Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The HPA Axis as Target for Depression

Author(s): Andreas Menke*

Volume 22, Issue 5, 2024

Published on: 24 August, 2023

Page: [904 - 915] Pages: 12

DOI: 10.2174/1570159X21666230811141557

Price: $65

Abstract

Major depressive disorder (MDD) is a stress-related mental disorder with a lifetime prevalence of 20% and, thus, is one of the most prevalent mental health disorders worldwide. Many studies with a large number of patients support the notion that abnormalities of the hypothalamus-pituitaryadrenal (HPA) axis are crucial for the development of MDD. Therefore, a number of strategies and drugs have been investigated to target different components of the HPA axis: 1) corticotrophinreleasing hormone (CRH) 1 receptor antagonists; 2) vasopressin V1B receptor antagonists, 3) glucocorticoid receptor antagonists, and 4) FKBP5 antagonists. Until now, V1B receptor antagonists and GR antagonists have provided the most promising results. Preclinical data also support antagonists of FKBP5, which seem to be partly responsible for the effects exerted by ketamine. However, as HPA axis alterations occur only in a subset of patients, specific treatment approaches that target only single components of the HPA axis will be effective only in this subset of patients. Companion tests that measure the function of the HPA axis and identify patients with an impaired HPA axis, such as the dexamethasone-corticotrophin-releasing hormone (dex-CRH) test or the molecular dexamethasonesuppression (mDST) test, may match the patient with an effective treatment to enable patient-tailored treatments in terms of a precision medicine approach.

Graphical Abstract

[1]
Ebmeier, K.P.; Donaghey, C.; Steele, J.D. Recent developments and current controversies in depression. Lancet, 2006, 367(9505), 153-167.
[http://dx.doi.org/10.1016/S0140-6736(06)67964-6] [PMID: 16413879]
[2]
Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; Duan, L.; Erskine, H.; Feigin, V.L.; Ferrari, A.J.; Fitzmaurice, C.; Fleming, T.; Graetz, N.; Guinovart, C.; Haagsma, J.; Hansen, G.M.; Hanson, S.W.; Heuton, K.R.; Higashi, H.; Kassebaum, N.; Kyu, H.; Laurie, E.; Liang, X.; Lofgren, K.; Lozano, R.; MacIntyre, M.F.; Moradi-Lakeh, M.; Naghavi, M.; Nguyen, G.; Odell, S.; Ortblad, K.; Roberts, D.A.; Roth, G.A.; Sandar, L.; Serina, P.T.; Stanaway, J.D.; Steiner, C.; Thomas, B.; Vollset, S.E.; Whiteford, H.; Wolock, T.M.; Ye, P.; Zhou, M.; Ãvila, M.A.; Aasvang, G.M.; Abbafati, C.; Ozgoren, A.A.; Abd-Allah, F.; Aziz, M.I.A.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abraham, B.; Abubakar, I.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Aburto, T.C.; Achoki, T.; Ackerman, I.N.; Adelekan, A.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Arnlov, J.; Agardh, E.E.; Al Khabouri, M.J.; Alam, S.S.; Alasfoor, D.; Albittar, M.I.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alfonso-Cristancho, R.; Alhabib, S.; Ali, R.; Alla, F.; Allebeck, P.; Allen, P.J.; AlMazroa, M.A.A.; Alsharif, U.; Alvarez, E.; Alvis-Guzman, N.; Ameli, O.; Amini, H.; Ammar, W.; Anderson, B.O.; Anderson, H.R.; Antonio, C.A.T.; Anwari, P.; Apfel, H.; Arsenijevic, V.S.A.; Artaman, A.; Asghar, R.J.; Assadi, R.; Atkins, L.S.; Atkinson, C.; Badawi, A.; Bahit, M.C.; Bakfalouni, T.; Balakrishnan, K.; Balalla, S.; Banerjee, A.; Barker-Collo, S.L.; Barquera, S.; Barregard, L.; Barrero, L.H.; Basu, S.; Basu, A.; Baxter, A.; Beardsley, J.; Bedi, N.; Beghi, E.; Bekele, T.; Bell, M.L.; Benjet, C.; Bennett, D.A.; Bensenor, I.M.; Benzian, H.; Bernabe, E.; Beyene, T.J.; Bhala, N.; Bhalla, A.; Bhutta, Z.; Bienhoff, K.; Bikbov, B.; Abdulhak, A.B.; Blore, J.D.; Blyth, F.M.; Bohensky, M.A.; Basara, B.B.; Borges, G.; Bornstein, N.M.; Bose, D.; Boufous, S.; Bourne, R.R.; Boyers, L.N.; Brainin, M.; Brauer, M.; Brayne, C.E.G.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briggs, A.D.M.; Brooks, P.M.; Brown, J.; Brugha, T.S.; Buchbinder, R.; Buckle, G.C.; Bukhman, G.; Bulloch, A.G.; Burch, M.; Burnett, R.; Cardenas, R.; Cabral, N.L.; Nonato, I.R.C.; Campuzano, J.C.; Carapetis, J.R.; Carpenter, D.O.; Caso, V.; Castaneda-Orjuela, C.A.; Catala-Lopez, F.; Chadha, V.K.; Chang, J-C.; Chen, H.; Chen, W.; Chiang, P.P.; Chimed-Ochir, O.; Chowdhury, R.; Christensen, H.; Christophi, C.A.; Chugh, S.S.; Cirillo, M.; Coggeshall, M.; Cohen, A.; Colistro, V.; Colquhoun, S.M.; Contreras, A.G.; Cooper, L.T.; Cooper, C.; Cooperrider, K.; Coresh, J.; Cortinovis, M.; Criqui, M.H.; Crump, J.A.; Cuevas-Nasu, L.; Dandona, R.; Dandona, L.; Dansereau, E.; Dantes, H.G.; Dargan, P.I.; Davey, G.; Davitoiu, D.V.; Dayama, A.; De la Cruz-Gongora, V.; de la Vega, S.F.; De Leo, D.; del Pozo-Cruz, B.; Dellavalle, R.P.; Deribe, K.; Derrett, S.; Des Jarlais, D.C.; Dessalegn, M.; deVeber, G.A.; Dharmaratne, S.D.; Diaz-Torne, C.; Ding, E.L.; Dokova, K.; Dorsey, E.R.; Driscoll, T.R.; Duber, H.; Durrani, A.M.; Edmond, K.M.; Ellenbogen, R.G.; Endres, M.; Ermakov, S.P.; Eshrati, B.; Esteghamati, A.; Estep, K.; Fahimi, S.; Farzadfar, F.; Fay, D.F.J.; Felson, D.T.; Fereshtehnejad, S-M.; Fernandes, J.G.; Ferri, C.P.; Flaxman, A.; Foigt, N.; Foreman, K.J.; Fowkes, F.G.R.; Franklin, R.C.; Furst, T.; Futran, N.D.; Gabbe, B.J.; Gankpe, F.G.; Garcia-Guerra, F.A.; Geleijnse, J.M.; Gessner, B.D.; Gibney, K.B.; Gillum, R.F.; Ginawi, I.A.; Giroud, M.; Giussani, G.; Goenka, S.; Goginashvili, K.; Gona, P.; de Cosio, T.G.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Guerrant, R.; Gugnani, H.C.; Gunnell, D.; Gupta, R.; Gupta, R.; Gutierrez, R.A.; Hafezi-Nejad, N.; Hagan, H.; Halasa, Y.; Hamadeh, R.R.; Hamavid, H.; Hammami, M.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Haro, J.M.; Havmoeller, R.; Hay, R.J.; Hay, S.; Hedayati, M.T.; Pi, I.B.H.; Heydarpour, P.; Hijar, M.; Hoek, H.W.; Hoffman, H.J.; Hornberger, J.C.; Hosgood, H.D.; Hossain, M.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Hu, H.; Hu, G.; Huang, J.J.; Huang, C.; Huiart, L.; Husseini, A.; Iannarone, M.; Iburg, K.M.; Innos, K.; Inoue, M.; Jacobsen, K.H.; Jassal, S.K.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; Jiang, Y.; Jonas, J.B.; Joseph, J.; Juel, K.; Kan, H.; Karch, A.; Karimkhani, C.; Karthikeyan, G.; Katz, R.; Kaul, A.; Kawakami, N.; Kazi, D.S.; Kemp, A.H.; Kengne, A.P.; Khader, Y.S.; Khalifa, S.E.A.H.; Khan, E.A.; Khan, G.; Khang, Y-H.; Khonelidze, I.; Kieling, C.; Kim, D.; Kim, S.; Kimokoti, R.W.; Kinfu, Y.; Kinge, J.M.; Kissela, B.M.; Kivipelto, M.; Knibbs, L.; Knudsen, A.K.; Kokubo, Y.; Kosen, S.; Kramer, A.; Kravchenko, M.; Krishnamurthi, R.V.; Krishnaswami, S.; Defo, B.K.; Bicer, B.K.; Kuipers, E.J.; Kulkarni, V.S.; Kumar, K.; Kumar, G.A.; Kwan, G.F.; Lai, T.; Lalloo, R.; Lam, H.; Lan, Q.; Lansingh, V.C.; Larson, H.; Larsson, A.; Lawrynowicz, A.E.B.; Leasher, J.L.; Lee, J-T.; Leigh, J.; Leung, R.; Levi, M.; Li, B.; Li, Y.; Li, Y. liang, J.; Lim, S.; Lin, H-H.; Lind, M.; Lindsay, M.P.; Lipshultz, S.E.; Liu, S.; Lloyd, B.K.; Ohno, S.L.; Logroscino, G.; Looker, K.J.; Lopez, A.D.; Lopez-Olmedo, N.; Lortet-Tieulent, J.; Lotufo, P.A.; Low, N.; Lucas, R.M.; Lunevicius, R.; Lyons, R.A.; Ma, J.; Ma, S.; Mackay, M.T.; Majdan, M.; Malekzadeh, R.; Mapoma, C.C.; Marcenes, W.; March, L.M.; Margono, C.; Marks, G.B.; Marzan, M.B.; Masci, J.R.; Mason-Jones, A.J.; Matzopoulos, R.G.; Mayosi, B.M.; Mazorodze, T.T.; McGill, N.W.; McGrath, J.J.; McKee, M.; McLain, A.; McMahon, B.J.; Meaney, P.A.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, W.; Melaku, Y.A.; Meltzer, M.; Memish, Z.A.; Mensah, G.; Meretoja, A.; Mhimbira, F.A.; Micha, R.; Miller, T.R.; Mills, E.J.; Mitchell, P.B.; Mock, C.N.; Moffitt, T.E.; Ibrahim, N.M.; Mohammad, K.A.; Mokdad, A.H.; Mola, G.L.; Monasta, L.; Montico, M.; Montine, T.J.; Moore, A.R.; Moran, A.E.; Morawska, L.; Mori, R.; Moschandreas, J.; Moturi, W.N.; Moyer, M.; Mozaffarian, D.; Mueller, U.O.; Mukaigawara, M.; Murdoch, M.E.; Murray, J.; Murthy, K.S.; Naghavi, P.; Nahas, Z.; Naheed, A.; Naidoo, K.S.; Naldi, L.; Nand, D.; Nangia, V.; Narayan, K.M.V.; Nash, D.; Nejjari, C.; Neupane, S.P.; Newman, L.M.; Newton, C.R.; Ng, M.; Ngalesoni, F.N.; Nhung, N.T.; Nisar, M.I.; Nolte, S.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nyakarahuka, L.; Oh, I.H.; Ohkubo, T.; Omer, S.B.; Opio, J.N.; Ortiz, A.; Pandian, J.D.; Panelo, C.I.A.; Papachristou, C.; Park, E-K.; Parry, C.D.; Caicedo, A.J.P.; Patten, S.B.; Paul, V.K.; Pavlin, B.I.; Pearce, N.; Pedraza, L.S.; Pellegrini, C.A.; Pereira, D.M.; Perez-Ruiz, F.P.; Perico, N.; Pervaiz, A.; Pesudovs, K.; Peterson, C.B.; Petzold, M.; Phillips, M.R.; Phillips, D.; Phillips, B.; Piel, F.B.; Plass, D.; Poenaru, D.; Polanczyk, G.V.; Polinder, S.; Pope, C.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Prasad, N.M.; Qato, D.; Quistberg, D.A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, S.; Raju, M.; Rakovac, I.; Rana, S.M.; Razavi, H.; Refaat, A.; Rehm, J.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Riccio, P.M.; Richardson, L.; Richardus, J.H.; Riederer, A.M.; Robinson, M.; Roca, A.; Rodriguez, A.; Rojas-Rueda, D.; Ronfani, L.; Rothenbacher, D.; Roy, N.; Ruhago, G.M.; Sabin, N.; Sacco, R.L.; Ksoreide, K.; Saha, S.; Sahathevan, R.; Sahraian, M.A.; Sampson, U.; Sanabria, J.R.; Sanchez-Riera, L.; Santos, I.S.; Satpathy, M.; Saunders, J.E.; Sawhney, M.; Saylan, M.I.; Scarborough, P.; Schoettker, B.; Schneider, I.J.C.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Serdar, B.; Servan-Mori, E.E.; Shackelford, K.; Shaheen, A.; Shahraz, S.; Levy, T.S.; Shangguan, S.; She, J.; Sheikhbahaei, S.; Shepard, D.S.; Shi, P.; Shibuya, K.; Shinohara, Y.; Shiri, R.; Shishani, K.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silberberg, D.H.; Simard, E.P.; Sindi, S.; Singh, J.A.; Singh, L.; Skirbekk, V.; Sliwa, K.; Soljak, M.; Soneji, S.; Soshnikov, S.S.; Speyer, P.; Sposato, L.A.; Sreeramareddy, C.T.; Stoeckl, H.; Stathopoulou, V.K.; Steckling, N.; Stein, M.B.; Stein, D.J.; Steiner, T.J.; Stewart, A.; Stork, E.; Stovner, L.J.; Stroumpoulis, K.; Sturua, L.; Sunguya, B.F.; Swaroop, M.; Sykes, B.L.; Tabb, K.M.; Takahashi, K.; Tan, F.; Tandon, N.; Tanne, D.; Tanner, M.; Tavakkoli, M.; Taylor, H.R.; Te Ao, B.J.; Temesgen, A.M.; Have, M.T.; Tenkorang, E.Y.; Terkawi, A.S.; Theadom, A.M.; Thomas, E.; Thorne-Lyman, A.L.; Thrift, A.G.; Tleyjeh, I.M.; Tonelli, M.; Topouzis, F.; Towbin, J.A.; Toyoshima, H.; Traebert, J.; Tran, B.X.; Trasande, L.; Trillini, M.; Truelsen, T.; Trujillo, U.; Tsilimbaris, M.; Tuzcu, E.M.; Ukwaja, K.N.; Undurraga, E.A.; Uzun, S.B.; van Brakel, W.H.; van de Vijver, S.; Dingenen, R.V.; van Gool, C.H.; Varakin, Y.Y.; Vasankari, T.J.; Vavilala, M.S.; Veerman, L.J.; Velasquez-Melendez, G.; Venketasubramanian, N.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Waller, S.; Wallin, M.T.; Wan, X.; Wang, L.; Wang, J.L.; Wang, Y.; Warouw, T.S.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Wessells, K.R.R.; Westerman, R.; Wilkinson, J.D.; Williams, H.C.; Williams, T.N.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Wong, J.Q.; Wong, H.; Woolf, A.D.; Wright, J.L.; Wurtz, B.; Xu, G.; Yang, G.; Yano, Y.; Yenesew, M.A.; Yentur, G.K.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Younis, M.; Yu, C.; Kim, K.Y.; Zaki, M.E.S.; Zhang, Y.; Zhao, Z.; Zhao, Y.; Zhu, J.; Zonies, D.; Zunt, J.R.; Salomon, J.A.; Murray, C.J.L. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 386(9995), 743-800.
[http://dx.doi.org/10.1016/S0140-6736(15)60692-4] [PMID: 26063472]
[3]
Monroe, S.M.; Harkness, K.L. Major depression and its recurrences: Life course matters. Annu. Rev. Clin. Psychol., 2022, 18(1), 329-357.
[http://dx.doi.org/10.1146/annurev-clinpsy-072220-021440] [PMID: 35216520]
[4]
Lépine, J.P.; Briley, M. The increasing burden of depression. Neuropsychiatr. Dis. Treat., 2011, 7(Suppl. 1), 3-7.
[PMID: 21750622]
[5]
Laursen, T.M.; Musliner, K.L.; Benros, M.E.; Vestergaard, M.; Munk-Olsen, T. Mortality and life expectancy in persons with severe unipolar depression. J. Affect. Disord., 2016, 193, 203-207.
[http://dx.doi.org/10.1016/j.jad.2015.12.067] [PMID: 26773921]
[6]
Chesney, E.; Goodwin, G.M.; Fazel, S. Risks of all-cause and suicide mortality in mental disorders: A meta-review. World Psychiatry, 2014, 13(2), 153-160.
[http://dx.doi.org/10.1002/wps.20128] [PMID: 24890068]
[7]
Penninx, B.W.J.H.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the somatic consequences of depression: Biological mechanisms and the role of depression symptom profile. BMC Med., 2013, 11(1), 129.
[http://dx.doi.org/10.1186/1741-7015-11-129] [PMID: 23672628]
[8]
Ruhé, H.G.; Huyser, J.; Swinkels, J.A.; Schene, A.H. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: A systematic review. J. Clin. Psychiatry, 2006, 67(12), 1836-1855.
[http://dx.doi.org/10.4088/JCP.v67n1203] [PMID: 17194261]
[9]
Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Stewart, J.W.; Nierenberg, A.A.; Thase, M.E.; Ritz, L.; Biggs, M.M.; Warden, D.; Luther, J.F.; Shores-Wilson, K.; Niederehe, G.; Fava, M. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N. Engl. J. Med., 2006, 354(12), 1231-1242.
[http://dx.doi.org/10.1056/NEJMoa052963] [PMID: 16554525]
[10]
Giakoumatos, C.I.; Osser, D. The psychopharmacology algorithm project at the harvard south shore program: An update on unipolar nonpsychotic depression. Harv. Rev. Psychiatry, 2019, 27(1), 33-52.
[http://dx.doi.org/10.1097/HRP.0000000000000197] [PMID: 30614886]
[11]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[12]
Ormel, J.; Oldehinkel, A.J.; Nolen, W.A.; Vollebergh, W. Psychosocial disability before, during, and after a major depressive episode: A 3-wave population-based study of state, scar, and trait effects. Arch. Gen. Psychiatry, 2004, 61(4), 387-392.
[http://dx.doi.org/10.1001/archpsyc.61.4.387] [PMID: 15066897]
[13]
Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; Fratiglioni, L.; Jennum, P.; Lieb, R.; Maercker, A.; van Os, J.; Preisig, M.; Salvador-Carulla, L.; Simon, R.; Steinhausen, H.C. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol., 2011, 21(9), 655-679.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.018] [PMID: 21896369]
[14]
Menke, A. Precision pharmacotherapy: Psychiatry’s future direction in preventing, diagnosing, and treating mental disorders. Pharm. Genomics Pers. Med., 2018, 11, 211-222.
[http://dx.doi.org/10.2147/PGPM.S146110] [PMID: 30510440]
[15]
Menke, A. Is the HPA axis as target for depression outdated, or is there a new hope? Front. Psychiatry, 2019, 10, 101.
[http://dx.doi.org/10.3389/fpsyt.2019.00101] [PMID: 30890970]
[16]
Mora, C.; Zonca, V.; Riva, M.A.; Cattaneo, A. Blood biomarkers and treatment response in major depression. Expert Rev. Mol. Diagn., 2018, 18(6), 513-529.
[http://dx.doi.org/10.1080/14737159.2018.1470927] [PMID: 29701114]
[17]
Kadriu, B.; Greenwald, M.; Henter, I.D.; Gilbert, J.R.; Kraus, C.; Park, L.T.; Zarate, C.A., Jr Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(1), 8-21.
[http://dx.doi.org/10.1093/ijnp/pyaa087] [PMID: 33252694]
[18]
Ionescu, D.F.; Fu, D.J.; Qiu, X.; Lane, R.; Lim, P.; Kasper, S.; Hough, D.; Drevets, W.C.; Manji, H.; Canuso, C.M. Esketamine nasal spray for rapid reduction of depressive symptoms in patients with major depressive disorder who have active suicide ideation with intent: Results of a Phase 3, double-blind, randomized study (ASPIRE II). Int. J. Neuropsychopharmacol., 2021, 24(1), 22-31.
[http://dx.doi.org/10.1093/ijnp/pyaa068] [PMID: 32861217]
[19]
Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatry, 2000, 157(10), 1552-1562.
[http://dx.doi.org/10.1176/appi.ajp.157.10.1552] [PMID: 11007705]
[20]
Klengel, T.; Binder, E.B. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron, 2015, 86(6), 1343-1357.
[http://dx.doi.org/10.1016/j.neuron.2015.05.036] [PMID: 26087162]
[21]
Binder, EB Dissecting the molecular mechanisms of gene x environment interactions: Implications for diagnosis and treatment of stress-related psychiatric disorders. Eur. J. Psychotraumatol., 2017, 8(sup5), 1412745.
[http://dx.doi.org/10.1080/20008198.2017.1412745]
[22]
Menke, A.; Binder, E.B. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin. Neurosci., 2014, 16(3), 395-404.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/amenke] [PMID: 25364288]
[23]
Heim, C.; Nemeroff, C.B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biol. Psychiatry, 2001, 49(12), 1023-1039.
[http://dx.doi.org/10.1016/S0006-3223(01)01157-X] [PMID: 11430844]
[24]
Hu, P.; Maita, I.; Phan, M.L.; Gu, E.; Kwok, C.; Dieterich, A.; Gergues, M.M.; Yohn, C.N.; Wang, Y.; Zhou, J.N.; Qi, X.R.; Swaab, D.F.; Pang, Z.P.; Lucassen, P.J.; Roepke, T.A.; Samuels, B.A. Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Transl. Psychiatry, 2020, 10(1), 396.
[http://dx.doi.org/10.1038/s41398-020-01070-3] [PMID: 33177511]
[25]
Zimmermann, P.; Brückl, T.; Nocon, A.; Pfister, H.; Binder, E.B.; Uhr, M.; Lieb, R.; Moffitt, T.E.; Caspi, A.; Holsboer, F.; Ising, M. Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: Results from a 10-year prospective community study. Am. J. Psychiatry, 2011, 168(10), 1107-1116.
[http://dx.doi.org/10.1176/appi.ajp.2011.10111577] [PMID: 21865530]
[26]
Binder, E.B. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 2009, 34(Suppl. 1), S186-S195.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.021] [PMID: 19560279]
[27]
McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev., 2007, 87(3), 873-904.
[http://dx.doi.org/10.1152/physrev.00041.2006] [PMID: 17615391]
[28]
Danese, A.J.; Lewis, S. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology, 2017, 42(1), 99-114.
[http://dx.doi.org/10.1038/npp.2016.198] [PMID: 27629365]
[29]
Kuhlman, K.R.; Chiang, J.J.; Horn, S.; Bower, J.E. Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neurosci. Biobehav. Rev., 2017, 80, 166-184.
[http://dx.doi.org/10.1016/j.neubiorev.2017.05.020] [PMID: 28577879]
[30]
Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol., 1997, 48(1), 191-214.
[http://dx.doi.org/10.1146/annurev.psych.48.1.191] [PMID: 9046559]
[31]
Menke, A.; Nitschke, F.; Hellmuth, A.; Helmel, J.; Wurst, C.; Stonawski, S.; Blickle, M.; Weiß, C.; Weber, H.; Hommers, L.; Domschke, K.; Deckert, J. Stress impairs response to antidepressants via HPA axis and immune system activation. Brain Behav. Immun., 2021, 93, 132-140.
[http://dx.doi.org/10.1016/j.bbi.2020.12.033] [PMID: 33422640]
[32]
Yang, J.Z.; Kang, C.Y.; Yuan, J.; Zhang, Y.; Wei, Y.J.; Xu, L.; Zhou, F.; Fan, X. Effect of adverse childhood experiences on hypothalamic–pituitary–adrenal (HPA) axis function and antidepressant efficacy in untreated first episode patients with major depressive disorder. Psychoneuroendocrinology, 2021, 134, 105432.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105432] [PMID: 34607174]
[33]
Knorr, U.; Vinberg, M.; Kessing, L.V.; Wetterslev, J. Salivary cortisol in depressed patients versus control persons: A systematic review and meta-analysis. Psychoneuroendocrinology, 2010, 35(9), 1275-1286.
[http://dx.doi.org/10.1016/j.psyneuen.2010.04.001] [PMID: 20447770]
[34]
Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med., 2011, 73(2), 114-126.
[http://dx.doi.org/10.1097/PSY.0b013e31820ad12b] [PMID: 21257974]
[35]
Holsboer, F. Stress, hypercortisolism and corticosteroid receptors in depression: Implicatons for therapy. J. Affect. Disord., 2001, 62(1-2), 77-91.
[http://dx.doi.org/10.1016/S0165-0327(00)00352-9] [PMID: 11172875]
[36]
Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 2000, 23(5), 477-501.
[http://dx.doi.org/10.1016/S0893-133X(00)00159-7] [PMID: 11027914]
[37]
Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981, 213(4514), 1394-1397.
[http://dx.doi.org/10.1126/science.6267699] [PMID: 6267699]
[38]
Schatzberg, A.F. Anna-Monika Award Lecture, DGPPN Kongress, 2013: The role of the hypothalamic–pituitary–adrenal (HPA) axis in the pathogenesis of psychotic major depression. World J. Biol. Psychiatry, 2015, 16(1), 2-11.
[http://dx.doi.org/10.3109/15622975.2014.916414] [PMID: 24933348]
[39]
Qi, X.R.; Kamphuis, W.; Wang, S.; Wang, Q.; Lucassen, P.J.; Zhou, J.N.; Swaab, D.F. Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology, 2013, 38(6), 863-870.
[http://dx.doi.org/10.1016/j.psyneuen.2012.09.014] [PMID: 23137715]
[40]
Qi, C.C.; Zhang, Z.; Fang, H.; Liu, J.; Zhou, N.; Ge, J.F.; Chen, F.H.; Xiang, C.B.; Zhou, J.N. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats. Int. J. Neuropsychopharmacol., 2014, 18(4), pyu006.
[PMID: 25552429]
[41]
Hu, P.; van Dam, A.M.; Wang, Y.; Lucassen, P.J.; Zhou, J.N. Retinoic acid and depressive disorders: Evidence and possible neurobiological mechanisms. Neurosci. Biobehav. Rev., 2020, 112, 376-391.
[http://dx.doi.org/10.1016/j.neubiorev.2020.02.013] [PMID: 32070693]
[42]
Rotondo, F.; Butz, H.; Syro, L.V.; Yousef, G.M.; Di Ieva, A.; Restrepo, L.M.; Quintanar-Stephano, A.; Berczi, I.; Kovacs, K. Arginine vasopressin (AVP): A review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary, 2016, 19(4), 345-355.
[http://dx.doi.org/10.1007/s11102-015-0703-0] [PMID: 26762848]
[43]
Pariante, C.M.; Miller, A.H. Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biol. Psychiatry, 2001, 49(5), 391-404.
[http://dx.doi.org/10.1016/S0006-3223(00)01088-X] [PMID: 11274650]
[44]
Pariante, C.M. Glucocorticoid receptor function in vitro in patients with major depression. Stress, 2004, 7(4), 209-219.
[http://dx.doi.org/10.1080/10253890500069650] [PMID: 16019586]
[45]
Young, E.A.; Lopez, J.F.; Murphy-Weinberg, V.; Watson, S.J.; Akil, H. Mineralocorticoid receptor function in major depression. Arch. Gen. Psychiatry, 2003, 60(1), 24-28.
[http://dx.doi.org/10.1001/archpsyc.60.1.24] [PMID: 12511169]
[46]
McEwen, B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med., 1998, 338(3), 171-179.
[http://dx.doi.org/10.1056/NEJM199801153380307] [PMID: 9428819]
[47]
Leistner, C.; Menke, A. How to measure glucocorticoid receptor’s sensitivity in patients with stress-related psychiatric disorders. Psychoneuroendocrinology, 2018, 91, 235-260.
[http://dx.doi.org/10.1016/j.psyneuen.2018.01.023] [PMID: 29449045]
[48]
Carroll, B.J.; Martin, F.I.R.; Davies, B. Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. BMJ, 1968, 3(5613), 285-287.
[http://dx.doi.org/10.1136/bmj.3.5613.285] [PMID: 4385601]
[49]
Carroll, B.J.; Feinberg, M.; Greden, J.F.; Tarika, J.; Albala, A.A.; Haskett, R.F.; James, N.M.; Kronfol, Z.; Lohr, N.; Steiner, M.; de Vigne, J.P.; Young, E. A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch. Gen. Psychiatry, 1981, 38(1), 15-22.
[http://dx.doi.org/10.1001/archpsyc.1981.01780260017001] [PMID: 7458567]
[50]
Nelson, J.C.; Davis, J.M. DST studies in psychotic depression: A meta-analysis. Am. J. Psychiatry, 1997, 154(11), 1497-1503.
[http://dx.doi.org/10.1176/ajp.154.11.1497] [PMID: 9356556]
[51]
Nierenberg, A.A.; Feinstein, A.R. How to evaluate a diagnostic marker test. Lessons from the rise and fall of dexamethasone suppression test. JAMA, 1988, 259(11), 1699-1702.
[http://dx.doi.org/10.1001/jama.1988.03720110061036] [PMID: 3278149]
[52]
Gervasoni, N.; Bertschy, G.; Osiek, C.; Perret, G.; Denis, R.; Golaz, J.; Rossier, M.F.; Bondolfi, G.; Aubry, J.M. Cortisol responses to combined dexamethasone/CRH test in outpatients with a major depressive episode. J. Psychiatr. Res., 2004, 38(6), 553-557.
[http://dx.doi.org/10.1016/j.jpsychires.2004.04.008] [PMID: 15458850]
[53]
Carpenter, L.L.; Ross, N.S.; Tyrka, A.R.; Anderson, G.M.; Kelly, M.; Price, L.H. Dex/CRH test cortisol response in outpatients with major depression and matched healthy controls. Psychoneuroendocrinology, 2009, 34(8), 1208-1213.
[http://dx.doi.org/10.1016/j.psyneuen.2009.03.009] [PMID: 19375869]
[54]
Holsboer, F.; Bender, W.; Benkert, O.; Klein, H.E.; Schmauss, M. Diagnostic value of dexamethasone suppression test in depression. Lancet, 1980, 316(8196), 706.
[http://dx.doi.org/10.1016/S0140-6736(80)92755-5] [PMID: 6106823]
[55]
Arana, G.W.; Baldessarini, R.J.; Ornsteen, M. The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch. Gen. Psychiatry, 1985, 42(12), 1193-1204.
[http://dx.doi.org/10.1001/archpsyc.1985.01790350067012] [PMID: 3000317]
[56]
Bardeleben, U.; Holsboer, F. Cortisol response to a combined dexamethasone-human corticotrophin-releasing hormone challenge in patients with depression. J. Neuroendocrinol., 1989, 1(6), 485-488.
[http://dx.doi.org/10.1111/j.1365-2826.1989.tb00150.x] [PMID: 19210420]
[57]
Heuser, I.; Yassouridis, A.; Holsboer, F. The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders. J. Psychiatr. Res., 1994, 28(4), 341-356.
[http://dx.doi.org/10.1016/0022-3956(94)90017-5] [PMID: 7877114]
[58]
Modell, S.; Yassouridis, A.; Huber, J.; Holsboer, F. Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology, 1997, 65(3), 216-222.
[http://dx.doi.org/10.1159/000127275] [PMID: 9088003]
[59]
Kunugi, H.; Ida, I.; Owashi, T.; Kimura, M.; Inoue, Y.; Nakagawa, S.; Yabana, T.; Urushibara, T.; Kanai, R.; Aihara, M.; Yuuki, N.; Otsubo, T.; Oshima, A.; Kudo, K.; Inoue, T.; Kitaichi, Y.; Shirakawa, O.; Isogawa, K.; Nagayama, H.; Kamijima, K.; Nanko, S.; Kanba, S.; Higuchi, T.; Mikuni, M. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: A multicenter study. Neuropsychopharmacology, 2006, 31(1), 212-220.
[http://dx.doi.org/10.1038/sj.npp.1300868] [PMID: 16123748]
[60]
Ising, M.; Horstmann, S.; Kloiber, S.; Lucae, S.; Binder, E.B.; Kern, N.; Künzel, H.E.; Pfennig, A.; Uhr, M.; Holsboer, F. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression - a potential biomarker? Biol. Psychiatry, 2007, 62(1), 47-54.
[http://dx.doi.org/10.1016/j.biopsych.2006.07.039] [PMID: 17123470]
[61]
Zobel, A.W.; Nickel, T.; Sonntag, A.; Uhr, M.; Holsboer, F.; Ising, M. Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. J. Psychiatr. Res., 2001, 35(2), 83-94.
[http://dx.doi.org/10.1016/S0022-3956(01)00013-9] [PMID: 11377437]
[62]
Appelhof, B.C.; Huyser, J.; Verweij, M.; Brouwer, J.P.; van Dyck, R.; Fliers, E.; Hoogendijk, W.J.G.; Tijssen, J.G.P.; Wiersinga, W.M.; Schene, A.H. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol. Psychiatry, 2006, 59(8), 696-701.
[http://dx.doi.org/10.1016/j.biopsych.2005.09.008] [PMID: 16368077]
[63]
Coryell, W.; Schlesser, M. The dexamethasone suppression test and suicide prediction. Am. J. Psychiatry, 2001, 158(5), 748-753.
[http://dx.doi.org/10.1176/appi.ajp.158.5.748] [PMID: 11329397]
[64]
Hennings, J.M.; Ising, M.; Uhr, M.; Holsboer, F.; Lucae, S. Recurrent suicide attempts affect normalization of HPA axis dysregulation after recovery from major depression. Front. Psychiatry, 2022, 13, 937582.
[http://dx.doi.org/10.3389/fpsyt.2022.937582] [PMID: 36032226]
[65]
Menke, A.; Arloth, J.; Best, J.; Namendorf, C.; Gerlach, T.; Czamara, D.; Lucae, S.; Dunlop, B.W.; Crowe, T.M.; Garlow, S.J.; Nemeroff, C.B.; Ritchie, J.C.; Craighead, W.E.; Mayberg, H.S.; Rex-Haffner, M.; Binder, E.B.; Uhr, M. Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests. Psychoneuroendocrinology, 2016, 69, 161-171.
[http://dx.doi.org/10.1016/j.psyneuen.2016.04.003] [PMID: 27107207]
[66]
Leistner, C.; Menke, A. Hypothalamic–pituitary–adrenal axis and stress. Handb. Clin. Neurol., 2020, 175, 55-64.
[http://dx.doi.org/10.1016/B978-0-444-64123-6.00004-7] [PMID: 33008543]
[67]
Menke, A.; Arloth, J.; Pütz, B.; Weber, P.; Klengel, T.; Mehta, D.; Gonik, M.; Rex-Haffner, M.; Rubel, J.; Uhr, M.; Lucae, S.; Deussing, J.M.; Müller-Myhsok, B.; Holsboer, F.; Binder, E.B. Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology, 2012, 37(6), 1455-1464.
[http://dx.doi.org/10.1038/npp.2011.331] [PMID: 22237309]
[68]
Menke, A.; Rex-Haffner, M.; Klengel, T.; Binder, E.B.; Mehta, D. Peripheral blood gene expression: It all boils down to the RNA collection tubes. BMC Res. Notes, 2012, 5(1), 1.
[http://dx.doi.org/10.1186/1756-0500-5-1] [PMID: 22214347]
[69]
Menke, A.; Arloth, J.; Gerber, M.; Rex-Haffner, M.; Uhr, M.; Holsboer, F.; Binder, E.B.; Holsboer-Trachsler, E.; Beck, J. Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion. Psychoneuroendocrinology, 2014, 44, 35-46.
[http://dx.doi.org/10.1016/j.psyneuen.2014.02.013] [PMID: 24767618]
[70]
Menke, A.; Lehrieder, D.; Fietz, J.; Leistner, C.; Wurst, C.; Stonawski, S.; Reitz, J.; Lechner, K.; Busch, Y.; Weber, H.; Deckert, J.; Domschke, K. Childhood trauma dependent anxious depression sensitizes HPA axis function. Psychoneuroendocrinology, 2018, 98, 22-29.
[http://dx.doi.org/10.1016/j.psyneuen.2018.07.025] [PMID: 30086534]
[71]
Rampp, C.; Eichelkraut, A.; Best, J.; Czamara, D.; Rex-Haffner, M.; Uhr, M.; Binder, E.B.; Menke, A. Sex-related differential response to dexamethasone in endocrine and immune measures in depressed in-patients and healthy controls. J. Psychiatr. Res., 2018, 98, 107-115.
[http://dx.doi.org/10.1016/j.jpsychires.2017.12.020] [PMID: 29331929]
[72]
Arloth, J.; Bogdan, R.; Weber, P.; Frishman, G.; Menke, A.; Wagner, K.V.; Balsevich, G.; Schmidt, M.V.; Karbalai, N.; Czamara, D.; Altmann, A.; Trümbach, D.; Wurst, W.; Mehta, D.; Uhr, M.; Klengel, T.; Erhardt, A.; Carey, C.E.; Conley, E.D.; Ruepp, A.; Müller-Myhsok, B.; Hariri, A.R.; Binder, E.B.; Ripke, S.; Wray, N.R.; Lewis, C.M.; Hamilton, S.P.; Weissman, M.M.; Breen, G.; Byrne, E.M.; Blackwood, D.H.R.; Boomsma, D.I.; Cichon, S.; Heath, A.C.; Holsboer, F.; Lucae, S.; Madden, P.A.F.; Martin, N.G.; McGuffin, P.; Muglia, P.; Noethen, M.M.; Penninx, B.P.; Pergadia, M.L.; Potash, J.B.; Rietschel, M.; Lin, D.; Müller-Myhsok, B.; Shi, J.; Steinberg, S.; Grabe, H.J.; Lichtenstein, P.; Magnusson, P.; Perlis, R.H.; Preisig, M.; Smoller, J.W.; Stefansson, K.; Uher, R.; Kutalik, Z.; Tansey, K.E.; Teumer, A.; Viktorin, A.; Barnes, M.R.; Bettecken, T.; Binder, E.B.; Breuer, R.; Castro, V.M.; Churchill, S.E.; Coryell, W.H.; Craddock, N.; Craig, I.W.; Czamara, D.; De Geus, E.J.; Degenhardt, F.; Farmer, A.E.; Fava, M.; Frank, J.; Gainer, V.S.; Gallagher, P.J.; Gordon, S.D.; Goryachev, S.; Gross, M.; Guipponi, M.; Henders, A.K.; Herms, S.; Hickie, I.B.; Hoefels, S.; Hoogendijk, W.; Hottenga, J.J.; Iosifescu, D.V.; Ising, M.; Jones, I.; Jones, L.; Jung-Ying, T.; Knowles, J.A.; Kohane, I.S.; Kohli, M.A.; Korszun, A.; Landen, M.; Lawson, W.B.; Lewis, G.; MacIntyre, D.; Maier, W.; Mattheisen, M.; McGrath, P.J.; McIntosh, A.; McLean, A.; Middeldorp, C.M.; Middleton, L.; Montgomery, G.M.; Murphy, S.N.; Nauck, M.; Nolen, W.A.; Nyholt, D.R.; O’Donovan, M.; Oskarsson, H.; Pedersen, N.; Scheftner, W.A.; Schulz, A.; Schulze, T.G.; Shyn, S.I.; Sigurdsson, E.; Slager, S.L.; Smit, J.H.; Stefansson, H.; Steffens, M.; Thorgeirsson, T.; Tozzi, F.; Treutlein, J.; Uhr, M.; van den Oord, E.J.C.G.; Van Grootheest, G.; Völzke, H.; Weilburg, J.B.; Willemsen, G.; Zitman, F.G.; Neale, B.; Daly, M.; Levinson, D.F.; Sullivan, P.F. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron, 2015, 86(5), 1189-1202.
[http://dx.doi.org/10.1016/j.neuron.2015.05.034] [PMID: 26050039]
[73]
Wiechmann, T.; Röh, S.; Sauer, S.; Czamara, D.; Arloth, J.; Ködel, M.; Beintner, M.; Knop, L.; Menke, A.; Binder, E.B.; Provençal, N. Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus. Clin. Epigenetics, 2019, 11(1), 83.
[http://dx.doi.org/10.1186/s13148-019-0682-5] [PMID: 31122292]
[74]
Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2006, 8(4), 383-395.
[http://dx.doi.org/10.31887/DCNS.2006.8.4/ssmith] [PMID: 17290797]
[75]
de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[76]
Schatzberg, A.F.; Keller, J.; Tennakoon, L.; Lembke, A.; Williams, G.; Kraemer, F.B.; Sarginson, J.E.; Lazzeroni, L.C.; Murphy, G.M. HPA axis genetic variation, cortisol and psychosis in major depression. Mol. Psychiatry, 2014, 19(2), 220-227.
[http://dx.doi.org/10.1038/mp.2013.129] [PMID: 24166410]
[77]
Keller, J.; Flores, B.; Gomez, R.G.; Solvason, H.B.; Kenna, H.; Williams, G.H.; Schatzberg, A.F. Cortisol circadian rhythm alterations in psychotic major depression. Biol. Psychiatry, 2006, 60(3), 275-281.
[http://dx.doi.org/10.1016/j.biopsych.2005.10.014] [PMID: 16458262]
[78]
Dwyer, J.B.; Aftab, A.; Radhakrishnan, R.; Widge, A.; Rodriguez, C.I.; Carpenter, L.L.; Nemeroff, C.B.; McDonald, W.M.; Kalin, N.H. Hormonal treatments for major depressive disorder: State of the art. Am. J. Psychiatry, 2020, 177(8), 686-705.
[http://dx.doi.org/10.1176/appi.ajp.2020.19080848] [PMID: 32456504]
[79]
Ding, Y.; Wei, Z.; Yan, H.; Guo, W. Efficacy of treatments targeting hypothalamic-pituitary-adrenal systems for major depressive disorder: A meta-analysis. Front. Pharmacol., 2021, 12, 732157.
[http://dx.doi.org/10.3389/fphar.2021.732157] [PMID: 34566653]
[80]
Aguilera, G.; Rabadan-Diehl, C. Vasopressinergic regulation of the hypothalamic–pituitary–adrenal axis: Implications for stress adaptation. Regul. Pept., 2000, 96(1-2), 23-29.
[http://dx.doi.org/10.1016/S0167-0115(00)00196-8] [PMID: 11102648]
[81]
Peter, J.; Burbach, H.; Adan, R.A.H.; Lolait, S.J.; van Leeuwen, F.W.; Mezey, E.; Palkovits, M.; Barberis, C. Molecular neurobiology and pharmacology of the Vasopressin/Oxytocin receptor family. Cell. Mol. Neurobiol., 1995, 15(5), 573-595.
[http://dx.doi.org/10.1007/BF02071318] [PMID: 8719042]
[82]
Rabadan-Diehl, C.; Lolait, S.J.; Aguilera, G. Regulation of pituitary vasopressin V1b receptor mRNA during stress in the rat. J. Neuroendocrinol., 1995, 7(12), 903-910.
[http://dx.doi.org/10.1111/j.1365-2826.1995.tb00734.x] [PMID: 8745267]
[83]
Meynen, G.; Unmehopa, U.A.; van Heerikhuize, J.J.; Hofman, M.A.; Swaab, D.F.; Hoogendijk, W.J.G. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report. Biol. Psychiatry, 2006, 60(8), 892-895.
[http://dx.doi.org/10.1016/j.biopsych.2005.12.010] [PMID: 16499879]
[84]
Holsboer, F.; Ising, M. Hypothalamic stress systems in mood disorders. Handb. Clin. Neurol., 2021, 182, 33-48.
[http://dx.doi.org/10.1016/B978-0-12-819973-2.00003-4] [PMID: 34266603]
[85]
Chaki, S. Vasopressin V1B receptor antagonists as potential antidepressants. Int. J. Neuropsychopharmacol., 2021, 24(6), 450-463.
[http://dx.doi.org/10.1093/ijnp/pyab013] [PMID: 33733667]
[86]
Griebel, G.; Beeské, S.; Stahl, S.M. The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: Results from 4 randomized, double-blind, placebo-controlled studies. J. Clin. Psychiatry, 2012, 73(11), 1403-1411.
[http://dx.doi.org/10.4088/JCP.12m07804] [PMID: 23146246]
[87]
Katz, D.A.; Locke, C.; Greco, N.; Liu, W.; Tracy, K.A. Hypothalamic-pituitary-adrenal axis and depression symptom effects of an arginine vasopressin type 1B receptor antagonist in a one-week randomized Phase 1b trial. Brain Behav., 2017, 7(3), e00628.
[http://dx.doi.org/10.1002/brb3.628] [PMID: 28293470]
[88]
Kamiya, M.; Sabia, H.D.; Marella, J.; Fava, M.; Nemeroff, C.B.; Umeuchi, H.; Iijima, M.; Chaki, S.; Nishino, I. Efficacy and safety of TS-121, a novel vasopressin V1B receptor antagonist, as adjunctive treatment for patients with major depressive disorder: A randomized, double-blind, placebo-controlled study. J. Psychiatr. Res., 2020, 128, 43-51.
[http://dx.doi.org/10.1016/j.jpsychires.2020.05.017] [PMID: 32521250]
[89]
Watson, S.; Gallagher, P.; Porter, R.J.; Smith, M.S.; Herron, L.J.; Bulmer, S.; Young, A.H.; Ferrier, I.N. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol. Psychiatry, 2012, 72(11), 943-949.
[http://dx.doi.org/10.1016/j.biopsych.2012.05.029] [PMID: 22770649]
[90]
Belanoff, J.K.; Flores, B.H.; Kalezhan, M.; Sund, B.; Schatzberg, A.F. Rapid reversal of psychotic depression using mifepristone. J. Clin. Psychopharmacol., 2001, 21(5), 516-521.
[http://dx.doi.org/10.1097/00004714-200110000-00009] [PMID: 11593077]
[91]
Flores, B.H.; Kenna, H.; Keller, J.; Solvason, H.B.; Schatzberg, A.F. Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology, 2006, 31(3), 628-636.
[http://dx.doi.org/10.1038/sj.npp.1300884] [PMID: 16160710]
[92]
DeBattista, C.; Belanoff, J.; Glass, S.; Khan, A.; Horne, R.L.; Blasey, C.; Carpenter, L.L.; Alva, G. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol. Psychiatry, 2006, 60(12), 1343-1349.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.034] [PMID: 16889757]
[93]
Belanoff, J.K.; Rothschild, A.J.; Cassidy, F.; DeBattista, C.; Baulieu, E.E.; Schold, C.; Schatzberg, A.F. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry, 2002, 52(5), 386-392.
[http://dx.doi.org/10.1016/S0006-3223(02)01432-4] [PMID: 12242054]
[94]
Simpson, G.M.; Sheshai, A.E.; Loza, N.; Kingsbury, S.J.; Fayek, M.; Rady, A.; Fawzy, W. An 8-week open-label trial of a 6-day course of mifepristone for the treatment of psychotic depression. J. Clin. Psychiatry, 2005, 66(5), 598-602.
[http://dx.doi.org/10.4088/JCP.v66n0509] [PMID: 15889946]
[95]
Blasey, C.M.; DeBattista, C.; Roe, R.; Block, T.; Belanoff, J.K. A multisite trial of mifepristone for the treatment of psychotic depression: A site-by-treatment interaction. Contemp. Clin. Trials, 2009, 30(4), 284-288.
[http://dx.doi.org/10.1016/j.cct.2009.03.001] [PMID: 19318138]
[96]
Block, T.S.; Kushner, H.; Kalin, N.; Nelson, C.; Belanoff, J.; Schatzberg, A. Combined analysis of mifepristone for psychotic depression: Plasma levels associated with clinical response. Biol. Psychiatry, 2018, 84(1), 46-54.
[http://dx.doi.org/10.1016/j.biopsych.2018.01.008] [PMID: 29523415]
[97]
Holsboer, F. CRHR1 antagonists as novel treatment strategies. CNS Spectr., 2001, 6(7), 590-594.
[http://dx.doi.org/10.1017/S1092852900002133] [PMID: 15573022]
[98]
Zhou, J.N.; Fang, H. Transcriptional regulation of corticotropin-releasing hormone gene in stress response. IBRO Rep., 2018, 5, 137-146.
[http://dx.doi.org/10.1016/j.ibror.2018.08.003] [PMID: 30591954]
[99]
Holsboer, F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res., 1999, 33(3), 181-214.
[http://dx.doi.org/10.1016/S0022-3956(98)90056-5] [PMID: 10367986]
[100]
Owens, M.J.; Nemeroff, C.B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev., 1991, 43(4), 425-473.
[PMID: 1775506]
[101]
Zobel, A.W.; Nickel, T.; Künzel, H.E.; Ackl, N.; Sonntag, A.; Ising, M.; Holsboer, F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res., 2000, 34(3), 171-181.
[http://dx.doi.org/10.1016/S0022-3956(00)00016-9] [PMID: 10867111]
[102]
Binneman, B.; Feltner, D.; Kolluri, S.; Shi, Y.; Qiu, R.; Stiger, T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am. J. Psychiatry, 2008, 165(5), 617-620.
[http://dx.doi.org/10.1176/appi.ajp.2008.07071199] [PMID: 18413705]
[103]
Spierling, S.R.; Zorrilla, E.P. Don’t stress about CRF: Assessing the translational failures of CRF1antagonists. Psychopharmacology, 2017, 234(9-10), 1467-1481.
[http://dx.doi.org/10.1007/s00213-017-4556-2] [PMID: 28265716]
[104]
Schwandt, M.L.; Cortes, C.R.; Kwako, L.E.; George, D.T.; Momenan, R.; Sinha, R.; Grigoriadis, D.E.; Pich, E.M.; Leggio, L.; Heilig, M. The CRF1 antagonist verucerfont in anxious alcohol-dependent women: Translation of neuroendocrine, but not of anti-craving effects. Neuropsychopharmacology, 2016, 41(12), 2818-2829.
[http://dx.doi.org/10.1038/npp.2016.61] [PMID: 27109623]
[105]
Dunlop, B.W.; Rothbaum, B.O.; Binder, E.B.; Duncan, E.; Harvey, P.D.; Jovanovic, T.; Kelley, M.E.; Kinkead, B.; Kutner, M.; Iosifescu, D.V.; Mathew, S.J.; Neylan, T.C.; Kilts, C.D.; Nemeroff, C.B.; Mayberg, H.S. Evaluation of a corticotropin releasing hormone type 1 receptor antagonist in women with posttraumatic stress disorder: study protocol for a randomized controlled trial. Trials, 2014, 15(1), 240.
[http://dx.doi.org/10.1186/1745-6215-15-240] [PMID: 24950747]
[106]
Dunlop, B.W.; Binder, E.B.; Iosifescu, D.; Mathew, S.J.; Neylan, T.C.; Pape, J.C.; Carrillo-Roa, T.; Green, C.; Kinkead, B.; Grigoriadis, D.; Rothbaum, B.O.; Nemeroff, C.B.; Mayberg, H.S. Corticotropin-releasing factor receptor 1 antagonism is ineffective for women with posttraumatic stress disorder. Biol. Psychiatry, 2017, 82(12), 866-874.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.024] [PMID: 28793974]
[107]
Binder, E.B.; Salyakina, D.; Lichtner, P.; Wochnik, G.M.; Ising, M.; Pütz, B.; Papiol, S.; Seaman, S.; Lucae, S.; Kohli, M.A.; Nickel, T.; Künzel, H.E.; Fuchs, B.; Majer, M.; Pfennig, A.; Kern, N.; Brunner, J.; Modell, S.; Baghai, T.; Deiml, T.; Zill, P.; Bondy, B.; Rupprecht, R.; Messer, T.; Köhnlein, O.; Dabitz, H.; Brückl, T.; Müller, N.; Pfister, H.; Lieb, R.; Mueller, J.C.; Lõhmussaar, E.; Strom, T.M.; Bettecken, T.; Meitinger, T.; Uhr, M.; Rein, T.; Holsboer, F.; Muller-Myhsok, B. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet., 2004, 36(12), 1319-1325.
[http://dx.doi.org/10.1038/ng1479] [PMID: 15565110]
[108]
Matosin, N.; Halldorsdottir, T.; Binder, E.B. Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 Model. Biol. Psychiatry, 2018, 83(10), 821-830.
[http://dx.doi.org/10.1016/j.biopsych.2018.01.021] [PMID: 29573791]
[109]
Martins, J.; Yusupov, N.; Binder, E.B.; Brückl, T.M.; Czamara, D. Early adversity as the prototype gene × environment interaction in mental disorders? Pharmacol. Biochem. Behav., 2022, 215, 173371.
[http://dx.doi.org/10.1016/j.pbb.2022.173371] [PMID: 35271857]
[110]
Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; Nemeroff, C.B.; Holsboer, F.; Heim, C.M.; Ressler, K.J.; Rein, T.; Binder, E.B. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nat. Neurosci., 2013, 16(1), 33-41.
[http://dx.doi.org/10.1038/nn.3275] [PMID: 23201972]
[111]
Tatro, E.T.; Everall, I.P.; Masliah, E.; Hult, B.J.; Lucero, G.; Chana, G.; Soontornniyomkij, V.; Achim, C.L. Differential expression of immunophilins FKBP51 and FKBP52 in the frontal cortex of HIV-infected patients with major depressive disorder. J. Neuroimmune Pharmacol., 2009, 4(2), 218-226.
[http://dx.doi.org/10.1007/s11481-009-9146-6] [PMID: 19199039]
[112]
Chen, H.; Wang, N.; Zhao, X.; Ross, C.A.; O’Shea, K.S.; McInnis, M.G. Gene expression alterations in bipolar disorder postmortem brains. Bipolar Disord., 2013, 15(2), 177-187.
[http://dx.doi.org/10.1111/bdi.12039] [PMID: 23360497]
[113]
Sinclair, D.; Fillman, S.G.; Webster, M.J.; Weickert, C.S. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci. Rep., 2013, 3(1), 3539.
[http://dx.doi.org/10.1038/srep03539] [PMID: 24345775]
[114]
Young, K.A.; Thompson, P.M.; Cruz, D.A.; Williamson, D.E.; Selemon, L.D. BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls. Neurobiol. Stress, 2015, 2, 67-72.
[http://dx.doi.org/10.1016/j.ynstr.2015.07.002] [PMID: 26844242]
[115]
Hawn, S.E.; Sheerin, C.M.; Lind, M.J.; Hicks, T.A.; Marraccini, M.E.; Bountress, K.; Bacanu, S.A.; Nugent, N.R.; Amstadter, A.B. GxE effects of FKBP5 and traumatic life events on PTSD: A meta-analysis. J. Affect. Disord., 2019, 243, 455-462.
[http://dx.doi.org/10.1016/j.jad.2018.09.058] [PMID: 30273884]
[116]
Kim, H.J.; Jin, H.J. Polymorphisms in the FKBP5 gene are associated with attention deficit and hyperactivity disorder in Korean children. Behav. Brain Res., 2021, 414, 113508.
[http://dx.doi.org/10.1016/j.bbr.2021.113508] [PMID: 34352291]
[117]
Lobo, J.J.; Ayoub, L.J.; Moayedi, M.; Linnstaedt, S.D. Hippocampal volume, FKBP5 genetic risk alleles, and childhood trauma interact to increase vulnerability to chronic multisite musculoskeletal pain. Sci. Rep., 2022, 12(1), 6511.
[http://dx.doi.org/10.1038/s41598-022-10411-9] [PMID: 35444168]
[118]
Bortsov, A.V.; Smith, J.E.; Diatchenko, L.; Soward, A.C.; Ulirsch, J.C.; Rossi, C.; Swor, R.A.; Hauda, W.E.; Peak, D.A.; Jones, J.S.; Holbrook, D.; Rathlev, N.K.; Foley, K.A.; Lee, D.C.; Collette, R.; Domeier, R.M.; Hendry, P.L.; McLean, S.A. Polymorphisms in the glucocorticoid receptor co-chaperone FKBP5 predict persistent musculoskeletal pain after traumatic stress exposure. Pain, 2013, 154(8), 1419-1426.
[http://dx.doi.org/10.1016/j.pain.2013.04.037] [PMID: 23707272]
[119]
Strączkowski, M.; Stefanowicz, M.; Matulewicz, N.; Nikołajuk, A.; Karczewska-Kupczewska, M. Relation of adipose tissue and skeletal muscle FKBP5 expression with insulin sensitivity and the regulation of FKBP5 by insulin and free fatty acids. Endocrine, 2022, 76(3), 536-542.
[http://dx.doi.org/10.1007/s12020-022-03018-7] [PMID: 35212883]
[120]
Smedlund, K.B.; Sanchez, E.R.; Hinds, T.D., Jr FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol. Metab., 2021, 32(11), 862-874.
[http://dx.doi.org/10.1016/j.tem.2021.08.003] [PMID: 34481731]
[121]
Ising, M.; Maccarrone, G.; Brückl, T.; Scheuer, S.; Hennings, J.; Holsboer, F.; Turck, C.; Uhr, M.; Lucae, S. FKBP5 gene expression predicts antidepressant treatment outcome in depression. Int. J. Mol. Sci., 2019, 20(3), 485.
[http://dx.doi.org/10.3390/ijms20030485] [PMID: 30678080]
[122]
Schmidt, M.V.; Paez-Pereda, M.; Holsboer, F.; Hausch, F. The prospect of FKBP51 as a drug target. ChemMedChem, 2012, 7(8), 1351-1359.
[http://dx.doi.org/10.1002/cmdc.201200137] [PMID: 22581765]
[123]
Gaali, S.; Gopalakrishnan, R.; Wang, Y.; Kozany, C.; Hausch, F. The chemical biology of immunophilin ligands. Curr. Med. Chem., 2011, 18(35), 5355-5379.
[http://dx.doi.org/10.2174/092986711798194342] [PMID: 22087830]
[124]
Blackburn, E.A.; Walkinshaw, M.D. Targeting FKBP isoforms with small-molecule ligands. Curr. Opin. Pharmacol., 2011, 11(4), 365-371.
[http://dx.doi.org/10.1016/j.coph.2011.04.007] [PMID: 21803654]
[125]
Kolos, J.M.; Voll, A.M.; Bauder, M.; Hausch, F. FKBP Ligands—Where We Are and Where to Go? Front. Pharmacol., 2018, 9, 1425.
[http://dx.doi.org/10.3389/fphar.2018.01425] [PMID: 30568592]
[126]
Gaali, S.; Kirschner, A.; Cuboni, S.; Hartmann, J.; Kozany, C.; Balsevich, G.; Namendorf, C.; Fernandez-Vizarra, P.; Sippel, C.; Zannas, A.S.; Draenert, R.; Binder, E.B.; Almeida, O.F.X.; Rühter, G.; Uhr, M.; Schmidt, M.V.; Touma, C.; Bracher, A.; Hausch, F. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat. Chem. Biol., 2015, 11(1), 33-37.
[http://dx.doi.org/10.1038/nchembio.1699] [PMID: 25436518]
[127]
Balsevich, G.; Häusl, A.S.; Meyer, C.W.; Karamihalev, S.; Feng, X.; Pöhlmann, M.L.; Dournes, C.; Uribe-Marino, A.; Santarelli, S.; Labermaier, C.; Hafner, K.; Mao, T.; Breitsamer, M.; Theodoropoulou, M.; Namendorf, C.; Uhr, M.; Paez-Pereda, M.; Winter, G.; Hausch, F.; Chen, A.; Tschöp, M.H.; Rein, T.; Gassen, N.C.; Schmidt, M.V. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat. Commun., 2017, 8(1), 1725.
[http://dx.doi.org/10.1038/s41467-017-01783-y] [PMID: 29170369]
[128]
Bauder, M.; Meyners, C.; Purder, P.L.; Merz, S.; Sugiarto, W.O.; Voll, A.M.; Heymann, T.; Hausch, F. Structure-based design of high-affinity macrocyclic FKBP51 inhibitors. J. Med. Chem., 2021, 64(6), 3320-3349.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02195] [PMID: 33666419]
[129]
Hartmann, J.; Bajaj, T.; Klengel, C.; Chatzinakos, C.; Ebert, T.; Dedic, N.; McCullough, K.M.; Lardenoije, R.; Joëls, M.; Meijer, O.C.; McCann, K.E.; Dudek, S.M.; Sarabdjitsingh, R.A.; Daskalakis, N.P.; Klengel, T.; Gassen, N.C.; Schmidt, M.V.; Ressler, K.J. Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Rep., 2021, 35(9), 109185.
[http://dx.doi.org/10.1016/j.celrep.2021.109185] [PMID: 34077736]
[130]
Zhao, J.; Verwer, R.W.H.; Gao, S.F.; Qi, X.R.; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J. Psychiatr. Res., 2018, 102, 261-274.
[http://dx.doi.org/10.1016/j.jpsychires.2018.04.020] [PMID: 29753198]
[131]
Wu, X.; Balesar, R.; Lu, J.; Farajnia, S.; Zhu, Q.; Huang, M.; Bao, A.M.; Swaab, D.F. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression. Brain Struct. Funct., 2017, 222(9), 4079-4088.
[http://dx.doi.org/10.1007/s00429-017-1442-y] [PMID: 28608287]
[132]
Hashimoto, K. Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin. Neurosci., 2019, 73(10), 613-627.
[http://dx.doi.org/10.1111/pcn.12902] [PMID: 31215725]
[133]
Fukumoto, K.; Toki, H.; Iijima, M.; Hashihayata, T.; Yamaguchi, J.; Hashimoto, K.; Chaki, S. Antidepressant Potential of (R)-Ketamine in Rodent Models: Comparison with (S)-. Ketamine. J. Pharmacol. Exp. Ther., 2017, 361(1), 9-16.
[http://dx.doi.org/10.1124/jpet.116.239228] [PMID: 28115553]
[134]
Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; Dossou, K.S.S.; Fang, Y.; Huang, X.P.; Mayo, C.L.; Wainer, I.W.; Albuquerque, E.X.; Thompson, S.M.; Thomas, C.J.; Zarate, C.A., Jr; Gould, T.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533(7604), 481-486.
[http://dx.doi.org/10.1038/nature17998] [PMID: 27144355]
[135]
Anderzhanova, E.; Hafner, K.; Genewsky, A.J.; Soliman, A.; Pöhlmann, M.L.; Schmidt, M.V.; Blum, R.; Wotjak, C.T.; Gassen, N.C. The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice. Neurobiol. Stress, 2020, 13, 100239.
[http://dx.doi.org/10.1016/j.ynstr.2020.100239] [PMID: 33344695]
[136]
Gassen, N.C.; Hartmann, J.; Zannas, A.S.; Kretzschmar, A.; Zschocke, J.; Maccarrone, G.; Hafner, K.; Zellner, A.; Kollmannsberger, L.K.; Wagner, K.V.; Mehta, D.; Kloiber, S.; Turck, C.W.; Lucae, S.; Chrousos, G.P.; Holsboer, F.; Binder, E.B.; Ising, M.; Schmidt, M.V.; Rein, T. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol. Psychiatry, 2016, 21(2), 277-289.
[http://dx.doi.org/10.1038/mp.2015.38] [PMID: 25849320]
[137]
Cattaneo, A.; Riva, M.A. STRESS-induced mechanisms in mental illness: A role for glucocorticoid signalling. J. Steroid Biochem. Mol. Biol., 2016, 160, 169-174.
[PMID: 26241031]
[138]
Cattaneo, A.; Macchi, F.; Plazzotta, G.; Veronica, B.; Bocchio-Chiavetto, L.; Riva, M.A.; Pariante, C.M. Inflammation and neuronal plasticity: A link between childhood trauma and depression pathogenesis. Front. Cell. Neurosci., 2015, 9, 40.
[http://dx.doi.org/10.3389/fncel.2015.00040] [PMID: 25873859]
[139]
Ficek, J.; Zygmunt, M.; Piechota, M.; Hoinkis, D.; Rodriguez Parkitna, J.; Przewlocki, R.; Korostynski, M. Molecular profile of dissociative drug ketamine in relation to its rapid antidepressant action. BMC Genomics, 2016, 17(1), 362.
[http://dx.doi.org/10.1186/s12864-016-2713-3] [PMID: 27188165]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy