Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

C-C Motif Chemokine Ligand 5 (CCL5): A Potential Biomarker and Immunotherapy Target for Osteosarcoma

Author(s): Heng Zheng, Yichong Wang and Fengfeng Li*

Volume 24, Issue 3, 2024

Published on: 28 August, 2023

Page: [308 - 318] Pages: 11

DOI: 10.2174/1568009623666230815115755

Price: $65

Abstract

Background: Osteosarcoma (OS) is the most common primary malignant tumor of bone tissue, which has an insidious onset and is difficult to detect early, and few early diagnostic markers with high specificity and sensitivity. Therefore, this study aims to identify potential biomarkers that can help diagnose OS in its early stages and improve the prognosis of patients.

Methods: The data sets of GSE12789, GSE28424, GSE33382 and GSE36001 were combined and normalized to identify Differentially Expressed Genes (DEGs). The data were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG) and Disease Ontology (DO). The hub gene was selected based on the common DEG that was obtained by applying two regression methods: the Least Absolute Shrinkage and Selection Operator (LASSO) and Support vVector Machine (SVM). Then the diagnostic value of the hub gene was evaluated in the GSE42572 data set. Finally, the correlation between immunocyte infiltration and key genes was analyzed by CIBERSORT.

Results: The regression analysis results of LASSO and SVM are the following three DEGs: FK501 binding protein 51 (FKBP5), C-C motif chemokine ligand 5 (CCL5), complement component 1 Q subcomponent B chain (C1QB). We evaluated the diagnostic performance of three biomarkers (FKBP5, CCL5 and C1QB) for osteosarcoma using receiver operating characteristic (ROC) analysis. In the training group, the area under the curve (AUC) of FKBP5, CCL5 and C1QB was 0.907, 0.874 and 0.676, respectively. In the validation group, the AUC of FKBP5, CCL5 and C1QB was 0.618, 0.932 and 0.895, respectively. It is noteworthy that these genes were more expressed in tumor tissues than in normal tissues by various immune cell types, such as plasma cells, CD8+ T cells, T regulatory cells (Tregs), activated NK cells, activated dendritic cells and activated mast cells. These immune cell types are also associated with the expression levels of the three diagnostic genes that we identified.

Conclusion: We found that CCL5 can be considered an early diagnostic gene of osteosarcoma, and CCL5 interacts with immune cells to influence tumor occurrence and development. These findings have important implications for the early detection of osteosarcoma and the identification of novel therapeutic targets.

Graphical Abstract

[1]
Meltzer, P.S.; Helman, L.J. New horizons in the treatment of osteosarcoma. N. Engl. J. Med., 2021, 385(22), 2066-2076.
[http://dx.doi.org/10.1056/NEJMra2103423] [PMID: 34818481]
[2]
Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; Brodowicz, T.; Broto, J.M.; Brugières, L.; Buonadonna, A.; De Álava, E.; Dei Tos, A.P.; Del Muro, X.G.; Dileo, P.; Dhooge, C.; Eriksson, M.; Fagioli, F.; Fedenko, A.; Ferraresi, V.; Ferrari, A.; Ferrari, S.; Frezza, A.M.; Gaspar, N.; Gasperoni, S.; Gelderblom, H.; Gil, T.; Grignani, G.; Gronchi, A.; Haas, R.L.; Hassan, B.; Hecker-Nolting, S.; Hohenberger, P.; Issels, R.; Joensuu, H.; Jones, R.L.; Judson, I.; Jutte, P.; Kaal, S.; Kager, L.; Kasper, B.; Kopeckova, K.; Krákorová, D.A.; Ladenstein, R.; Le Cesne, A.; Lugowska, I.; Merimsky, O.; Montemurro, M.; Morland, B.; Pantaleo, M.A.; Piana, R.; Picci, P.; Piperno-Neumann, S.; Pousa, A.L.; Reichardt, P.; Robinson, M.H.; Rutkowski, P.; Safwat, A.A.; Schöffski, P.; Sleijfer, S.; Stacchiotti, S.; Strauss, S.J.; Sundby Hall, K.; Unk, M.; Van Coevorden, F.; van der Graaf, W.T.A.; Whelan, J.; Wardelmann, E.; Zaikova, O.; Blay, J.Y. Bone sarcomas: ESMO–PaedCan–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2018, 29(Suppl. 4), iv79-iv95.
[http://dx.doi.org/10.1093/annonc/mdy310] [PMID: 30285218]
[3]
Shoaib, Z.; Fan, T.M.; Irudayaraj, J.M.K. Osteosarcoma mechanobiology and therapeutic targets. Br. J. Pharmacol., 2022, 179(2), 201-217.
[http://dx.doi.org/10.1111/bph.15713] [PMID: 34679192]
[4]
Li, J.; Qin, B.; Huang, M.; Ma, Y.; Li, D.; Li, W.; Guo, Z. Tumor-associated antigens (TAAs) for the serological diagnosis of osteosarcoma. Front. Immunol., 2021, 12, 665106.
[http://dx.doi.org/10.3389/fimmu.2021.665106] [PMID: 33995397]
[5]
Cascini, C.; Chiodoni, C. The immune landscape of osteosarcoma: Implications for prognosis and treatment response. Cells, 2021, 10(7), 1668.
[http://dx.doi.org/10.3390/cells10071668] [PMID: 34359840]
[6]
Wang, Z.; Wang, Z.; Li, B.; Wang, S.; Chen, T.; Ye, Z. Innate immune cells: A potential and promising cell population for treating osteosarcoma. Front. Immunol., 2019, 10, 1114.
[http://dx.doi.org/10.3389/fimmu.2019.01114] [PMID: 31156651]
[7]
Prihoda, D.; Maritz, J.M.; Klempir, O.; Dzamba, D.; Woelk, C.H.; Hazuda, D.J.; Bitton, D.A.; Hannigan, G.D. The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability. Nat. Prod. Rep., 2021, 38(6), 1100-1108.
[http://dx.doi.org/10.1039/D0NP00055H] [PMID: 33245088]
[8]
Schaefer, J.; Lehne, M.; Schepers, J.; Prasser, F.; Thun, S. The use of machine learning in rare diseases: A scoping review. Orphanet J. Rare Dis., 2020, 15(1), 145.
[http://dx.doi.org/10.1186/s13023-020-01424-6] [PMID: 32517778]
[9]
Wang, S.; Wang, Q.; Fan, B.; Gong, J.; Sun, L.; Hu, B.; Wang, D. Machine learning-based screening of the diagnostic genes and their relationship with immune-cell infiltration in patients with lung adenocarcinoma. J. Thorac. Dis., 2022, 14(3), 699-711.
[http://dx.doi.org/10.21037/jtd-22-206] [PMID: 35399247]
[10]
Carbon, S.; Douglass, E.; Good, B.M.; Unni, D.R.; Harris, N.L.; Mungall, C.J.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; Hartline, E.; Fey, P.; Thomas, P.D.; Albou, L-P.; Ebert, D.; Kesling, M.J.; Mi, H.; Muruganujan, A.; Huang, X.; Mushayahama, T.; LaBonte, S.A.; Siegele, D.A.; Antonazzo, G.; Attrill, H.; Brown, N.H.; Garapati, P.; Marygold, S.J.; Trovisco, V.; dos Santos, G.; Falls, K.; Tabone, C.; Zhou, P.; Goodman, J.L.; Strelets, V.B.; Thurmond, J.; Garmiri, P.; Ishtiaq, R.; Rodríguez-López, M.; Acencio, M.L.; Kuiper, M.; Lægreid, A.; Logie, C.; Lovering, R.C.; Kramarz, B.; Saverimuttu, S.C.C.; Pinheiro, S.M.; Gunn, H.; Su, R.; Thurlow, K.E.; Chibucos, M.; Giglio, M.; Nadendla, S.; Munro, J.; Jackson, R.; Duesbury, M.J.; Del-Toro, N.; Meldal, B.H.M.; Paneerselvam, K.; Perfetto, L.; Porras, P.; Orchard, S.; Shrivastava, A.; Chang, H-Y.; Finn, R.D.; Mitchell, A.L.; Rawlings, N.D.; Richardson, L.; Sangrador-Vegas, A.; Blake, J.A.; Christie, K.R.; Dolan, M.E.; Drabkin, H.J.; Hill, D.P.; Ni, L.; Sitnikov, D.M.; Harris, M.A.; Oliver, S.G.; Rutherford, K.; Wood, V.; Hayles, J.; Bähler, J.; Bolton, E.R.; De Pons, J.L.; Dwinell, M.R.; Hayman, G.T.; Kaldunski, M.L.; Kwitek, A.E.; Laulederkind, S.J.F.; Plasterer, C.; Tutaj, M.A.; Vedi, M.; Wang, S-J.; D’Eustachio, P.; Matthews, L.; Balhoff, J.P.; Aleksander, S.A.; Alexander, M.J.; Cherry, J.M.; Engel, S.R.; Gondwe, F.; Karra, K.; Miyasato, S.R.; Nash, R.S.; Simison, M.; Skrzypek, M.S.; Weng, S.; Wong, E.D.; Feuermann, M.; Gaudet, P.; Morgat, A.; Bakker, E.; Berardini, T.Z.; Reiser, L.; Subramaniam, S.; Huala, E.; Arighi, C.N.; Auchincloss, A.; Axelsen, K.; Argoud-Puy, G.; Bateman, A.; Blatter, M-C.; Boutet, E.; Bowler, E.; Breuza, L.; Bridge, A.; Britto, R.; Bye-A-Jee, H.; Casas, C.C.; Coudert, E.; Denny, P.; Estreicher, A.; Famiglietti, M.L.; Georghiou, G.; Gos, A.; Gruaz-Gumowski, N.; Hatton-Ellis, E.; Hulo, C.; Ignatchenko, A.; Jungo, F.; Laiho, K.; Le Mercier, P.; Lieberherr, D.; Lock, A.; Lussi, Y.; MacDougall, A.; Magrane, M.; Martin, M.J.; Masson, P.; Natale, D.A.; Hyka-Nouspikel, N.; Orchard, S.; Pedruzzi, I.; Pourcel, L.; Poux, S.; Pundir, S.; Rivoire, C.; Speretta, E.; Sundaram, S.; Tyagi, N.; Warner, K.; Zaru, R.; Wu, C.H.; Diehl, A.D.; Chan, J.N.; Grove, C.; Lee, R.Y.N.; Muller, H-M.; Raciti, D.; Van Auken, K.; Sternberg, P.W.; Berriman, M.; Paulini, M.; Howe, K.; Gao, S.; Wright, A.; Stein, L.; Howe, D.G.; Toro, S.; Westerfield, M.; Jaiswal, P.; Cooper, L.; Elser, J. The gene ontology resource: Enriching a gold mine. Nucleic Acids Res., 2021, 49(D1), D325-D334.
[http://dx.doi.org/10.1093/nar/gkaa1113] [PMID: 33290552]
[11]
Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res., 2021, 49(D1), D545-D551.
[http://dx.doi.org/10.1093/nar/gkaa970] [PMID: 33125081]
[12]
Schriml, L.M.; Mitraka, E. The disease ontology: Fostering interoperability between biological and clinical human disease-related data. Mamm. Genome, 2015, 26(9-10), 584-589.
[http://dx.doi.org/10.1007/s00335-015-9576-9] [PMID: 26093607]
[13]
Powers, R.K.; Goodspeed, A.; Pielke-Lombardo, H.; Tan, A.C.; Costello, J.C. GSEA-InContext: Identifying novel and common patterns in expression experiments. Bioinformatics, 2018, 34(13), i555-i564.
[http://dx.doi.org/10.1093/bioinformatics/bty271] [PMID: 29950010]
[14]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[15]
Avnet, S.; Di Pompo, G.; Chano, T.; Errani, C.; Ibrahim-Hashim, A.; Gillies, R.J.; Donati, D.M.; Baldini, N. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation. Int. J. Cancer, 2017, 140(6), 1331-1345.
[http://dx.doi.org/10.1002/ijc.30540] [PMID: 27888521]
[16]
Chen, L.; Liu, J.F.; Lu, Y.; He, X.; Zhang, C.; Zhou, H. Complement C1q (C1qA, C1qB, and C1qC) may be a potential prognostic factor and an index of tumor microenvironment remodeling in osteosarcoma. Front. Oncol., 2021, 11, 642144.
[http://dx.doi.org/10.3389/fonc.2021.642144] [PMID: 34079754]
[17]
Soria, G.; Ben-Baruch, A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett., 2008, 267(2), 271-285.
[http://dx.doi.org/10.1016/j.canlet.2008.03.018] [PMID: 18439751]
[18]
Aldinucci, D.; Casagrande, N. Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer. Int. J. Mol. Sci., 2018, 19(5), 1477.
[http://dx.doi.org/10.3390/ijms19051477] [PMID: 29772686]
[19]
Xu, W.; Wu, Y.; Liu, W.; Anwaier, A.; Tian, X.; Su, J.; Huang, H.; Wei, G.; Qu, Y.; Zhang, H.; Ye, D. Tumor-associated macrophage-derived chemokine CCL5 facilitates the progression and immunosuppressive tumor microenvironment of clear cell renal cell carcinoma. Int. J. Biol. Sci., 2022, 18(13), 4884-4900.
[http://dx.doi.org/10.7150/ijbs.74647] [PMID: 35982911]
[20]
Xu, W.; Bian, Z.; Fan, Q.; Li, G.; Tang, T. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett., 2009, 281(1), 32-41.
[http://dx.doi.org/10.1016/j.canlet.2009.02.022] [PMID: 19342158]
[21]
Wang, S.W.; Liu, S.C.; Sun, H.L.; Huang, T.Y.; Chan, C.H.; Yang, C.Y.; Yeh, H.I.; Huang, Y.L.; Chou, W.Y.; Lin, Y.M.; Tang, C.H. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis, 2015, 36(1), 104-114.
[http://dx.doi.org/10.1093/carcin/bgu218] [PMID: 25330803]
[22]
Schulz, K.; Trendelenburg, M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front. Immunol., 2022, 13, 958273.
[http://dx.doi.org/10.3389/fimmu.2022.958273] [PMID: 35990646]
[23]
Bulla, R.; Tripodo, C.; Rami, D.; Ling, G.S.; Agostinis, C.; Guarnotta, C.; Zorzet, S.; Durigutto, P.; Botto, M.; Tedesco, F. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat. Commun., 2016, 7(1), 10346.
[http://dx.doi.org/10.1038/ncomms10346] [PMID: 26831747]
[24]
Roumenina, L.T.; Daugan, M.V.; Noé, R.; Petitprez, F.; Vano, Y.A.; Sanchez-Salas, R.; Becht, E.; Meilleroux, J.; Clec’h, B.L.; Giraldo, N.A.; Merle, N.S.; Sun, C.M.; Verkarre, V.; Validire, P.; Selves, J.; Lacroix, L.; Delfour, O.; Vandenberghe, I.; Thuilliez, C.; Keddani, S.; Sakhi, I.B.; Barret, E.; Ferré, P.; Corvaïa, N.; Passioukov, A.; Chetaille, E.; Botto, M.; de Reynies, A.; Oudard, S.M.; Mejean, A.; Cathelineau, X.; Sautès-Fridman, C.; Fridman, W.H. Tumor cells hijack macrophage-produced complement C1q to promote tumor growth. Cancer Immunol. Res., 2019, 7(7), 1091-1105.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0891] [PMID: 31164356]
[25]
Bandini, S.; Macagno, M.; Hysi, A.; Lanzardo, S.; Conti, L.; Bello, A.; Riccardo, F.; Ruiu, R.; Merighi, I.F.; Forni, G.; Iezzi, M.; Quaglino, E.; Cavallo, F. The non-inflammatory role of C1q during Her2/neu-driven mammary carcinogenesis. OncoImmunology, 2016, 5(12), e1253653.
[http://dx.doi.org/10.1080/2162402X.2016.1253653] [PMID: 28123895]
[26]
Li, L.; Lou, Z.; Wang, L. The role of FKBP5 in cancer aetiology and chemoresistance. Br. J. Cancer, 2011, 104(1), 19-23.
[http://dx.doi.org/10.1038/sj.bjc.6606014] [PMID: 21119664]
[27]
Baughman, G.; Wiederrecht, G.J.; Chang, F.; Martin, M.M.; Bourgeois, S. Tissue distribution and abundance of human FKBP51, and FK506-binding protein that can mediate calcineurin inhibition. Biochem. Biophys. Res. Commun., 1997, 232(2), 437-443.
[http://dx.doi.org/10.1006/bbrc.1997.6307] [PMID: 9125197]
[28]
Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther., 2021, 221, 107753.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107753] [PMID: 33259885]
[29]
Zhang, G.Z.; Wu, Z.L.; Li, C.Y.; Ren, E.H.; Yuan, W.H.; Deng, Y.J.; Xie, Q.Q. Development of a machine learning-based autophagy-related lncRNA signature to improve prognosis prediction in osteosarcoma patients. Front. Mol. Biosci., 2021, 8, 615084.
[http://dx.doi.org/10.3389/fmolb.2021.615084] [PMID: 34095215]
[30]
Ligon, J.A.; Choi, W.; Cojocaru, G.; Fu, W.; Hsiue, E.H.C.; Oke, T.F.; Siegel, N.; Fong, M.H.; Ladle, B.; Pratilas, C.A.; Morris, C.D.; Levin, A.; Rhee, D.S.; Meyer, C.F.; Tam, A.J.; Blosser, R.; Thompson, E.D.; Suru, A.; McConkey, D.; Housseau, F.; Anders, R.; Pardoll, D.M.; Llosa, N. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes. J. Immunother. Cancer, 2021, 9(5), e001772.
[http://dx.doi.org/10.1136/jitc-2020-001772] [PMID: 34021032]
[31]
Le, T.; Su, S.; Shahriyari, L. Immune classification of osteosarcoma. Math. Biosci. Eng., 2021, 18(2), 1879-1897.
[http://dx.doi.org/10.3934/mbe.2021098] [PMID: 33757216]
[32]
Han, Q.; Shi, H.; Liu, F. CD163 + M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int. Immunopharmacol., 2016, 34, 101-106.
[http://dx.doi.org/10.1016/j.intimp.2016.01.023] [PMID: 26938675]
[33]
Fujiwara, T.; Yakoub, M.A.; Chandler, A.; Christ, A.B.; Yang, G.; Ouerfelli, O.; Rajasekhar, V.K.; Yoshida, A.; Kondo, H.; Hata, T.; Tazawa, H.; Dogan, Y.; Moore, M.A.S.; Fujiwara, T.; Ozaki, T.; Purdue, E.; Healey, J.H. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol. Cancer Ther., 2021, 20(8), 1388-1399.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0591] [PMID: 34088832]
[34]
Yoshida, K.; Okamoto, M.; Sasaki, J.; Kuroda, C.; Ishida, H.; Ueda, K.; Ideta, H.; Kamanaka, T.; Sobajima, A.; Takizawa, T.; Tanaka, M.; Aoki, K.; Uemura, T.; Kato, H.; Haniu, H.; Saito, N. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer, 2020, 20(1), 25.
[http://dx.doi.org/10.1186/s12885-019-6499-y] [PMID: 31914969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy