1002/cam4.4434] [PMID: 35048536]
[117]
Safdie, F.; Brandhorst, S.; Wei, M.; Wang, W.; Lee, C.; Hwang, S.; Conti, P.S.; Chen, T.C.; Longo, V.D. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One, 2012, 7(9), e44603.
[http://dx.doi.org/10.1371/journal.pone.0044603] [PMID: 22984531]
[118]
Raffaghello, L.; Lee, C.; Safdie, F.M.; Wei, M.; Madia, F.; Bianchi, G.; Longo, V.D. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci., 2008, 105(24), 8215-8220.
[http://dx.doi.org/10.1073/pnas.0708100105] [PMID: 18378900]
[119]
Marsh, J.; Mukherjee, P.; Seyfried, T.N. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phospha-tase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin. Cancer Res., 2008, 14(23), 7751-7762.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0213] [PMID: 19047102]
[120]
Ajona, D.; Ortiz-Espinosa, S.; Lozano, T.; Exposito, F.; Calvo, A.; Valencia, K.; Redrado, M.; Remírez, A.; Lecanda, F.; Alignani, D.; Lasarte, J.J.; Macaya, I.; Senent, Y.; Bértolo, C.; Sainz, C.; Gil-Bazo, I.; Eguren-Santamaría, I.; Lopez-Picazo, J.M.; Gonzalez, A.; Perez-Gracia, J.L.; de Andrea, C.E.; Vicent, S.; Sanmamed, M.F.; Montuenga, L.M.; Pio, R. Short-term starvation reduces IGF-1 levels to sensi-tize lung tumors to PD-1 immune checkpoint blockade. Nat. Can., 2020, 1(1), 75-85.
[http://dx.doi.org/10.1038/s43018-019-0007-9] [PMID: 35121837]
[121]
Chen, H.; Zhang, H.; Cao, L.; Cui, J.; Ma, X.; Zhao, C.; Yin, S.; Hu, H. Glucose limitation sensitizes cancer cells to selenite-induced cyto-toxicity via slc7a11-mediated redox collapse. Cancers, 2022, 14(2), 345.
[http://dx.doi.org/10.3390/cancers14020345] [PMID: 35053507]
[122]
Wang, X.; Xu, W.; Hu, X.; Yang, X.; Zhang, M. The prognostic role of glycemia in patients with pancreatic carcinoma: A systematic review and meta-analysis. Front. Oncol., 2022, 12, 780909.
[http://dx.doi.org/10.3389/fonc.2022.780909] [PMID: 35223469]
[123]
Cheon, Y.K.; Koo, J.K.; Lee, Y.S.; Lee, T.Y.; Shim, C.S. Elevated hemoglobin A1c levels are associated with worse survival in advanced pancreatic cancer patients with diabetes. Gut Liver, 2014, 8(2), 205-214.
[http://dx.doi.org/10.5009/gnl.2014.8.2.205] [PMID: 24672663]
[124]
Gapstur, S.M.; Gann, P.H.; Lowe, W.; Liu, K.; Colangelo, L.; Dyer, A. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA, 2000, 283(19), 2552-2558.
[http://dx.doi.org/10.1001/jama.283.19.2552] [PMID: 10815119]
[125]
D’Aronzo, M.; Vinciguerra, M.; Mazza, T.; Panebianco, C.; Saracino, C.; Pereira, S.P.; Graziano, P.; Pazienza, V. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget, 2015, 6(21), 18545-18557.
[http://dx.doi.org/10.18632/oncotarget.4186] [PMID: 26176887]
[126]
Tinkum, K.L.; Stemler, K.M.; White, L.S.; Loza, A.J.; Jeter-Jones, S.; Michalski, B.M.; Kuzmicki, C.; Pless, R.; Stappenbeck, T.S.; Piwni-ca-Worms, D.; Piwnica-Worms, H. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell sur-vival. Proc. Natl. Acad. Sci., 2015, 112(51), E7148-E7154.
[http://dx.doi.org/10.1073/pnas.1509249112] [PMID: 26644583]
[127]
Murphy, N.; Song, M.; Papadimitriou, N.; Carreras-Torres, R.; Langenberg, C.; Martin, R.M.; Tsilidis, K.K.; Barroso, I.; Chen, J.; Frayling, T.M.; Bull, C.J.; Vincent, E.E.; Cotterchio, M.; Gruber, S.B.; Pai, R.K.; Newcomb, P.A.; Perez-Cornago, A.; van Duijnhoven, F.J.B.; Van Guelpen, B.; Vodicka, P.; Wolk, A.; Wu, A.H.; Peters, U.; Chan, A.T.; Gunter, M.J. Associations between glycemic traits and colorectal cancer: A mendelian randomization analysis. J. Natl. Cancer Inst., 2022, 114(5), 740-752.
[http://dx.doi.org/10.1093/jnci/djac011] [PMID: 35048991]
[128]
Joshi, R.K.; Kim, W.J.; Lee, S-A. Association between obesity-related adipokines and colorectal cancer: A case-control study and meta-analysis. World J. Gastroenterol., 2014, 20(24), 7941-7949.
[http://dx.doi.org/10.3748/wjg.v20.i24.7941] [PMID: 24976730]
[129]
Su, J.; Wang, Y.; Zhang, X.; Ma, M.; Xie, Z.; Pan, Q.; Ma, Z.; Peppelenbosch, M.P. Remodeling of the gut microbiome during Ramadan-associated intermittent fasting. Am. J. Clin. Nutr., 2021, 113(5), 1332-1342.
[http://dx.doi.org/10.1093/ajcn/nqaa388] [PMID: 33842951]
[130]
Su, J.; Braat, H.; Peppelenbosch, M.P. Gut microbiota-derived propionate production may explain beneficial effects of intermittent fasting in experimental colitis. J. Crohn’s Colitis, 2021, 15(6), 1081-1082.
[http://dx.doi.org/10.1093/ecco-jcc/jjaa248] [PMID: 33277656]
[131]
Bian, X.; Wu, W.; Yang, L.; Lv, L.; Wang, Q.; Li, Y.; Ye, J.; Fang, D.; Wu, J.; Jiang, X.; Shi, D.; Li, L. Administration of Akkermansia mu-ciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front. Microbiol., 2019, 10, 2259.
[http://dx.doi.org/10.3389/fmicb.2019.02259] [PMID: 31632373]
[132]
Wang, L.; Tang, L.; Feng, Y.; Zhao, S.; Han, M.; Zhang, C.; Yuan, G.; Zhu, J.; Cao, S.; Wu, Q.; Li, L.; Zhang, Z. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut, 2020, 69(11), 1988-1997.
[http://dx.doi.org/10.1136/gutjnl-2019-320105] [PMID: 32169907]
[133]
Hou, X.; Zhang, P.; Du, H.; Chu, W.; Sun, R.; Qin, S.; Tian, Y.; Zhang, Z.; Xu, F. Akkermansia Muciniphila potentiates the antitumor effi-cacy of FOLFOX in colon cancer. Front. Pharmacol., 2021, 12, 725583.
[http://dx.doi.org/10.3389/fphar.2021.725583] [PMID: 34603035]
[134]
Su, J.; Braat, H.; Verhaar, A.; Peppelenbosch, M. Commentary: Intermittent fasting and akkermansia muciniphila potentiate the antitumor efficacy of FOLFOX in colon cancer. Front. Pharmacol., 2022, 13, 843133.
[http://dx.doi.org/10.3389/fphar.2022.843133] [PMID: 35222050]
[135]
Eriau, E.; Paillet, J.; Kroemer, G.; Pol, J.G. Metabolic reprogramming by reduced calorie intake or pharmacological caloric restriction mi-metics for improved cancer immunotherapy. Cancers, 2021, 13(6), 1260.
[http://dx.doi.org/10.3390/cancers13061260] [PMID: 33809187]
[136]
Qian, H.; Chao, X.; Williams, J.; Fulte, S.; Li, T.; Yang, L.; Ding, W.X. Autophagy in liver diseases: A review. Mol. Aspects Med., 2021, 82, 100973.
[http://dx.doi.org/10.1016/j.mam.2021.100973] [PMID: 34120768]
[137]
Schwarz, J.M.; Linfoot, P.; Dare, D.; Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr., 2003, 77(1), 43-50.
[http://dx.doi.org/10.1093/ajcn/77.1.43] [PMID: 12499321]
[138]
Minehira, K.; Bettschart, V.; Vidal, H.; Vega, N.; Di Vetta, V.; Rey, V.; Schneiter, P.; Tappy, L. Effect of carbohydrate overfeeding on whole body and adipose tissue metabolism in humans. Obes. Res., 2003, 11(9), 1096-1103.
[http://dx.doi.org/10.1038/oby.2003.150] [PMID: 12972680]
[139]
Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N. De novo lipogenesis in health and disease. Metabolism, 2014, 63(7), 895-902.
[http://dx.doi.org/10.1016/j.metabol.2014.04.003] [PMID: 24814684]
[140]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[141]
Alkhouri, N.; Gornicka, A.; Berk, M.P.; Thapaliya, S.; Dixon, L.J.; Kashyap, S.; Schauer, P.R.; Feldstein, A.E. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem., 2010, 285(5), 3428-3438.
[http://dx.doi.org/10.1074/jbc.M109.074252] [PMID: 19940134]
[142]
Gucalp, A.; Iyengar, N.M.; Hudis, C.A.; Dannenberg, A.J. Targeting obesity-related adipose tissue dysfunction to prevent cancer develop-ment and progression. Semin. Oncol., 2016, 43(1), 154-160.
[http://dx.doi.org/10.1053/j.seminoncol.2015.09.012] [PMID: 26970134]
[143]
Kubota, N.; Terauchi, Y.; Yamauchi, T.; Kubota, T.; Moroi, M.; Matsui, J.; Eto, K.; Yamashita, T.; Kamon, J.; Satoh, H.; Yano, W.; Froguel, P.; Nagai, R.; Kimura, S.; Kadowaki, T.; Noda, T. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem., 2002, 277(29), 25863-25866.
[http://dx.doi.org/10.1074/jbc.C200251200] [PMID: 12032136]
[144]
Cai, L.; Xu, S.; Piao, C.; Qiu, S.; Li, H.; Du, J. Adiponectin induces CXCL1 secretion from cancer cells and promotes tumor angiogenesis by inducing stromal fibroblast senescence. Mol. Carcinog., 2016, 55(11), 1796-1806.
[http://dx.doi.org/10.1002/mc.22428] [PMID: 27092462]
[145]
Zhong, Z.; Mao, S.; Lin, H.; Li, H.; Lin, J.; Lin, J.M. Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry. Talanta, 2019, 204, 6-12.
[http://dx.doi.org/10.1016/j.talanta.2019.05.088] [PMID: 31357340]
[146]
Sadeghian, M.; Rahmani, S.; Khalesi, S.; Hejazi, E. A review of fasting effects on the response of cancer to chemotherapy. Clin. Nutr., 2021, 40(4), 1669-1681.
[http://dx.doi.org/10.1016/j.clnu.2020.10.037] [PMID: 33153820]
[147]
Oyabu, M.; Takigawa, K.; Mizutani, S.; Hatazawa, Y.; Fujita, M.; Ohira, Y.; Sugimoto, T.; Suzuki, O.; Tsuchiya, K.; Suganami, T.; Ogawa, Y.; Ishihara, K.; Miura, S.; Kamei, Y. FOXO1 cooperates with C/EBPδ and ATF4 to regulate skeletal muscle atrophy transcriptional pro-gram during fasting. FASEB J., 2022, 36(2), e22152.
[http://dx.doi.org/10.1096/fj.202101385RR] [PMID: 35061305]
[148]
Ibrahim, E.M.; Al-Foheidi, M.H.; Al-Mansour, M.M. Energy and caloric restriction, and fasting and cancer: a narrative review. Support. Care Cancer, 2021, 29(5), 2299-2304.
[http://dx.doi.org/10.1007/s00520-020-05879-y] [PMID: 33190181]
[149]
de Groot, S.; Pijl, H.; van der Hoeven, J.J.M.; Kroep, J.R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 209.
[http://dx.doi.org/10.1186/s13046-019-1189-9] [PMID: 31113478]
[150]
Ariaans, G.; Jalving, M.; Vries, E.G.E.; Jong, S. Anti-tumor effects of everolimus and metformin are complementary and glucose-dependent in breast cancer cells. BMC Cancer, 2017, 17(1), 232.
[http://dx.doi.org/10.1186/s12885-017-3230-8] [PMID: 28356082]
[151]
O’Flanagan, C.H.; Smith, L.A.; McDonell, S.B.; Hursting, S.D. When less may be more: Calorie restriction and response to cancer therapy. BMC Med., 2017, 15(1), 106.
[http://dx.doi.org/10.1186/s12916-017-0873-x] [PMID: 28539118]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy