Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

A Comprehensive Review on Current Treatments and Challenges Involved in the Treatment of Ovarian Cancer

Author(s): Saika Saman, Nimisha Srivastava*, Mohd Yasir and Iti Chauhan

Volume 24, Issue 2, 2024

Published on: 26 September, 2023

Page: [142 - 166] Pages: 25

DOI: 10.2174/1568009623666230811093139

Price: $65

Abstract

Ovarian cancer (OC) is the second most common gynaecological malignancy. It typically affects females over the age of 50, and since 75% of cases are only discovered at stage III or IV, this is a sign of a poor diagnosis. Despite intraperitoneal chemotherapy's chemosensitivity, most patients relapse and face death. Early detection is difficult, but treatment is also difficult due to the route of administration, resistance to therapy with recurrence, and the need for precise cancer targeting to minimize cytotoxicity and adverse effects.

On the other hand, undergoing debulking surgery becomes challenging, and therapy with many chemotherapeutic medications has manifested resistance, a condition known as multidrug resistance (MDR). Although there are other therapeutic options for ovarian cancer, this article solely focuses on co-delivery techniques, which work via diverse pathways to overcome cancer cell resistance. Different pathways contribute to MDR development in ovarian cancer; however, usually, pump and non-pump mechanisms are involved. Striking cancerous cells from several angles is important to defeat MDR. Nanocarriers are known to bypass the drug efflux pump found on cellular membranes to hit the pump mechanism.

Nanocarriers aid in the treatment of ovarian cancer by enhancing the delivery of chemotherapeutic drugs to the tumour sites through passive or active targeting, thereby reducing unfavorable side effects on the healthy tissues. Additionally, the enhanced permeability and retention (EPR) mechanism boosts the bioavailability of the tumour site. To address the shortcomings of conventional delivery, the current review attempts to explain the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors developed to treat ovarian cancer. In conclusion, tailored nanocarriers would optimize medication delivery into the intracellular compartment before optimizing intra-tumour distribution. Other novel treatment possibilities for ovarian cancer include tumour vaccines, gene therapy, targeting epigenetic alteration, and biologically targeted compounds. These characteristics might enhance the therapeutic efficacy.

Graphical Abstract

[1]
Sankaranarayanan, R.; Ferlay, J. Worldwide burden of gynaecological cancer: The size of the problem. Best Pract. Res. Clin. Obstet. Gynaecol., 2006, 20(2), 207-225.
[http://dx.doi.org/10.1016/j.bpobgyn.2005.10.007] [PMID: 16359925]
[2]
Ozols, R.F.; Bookman, M.A.; Connolly, D.C.; Daly, M.B.; Godwin, A.K.; Schilder, R.J.; Xu, X.; Hamilton, T.C. Focus on epithelial ovarian cancer. Cancer Cell, 2004, 5(1), 19-24.
[http://dx.doi.org/10.1016/S1535-6108(04)00002-9] [PMID: 14749123]
[3]
Madariaga, A.; Lheureux, S.; Oza, A. Tailoring ovarian cancer treatment: Implications of BRCA1/2 mutations. Cancers, 2019, 11(3), 416.
[http://dx.doi.org/10.3390/cancers11030416] [PMID: 30909618]
[4]
Moffitt, L.; Karimnia, N.; Stephens, A.; Bilandzic, M. Therapeutic targeting of collective invasion in ovarian cancer. Int. J. Mol. Sci., 2019, 20(6), 1466.
[http://dx.doi.org/10.3390/ijms20061466] [PMID: 30909510]
[5]
Ozols, R.F. Challenges for chemotherapy in ovarian cancer. Ann. Oncol., 2006, 17(S5), v181-v187.
[http://dx.doi.org/10.1093/annonc/mdj978] [PMID: 16807453]
[6]
Vergote, I.; Tropé, C.G.; Amant, F.; Kristensen, G.B.; Ehlen, T.; Johnson, N.; Verheijen, R.H.M.; van der Burg, M.E.L.; Lacave, A.J.; Panici, P.B.; Kenter, G.G.; Casado, A.; Mendiola, C.; Coens, C.; Verleye, L.; Stuart, G.C.E.; Pecorelli, S.; Reed, N.S. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N. Engl. J. Med., 2010, 363(10), 943-953.
[http://dx.doi.org/10.1056/NEJMoa0908806] [PMID: 20818904]
[7]
Napoletano, C.; Ruscito, I.; Bellati, F.; Zizzari, I.G.; Rahimi, H.; Gasparri, M.L.; Antonilli, M.; Panici, P.B.; Rughetti, A.; Nuti, M. Bevacizumab-based chemotherapy triggers immunological effects in responding multi-treated recurrent ovarian cancer patients by favoring the recruitment of effector T cell subsets. J. Clin. Med., 2019, 8(3), 380.
[http://dx.doi.org/10.3390/jcm8030380] [PMID: 30889935]
[8]
Hennessy, B.T.; Coleman, R.L.; Markman, M. Ovarian cancer. Lancet, 2009, 374(9698), 1371-1382.
[http://dx.doi.org/10.1016/S0140-6736(09)61338-6] [PMID: 19793610]
[9]
Kim, C.K.; Lim, S.J. Recent progress in drug delivery systems for anticancer agents. Arch. Pharm. Res., 2002, 25(3), 229-239.
[http://dx.doi.org/10.1007/BF02976620] [PMID: 12135091]
[10]
Engels, F.K.; Mathot, R.A.A.; Verweij, J. Alternative drug formulations of docetaxel: A review. Anticancer Drugs, 2007, 18(2), 95-103.
[http://dx.doi.org/10.1097/CAD.0b013e3280113338] [PMID: 17159596]
[11]
Panchagnula, R. Pharmaceutical aspects of paclitaxel. Int. J. Pharm., 1998, 172(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(98)00188-4] [PMID: 15129967]
[12]
Chishti, N.; Jagwani, S.; Dhamecha, D.; Jalalpure, S.; Dehghan, M.H. Preparation, optimization, and in vivo evaluation of nanoparticle-based formulation for pulmonary delivery of anticancer drug. Medicina, 2019, 55(6), 294.
[http://dx.doi.org/10.3390/medicina55060294] [PMID: 31226865]
[13]
Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. Int. J. Environ. Res. Public Health, 2019, 16(12), 2185.
[http://dx.doi.org/10.3390/ijerph16122185] [PMID: 31226768]
[14]
Cagliani, R.; Gatto, F.; Bardi, G. Protein adsorption: A feasible method for nanoparticle functionalization? Materials, 2019, 12(12), 1991.
[http://dx.doi.org/10.3390/ma12121991] [PMID: 31234290]
[15]
Karlsen, M.A.; Sandhu, N.; Høgdall, C.; Christensen, I.J.; Nedergaard, L.; Lundvall, L.; Engelholm, S.A.; Pedersen, A.T.; Hartwell, D.; Lydolph, M.; Laursen, I.A.; Høgdall, E.V.S. Evaluation of HE4, CA125, risk of ovarian malignancy algorithm (ROMA) and risk of malignancy index (RMI) as diagnostic tools of epithelial ovarian cancer in patients with a pelvic mass. Gynecol. Oncol., 2012, 127(2), 379-383.
[http://dx.doi.org/10.1016/j.ygyno.2012.07.106] [PMID: 22835718]
[16]
Auersperg, N.; Wong, A.S.; Choi, K.C.; Kang, S.K.; Leung, P.C. Ovarian surface epithelium: Biology, endocrinology, and pathology. Endocr. Rev., 2001, 22(2), 255-288.
[PMID: 11294827]
[17]
Clement, P.B. Anatomy and histology of the ovary. In: Blaustein’s pathology of the female genital tract; , 1987; pp. 438-470.
[http://dx.doi.org/10.1007/978-1-4757-1942-0_15]
[18]
National cancer institute web site. 2005. Available from: http://nci.nih.gov/ cancertopics/pdq/treatment/ovarianepithelial/Patient/page1
[19]
Shepherd, J.H. Revised FIGO staging for gynaecological cancer. BJOG, 1989, 96(8), 889-892.
[http://dx.doi.org/10.1111/j.1471-0528.1989.tb03341.x] [PMID: 2775686]
[20]
Gupta, S.; Pathak, Y.; Gupta, M.K.; Vyas, S.P. RETRACTED ARTICLE: Nanoscale drug delivery strategies for therapy of ovarian cancer: Conventional vs targeted. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4066-4088.
[http://dx.doi.org/10.1080/21691401.2019.1677680] [PMID: 31625408]
[21]
Yancik, R.; Ries, L.G.; Yates, J.W. Ovarian cancer in the elderly: An analysis of surveillance, epidemiology, and end results program data. Am. J. Obstet. Gynecol., 1986, 154(3), 639-647.
[http://dx.doi.org/10.1016/0002-9378(86)90623-X] [PMID: 3953714]
[22]
Stratton, J.F.; Pharoah, P.; Smith, S.K.; Easton, D.; Ponder, B.A.J. A systematic review and meta-analysis of family history and risk of ovarian cancer. BJOG, 1998, 105(5), 493-499.
[http://dx.doi.org/10.1111/j.1471-0528.1998.tb10148.x] [PMID: 9637117]
[23]
Lalwani, N.; Prasad, S.R.; Vikram, R.; Shanbhogue, A.K.; Huettner, P.C.; Fasih, N. Histologic, molecular, and cytogenetic features of ovarian cancers: implications for diagnosis and treatment. Radiographics, 2011, 31(3), 625-646.
[http://dx.doi.org/10.1148/rg.313105066] [PMID: 21571648]
[24]
Ovarian cancer rates by race and ethnicity. 2019. Available from: https://www.cdc.gov/cancer/ovarian/statistics/race.htm
[25]
What are the risk factors for ovarian cancer?. Available from: https:// www.cancer.org/cancer/ovarian-cancer/causes-risks-prevention/ risk-factors.html
[26]
Lukanova, A.; Kaaks, R. Endogenous hormones and ovarian cancer: Epidemiology and current hypotheses. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 98-107.
[http://dx.doi.org/10.1158/1055-9965.98.14.1] [PMID: 15668482]
[27]
Bell, D.A. Origins and molecular pathology of ovarian cancer. Mod. Pathol., 2005, 18(S2), S19-S32.
[http://dx.doi.org/10.1038/modpathol.3800306] [PMID: 15761464]
[28]
Kurman, RJ; Shih, IM Pathogenesis of ovarian cancer. Lessons from morphology and molecular biology and their clinical implications. Int. J. Gynecol. Pathol., 2008, 27(2), 151.
[http://dx.doi.org/10.1097/PGP.0b013e318161e4f5]
[29]
What to know about ovarian cancer. Available from: https://guardian.ng/features/health/what-to-know-about-ovarian-cancer-2/
[30]
Expert analyses how stress affects outcomes in ovarian cancer. 2016. Available from: http://www.curetoday.com/articles/
[31]
Junor, E.J.; Hole, D.J.; McNulty, L.; Mason, M.; Young, J. Specialist gynaecologists and survival outcome in ovarian cancer: A Scottish national study of 1866 patients. BJOG, 1999, 106(11), 1130-1136.
[http://dx.doi.org/10.1111/j.1471-0528.1999.tb08137.x] [PMID: 10549956]
[32]
Gupta, S.; Gupta, M.K. Possible role of nanocarriers in drug delivery against cervical cancer. Nano Rev. Exp., 2017, 8(1), 1335567.
[http://dx.doi.org/10.1080/20022727.2017.1335567] [PMID: 30410707]
[33]
Gupta, S.; Yadav, S. Breast cancer treatment and nanomedicine. In: Diagnostic and Therapeutic Applications of Breast Imaging; , 2012; pp. 441-507.
[34]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[35]
Xavier, C.P.; Pesic, M.; Vasconcelos, M.H. Understanding cancer drug resistance by developing and studying resistant cell line models. Curr. Cancer Drug Targets, 2016, 16(3), 226-237.
[http://dx.doi.org/10.2174/1568009616666151113120705] [PMID: 26563882]
[36]
Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC transporters in cancer: More than just drug efflux pumps. Nat. Rev. Cancer, 2010, 10(2), 147-156.
[http://dx.doi.org/10.1038/nrc2789] [PMID: 20075923]
[37]
Iyer, A.K.; Singh, A.; Ganta, S.; Amiji, M.M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1784-1802.
[http://dx.doi.org/10.1016/j.addr.2013.07.012] [PMID: 23880506]
[38]
Jabr-Milane, L.S.; van Vlerken, L.E.; Yadav, S.; Amiji, M.M. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev., 2008, 34(7), 592-602.
[http://dx.doi.org/10.1016/j.ctrv.2008.04.003] [PMID: 18538481]
[39]
Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[PMID: 25071577]
[40]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[41]
Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med., 2009, 234(2), 123-131.
[http://dx.doi.org/10.3181/0808-MR-250] [PMID: 19064945]
[42]
Basso, J.; Miranda, A.; Nunes, S.; Cova, T.; Sousa, J.; Vitorino, C.; Pais, A. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels, 2018, 4(3), 62.
[http://dx.doi.org/10.3390/gels4030062] [PMID: 30674838]
[43]
Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R. Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J. Funct. Biomater., 2018, 9(1), 13.
[http://dx.doi.org/10.3390/jfb9010013] [PMID: 29364833]
[44]
Yu, X.; Trase, I.; Ren, M.; Duval, K.; Guo, X.; Chen, Z. Design of nanoparticle-based carriers for targeted drug delivery. J. Nanomater., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/1087250] [PMID: 27398083]
[45]
Vivek, R.; Thangam, R.; Kumar, S.R.; Rejeeth, C.; Sivasubramanian, S.; Vincent, S.; Gopi, D.; Kannan, S.; Kannan, S. HER2 targeted breast cancer therapy with switchable “Off/On” multifunctional “Smart” magnetic polymer core–shell nanocomposites. ACS Appl. Mater. Interfaces, 2016, 8(3), 2262-2279.
[http://dx.doi.org/10.1021/acsami.5b11103] [PMID: 26771508]
[46]
Fanshawe, T.R.; Power, M.; Graziadio, S.; Jones, W.; Ordonez-Mena, J.M.; Simpson, A.J.; Allen, A.J.; Co-operative, N.I. Methods for evaluation of medical prediction models, tests and biomarkers (MEMTAB) 2018 symposium. Int J Obstet Gy., 2018, 125, 66-105.
[47]
Bhise, K.; Sau, S.; Alsaab, H.; Kashaw, S.K.; Tekade, R.K.; Iyer, A.K. Nanomedicine for cancer diagnosis and therapy: Advancement, success and structure–activity relationship. Ther. Deliv., 2017, 8(11), 1003-1018.
[http://dx.doi.org/10.4155/tde-2017-0062] [PMID: 29061101]
[48]
Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A.K. Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules, 2017, 18(4), 1197-1209.
[http://dx.doi.org/10.1021/acs.biomac.6b01885] [PMID: 28245646]
[49]
Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5(1), 14813.
[http://dx.doi.org/10.1038/srep14813] [PMID: 26437582]
[50]
Horák, D.; Pustovyy, V.; Babinskyi, A.; Palyvoda, O.M.; Chekhun, V.F.; Todor, I.; Kuzmenko, O. Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an α-tocopherol derivative in a rat model of mammary gland carcinosarcoma. Int. J. Nanomedicine, 2017, 12, 4257-4268.
[http://dx.doi.org/10.2147/IJN.S137574] [PMID: 28652731]
[51]
Khatami, M.; Alijani, H.Q.; Fakheri, B.; Mobasseri, M.M.; Heydarpour, M.; Farahani, Z.K.; Khan, A.U. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod., 2019, 208, 1171-1177.
[http://dx.doi.org/10.1016/j.jclepro.2018.10.182]
[52]
Ramalingam, V.; Dhinesh, P.; Sundaramahalingam, S.; Rajaram, R. Green fabrication of iron oxide nanoparticles using grey mangrove Avicennia marina for antibiofilm activity and in vitro toxicity. Surf. Interfaces, 2019, 15, 70-77.
[http://dx.doi.org/10.1016/j.surfin.2019.01.008]
[53]
Ramalingam, V.; Harshavardhan, M.; Dinesh Kumar, S.; Malathi devi, S. Wet chemical mediated hematite α-Fe2O3 nanoparticles synthesis: Preparation, characterization and anticancer activity against human metastatic ovarian cancer. J. Alloys Compd., 2020, 834, 155118.
[http://dx.doi.org/10.1016/j.jallcom.2020.155118]
[54]
Taghavi, F.; Saljooghi, A.S.; Gholizadeh, M.; Ramezani, M. Deferasirox-coated iron oxide nanoparticles as a potential cytotoxic agent. Med. Chem. Comm., 2016, 7(12), 2290-2298.
[http://dx.doi.org/10.1039/C6MD00293E]
[55]
Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34.
[http://dx.doi.org/10.1016/j.actbio.2019.11.027] [PMID: 31759124]
[56]
Chan, H.N.; Xu, D.; Ho, S.L.; He, D.; Wong, M.S.; Li, H.W. Highly sensitive quantification of Alzheimer’s disease biomarkers by aptamer-assisted amplification. Theranostics, 2019, 9(10), 2939-2949.
[http://dx.doi.org/10.7150/thno.29232] [PMID: 31244934]
[57]
Muddineti, O.S.; Kumari, P.; Ray, E.; Ghosh, B.; Biswas, S. Curcumin-loaded chitosan–cholesterol micelles: evaluation in monolayers and 3D cancer spheroid model. Nanomedicine, 2017, 12(12), 1435-1453.
[http://dx.doi.org/10.2217/nnm-2017-0036] [PMID: 28573926]
[58]
de Moraes Profirio, D.; Pessine, F.B.T. Formulation of functionalized PLGA nanoparticles with folic acid-conjugated chitosan for carboplatin encapsulation. Eur. Polym. J., 2018, 108, 311-321.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.09.011]
[59]
Lin, G.; Mi, P.; Chu, C.; Zhang, J.; Liu, G. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv. Sci., 2016, 3(11), 1600134.
[http://dx.doi.org/10.1002/advs.201600134] [PMID: 27980988]
[60]
Sánchez-Ramírez, D.R.; Domínguez-Ríos, R.; Juárez, J.; Valdés, M.; Hassan, N.; Quintero-Ramos, A.; del Toro-Arreola, A.; Barbosa, S.; Taboada, P.; Topete, A.; Daneri-Navarro, A. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. Mater. Sci. Eng. C, 2020, 116, 111196.
[http://dx.doi.org/10.1016/j.msec.2020.111196] [PMID: 32806317]
[61]
Fraguas-Sánchez, A.I.; Torres-Suárez, A.I.; Cohen, M.; Delie, F.; Bastida-Ruiz, D.; Yart, L.; Martin-Sabroso, C.; Fernández-Carballido, A. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: in vitro and In Ovo assessment. Pharmaceutics, 2020, 12(5), 439.
[http://dx.doi.org/10.3390/pharmaceutics12050439] [PMID: 32397428]
[62]
Alizadeh, L.; Alizadeh, E.; Zarebkohan, A.; Ahmadi, E.; Rahmati-Yamchi, M.; Salehi, R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J. Nanopart. Res., 2020, 22(1), 5.
[http://dx.doi.org/10.1007/s11051-019-4735-7]
[63]
İnce, İ.; Yıldırım, Y.; Güler, G.; Medine, E.İ.; Ballıca, G.; Kuşdemir, B.C.; Göker, E. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J. Radioanal. Nucl. Chem., 2020, 324(1), 71-85.
[http://dx.doi.org/10.1007/s10967-020-07058-z]
[64]
Dimov, N.; Kastner, E.; Hussain, M.; Perrie, Y.; Szita, N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Rep., 2017, 7(1), 12045.
[http://dx.doi.org/10.1038/s41598-017-11533-1] [PMID: 28935923]
[65]
Sun, J.; Jiang, L.; Lin, Y.; Gerhard, E.M.; Jiang, X.; Li, L.; Yang, J.; Gu, Z. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int. J. Nanomedicine, 2017, 12, 1517-1537.
[http://dx.doi.org/10.2147/IJN.S122859] [PMID: 28280323]
[66]
Barani, M.; Bilal, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci., 2021, 266, 118914.
[http://dx.doi.org/10.1016/j.lfs.2020.118914] [PMID: 33340527]
[67]
Corradetti, B.; Freile, P.; Pells, S.; Bagnaninchi, P.; Park, J.; Fahmy, T.M.; de Sousa, P.A. Paracrine signalling events in embryonic stem cell renewal mediated by affinity targeted nanoparticles. Biomaterials, 2012, 33(28), 6634-6643.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.011] [PMID: 22749449]
[68]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[69]
Qi, Z.; Yin, L.; Xu, Y.; Wang, F. Pegylated liposomal-paclitaxel induces ovarian cancer cell apoptosis via TNF-induced ERK/AKT signaling pathway. Mol. Med. Rep., 2018, 17(6), 7497-7504.
[http://dx.doi.org/10.3892/mmr.2018.8811] [PMID: 29620264]
[70]
Krieger, M.L.; Eckstein, N.; Schneider, V.; Koch, M.; Royer, H.D.; Jaehde, U.; Bendas, G. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int. J. Pharm., 2010, 389(1-2), 10-17.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.061] [PMID: 20060458]
[71]
Shaikh, I.M.; Tan, K.B.; Chaudhury, A.; Liu, Y.; Tan, B.J.; Tan, B.M.J.; Chiu, G.N.C. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J. Control. Release, 2013, 172(3), 852-861.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.025] [PMID: 24459693]
[72]
Turk, M.J.; Waters, D.J.; Low, P.S. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett., 2004, 213(2), 165-172.
[http://dx.doi.org/10.1016/j.canlet.2003.12.028] [PMID: 15327831]
[73]
Pantshwa, J.M.; Kondiah, P.P.D.; Choonara, Y.E.; Marimuthu, T.; Pillay, V. Nanodrug delivery systems for the treatment of ovarian cancer. Cancers, 2020, 12(1), 213.
[http://dx.doi.org/10.3390/cancers12010213] [PMID: 31952210]
[74]
Yu, F.; Jiang, F.; Tang, X.; Wang, B. N -octyl- N -arginine-chitosan micelles for gambogic acid intravenous delivery: characterization, cell uptake, pharmacokinetics, and biodistribution. Drug Dev. Ind. Pharm., 2018, 44(4), 615-623.
[http://dx.doi.org/10.1080/03639045.2017.1405973] [PMID: 29188736]
[75]
Fathi, M.; Majidi, S.; Zangabad, P.S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med. Res. Rev., 2018, 38(6), 2110-2136.
[http://dx.doi.org/10.1002/med.21506] [PMID: 29846948]
[76]
Feng, S.T.; Li, J.; Luo, Y.; Yin, T.; Cai, H.; Wang, Y.; Dong, Z.; Shuai, X.; Li, Z.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One, 2014, 9(6), e100732.
[http://dx.doi.org/10.1371/journal.pone.0100732] [PMID: 24964012]
[77]
Mutlu-Agardan, N.B.; Sarisozen, C.; Torchilin, V.P. Cytotoxicity of novel redox sensitive PEG 2000-SS-PTX micelles against drug-resistant ovarian and breast cancer cells. Pharm. Res., 2020, 37(3), 65.
[http://dx.doi.org/10.1007/s11095-020-2759-4] [PMID: 32166361]
[78]
Kazemi, M.; Emami, J.; Hasanzadeh, F.; Minaiyan, M.; Mirian, M.; Lavasanifar, A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: Synthesis, characterization and pharmacokinetic study. Int. J. Polym. Mater., 2021, 70(14), 1012-1026.
[http://dx.doi.org/10.1080/00914037.2020.1776282]
[79]
Wu, Y.; Lv, S.; Li, Y.; He, H.; Ji, Y.; Zheng, M.; Liu, Y.; Yin, L. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater. Sci., 2020, 8(3), 949-959.
[http://dx.doi.org/10.1039/C9BM01662G] [PMID: 31840696]
[80]
Kirkpatrick, G.J.; Plumb, J.A.; Sutcliffe, O.B.; Flint, D.J.; Wheate, N.J. Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J. Inorg. Biochem., 2011, 105(9), 1115-1122.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.017] [PMID: 21704583]
[81]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[82]
Janaszewska, A.; Lazniewska, J.; Trzepiński, P.; Marcinkowska, M.; Klajnert-Maculewicz, B. Cytotoxicity of dendrimers. Biomolecules, 2019, 9(8), 330.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[83]
Cai, L.; Xu, G.; Shi, C.; Guo, D.; Wang, X.; Luo, J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials, 2015, 37, 456-468.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.044] [PMID: 25453973]
[84]
Cruz, A.; Mota, P.; Ramos, C.; Pires, R.F.; Mendes, C.; Silva, J.P.; Nunes, S.C.; Bonifácio, V.D.B.; Serpa, J. Polyurea dendrimer folate-targeted nanodelivery of l-buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance. Antioxidants, 2020, 9(2), 133.
[http://dx.doi.org/10.3390/antiox9020133] [PMID: 32028640]
[85]
Armstrong, D.K.; Fleming, G.F.; Markman, M.; Bailey, H.H. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer®) in recurrent ovarian cancer: A Gynecologic Oncology Group study. Gynecol. Oncol., 2006, 103(2), 391-396.
[http://dx.doi.org/10.1016/j.ygyno.2006.02.029] [PMID: 16626792]
[86]
Kang, B.K.; Chon, S.K.; Kim, S.H.; Jeong, S.Y.; Kim, M.S.; Cho, S.H.; Lee, H.B.; Khang, G. Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int. J. Pharm., 2004, 286(1-2), 147-156.
[http://dx.doi.org/10.1016/j.ijpharm.2004.08.008] [PMID: 15501011]
[87]
Lu, Z.; Tsai, M.; Lu, D.; Wang, J.; Wientjes, M.G.; Au, J.L.S. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J. Pharmacol. Exp. Ther., 2008, 327(3), 673-682.
[http://dx.doi.org/10.1124/jpet.108.140095] [PMID: 18780831]
[88]
De Souza, R.; Zahedi, P.; Allen, C.J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv., 2010, 17(6), 365-375.
[http://dx.doi.org/10.3109/10717541003762854] [PMID: 20429844]
[89]
Elstad, N.L.; Fowers, K.D. OncoGel (ReGel/paclitaxel) — Clinical applications for a novel paclitaxel delivery system. Adv. Drug Deliv. Rev., 2009, 61(10), 785-794.
[http://dx.doi.org/10.1016/j.addr.2009.04.010] [PMID: 19422870]
[90]
Attenello, F.J.; Mukherjee, D.; Datoo, G.; McGirt, M.J.; Bohan, E.; Weingart, J.D.; Olivi, A.; Quinones-Hinojosa, A.; Brem, H. Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann. Surg. Oncol., 2008, 15(10), 2887-2893.
[http://dx.doi.org/10.1245/s10434-008-0048-2] [PMID: 18636295]
[91]
Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jääskeläinen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol., 2003, 5(2), 79-88.
[http://dx.doi.org/10.1093/neuonc/5.2.79] [PMID: 12672279]
[92]
Hatefi, A.; Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control. Release, 2002, 80(1-3), 9-28.
[http://dx.doi.org/10.1016/S0168-3659(02)00008-1] [PMID: 11943384]
[93]
Yang, Y.; Wang, J.; Zhang, X.; Lu, W.; Zhang, Q. A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J. Control. Release, 2009, 135(2), 175-182.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.007] [PMID: 19331864]
[94]
Grant, J.; Blicker, M.; Piquette-Miller, M.; Allen, C. Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J. Pharm. Sci., 2005, 94(7), 1512-1527.
[http://dx.doi.org/10.1002/jps.20379] [PMID: 15920770]
[95]
Ho, E.A.; Vassileva, V.; Allen, C.; Piquette-Miller, M. In vitro and in vivo characterization of a novel biocompatible polymer–lipid implant system for the sustained delivery of paclitaxel. J. Control. Release, 2005, 104(1), 181-191.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.008] [PMID: 15866344]
[96]
Vassileva, V.; Grant, J.; De Souza, R.; Allen, C.; Piquette-Miller, M. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother. Pharmacol., 2007, 60(6), 907-914.
[http://dx.doi.org/10.1007/s00280-007-0449-0] [PMID: 17375303]
[97]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[98]
Kothamasu, P.; Kanumur, H.; Ravur, N.; Maddu, C.; Parasuramrajam, R.; Thangavel, S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts, 2012, 2(2), 71-81.
[PMID: 23678444]
[99]
Haggag, Y.A.; Ibrahim, R.R.; Hafiz, A.A. Design, formulation and in vivo evaluation of novel Honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int. J. Nanomedicine, 2020, 15, 1625-1642.
[http://dx.doi.org/10.2147/IJN.S241428] [PMID: 32210557]
[100]
Wang, J.T.W.; Spinato, C.; Klippstein, R.; Costa, P.M.; Martincic, M.; Pach, E.; Ruiz de Garibay, A.P.; Ménard-Moyon, C.; Feldman, R.; Michel, Y.; Šefl, M.; Kyriakou, I.; Emfietzoglou, D.; Saccavini, J-C.; Ballesteros, B.; Tobias, G.; Bianco, A.; Al-Jamal, K.T. Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon, 2020, 162, 410-422.
[http://dx.doi.org/10.1016/j.carbon.2020.02.060]
[101]
Staffhorst, R.W.H.M.; van der Born, K.; Erkelens, C.A.M.; Hamelers, I.H.L.; Peters, G.J.; Boven, E.; de Kroon, A.I.P.M. Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. Anticancer Drugs, 2008, 19(7), 721-727.
[http://dx.doi.org/10.1097/CAD.0b013e328304355f] [PMID: 18594214]
[102]
Vergara, D.; Bellomo, C.; Zhang, X.; Vergaro, V.; Tinelli, A.; Lorusso, V.; Rinaldi, R.; Lvov, Y.M.; Leporatti, S.; Maffia, M. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomedicine, 2012, 8(6), 891-899.
[http://dx.doi.org/10.1016/j.nano.2011.10.014] [PMID: 23066648]
[103]
Navarro, F.P.; Creusat, G.; Frochot, C.; Moussaron, A.; Verhille, M.; Vanderesse, R.; Thomann, J.S.; Boisseau, P.; Texier, I.; Couffin, A.C.; Barberi-Heyob, M. Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy. J. Photochem. Photobiol. B, 2014, 130, 161-169.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.11.007] [PMID: 24333764]
[104]
Lainé, A.L.; Gravier, J.; Henry, M.; Sancey, L.; Béjaud, J.; Pancani, E.; Wiber, M.; Texier, I.; Coll, J.L.; Benoit, J.P.; Passirani, C. Conventional versus stealth lipid nanoparticles: Formulation and in vivo fate prediction through FRET monitoring. J. Control. Release, 2014, 188, 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.042] [PMID: 24878182]
[105]
Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic therapy for metastatic melanoma treatment: a review. Technol. Cancer Res. Treat., 2018, 17.
[http://dx.doi.org/10.1177/1533033818791795] [PMID: 30099929]
[106]
Lee, M.K.; Lim, S.J.; Kim, C.K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 2007, 28(12), 2137-2146.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.014] [PMID: 17257668]
[107]
Michy, T.; Massias, T.; Bernard, C.; Vanwonterghem, L.; Henry, M.; Guidetti, M.; Royal, G.; Coll, J-L.; Texier, I.; Josserand, V.; Hurbin, A.A. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers, 2019, 11(11), 1760.
[http://dx.doi.org/10.3390/cancers11111760] [PMID: 31717427]
[108]
Han, S.; Dwivedi, P.; Mangrio, F.A.; Dwivedi, M.; Khatik, R.; Cohn, D.E.; Si, T.; Xu, R.X. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 957-967.
[http://dx.doi.org/10.1080/21691401.2019.1576705] [PMID: 30892967]
[109]
Tsai, M.; Lu, Z.; Wang, J.; Yeh, T.K.; Wientjes, M.G.; Au, J.L.S. Effects of carrier on disposition and antitumor activity of intraperitoneal Paclitaxel. Pharm. Res., 2007, 24(9), 1691-1701.
[http://dx.doi.org/10.1007/s11095-007-9298-0] [PMID: 17447121]
[110]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[111]
Harper, E.; Dang, W.; Lapidus, R.G.; Garver, R.I., Jr Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER delivery system) for local-regional therapy of lung cancer tumor nodules in mice. Clin. Cancer Res., 1999, 5(12), 4242-4248.
[PMID: 10632366]
[112]
Ho, E.A.; Soo, P.L.; Allen, C.; Piquette-Miller, M. Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. J. Control. Release, 2007, 117(1), 20-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.007] [PMID: 17113177]
[113]
Grant, J.; Lee, H.; Soo, P.L.; Cho, J.; Piquette-Miller, M.; Allen, C. Influence of molecular organization and interactions on drug release for an injectable polymer-lipid blend. Int. J. Pharm., 2008, 360(1-2), 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.031] [PMID: 18550303]
[114]
Zahedi, P.; De Souza, R.; Piquette-Miller, M.; Allen, C. Chitosan–phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity. Int. J. Pharm., 2009, 377(1-2), 76-84.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.003] [PMID: 19442712]
[115]
De Souza, R.; Zahedi, P.; Allen, C.J.; Piquette-Miller, M. Biocompatibility of injectable chitosan–phospholipid implant systems. Biomaterials, 2009, 30(23-24), 3818-3824.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.003] [PMID: 19394688]
[116]
Zahedi, P.; De Souza, R.; Piquette-Miller, M.; Allen, C. Docetaxel distribution following intraperitoneal administration in mice. J. Pharm. Pharm. Sci., 2011, 14(1), 90-99.
[http://dx.doi.org/10.18433/J3QW26] [PMID: 21501556]
[117]
De Souza, R.; Zahedi, P.; Moriyama, E.H.; Allen, C.J.; Wilson, B.C.; Piquette-Miller, M. Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Mol. Cancer Ther., 2010, 9(6), 1820-1830.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0249] [PMID: 20530719]
[118]
Audeh, M.W.; Carmichael, J.; Penson, R.T.; Friedlander, M.; Powell, B.; Bell-McGuinn, K.M.; Scott, C.; Weitzel, J.N.; Oaknin, A.; Loman, N.; Lu, K.; Schmutzler, R.K.; Matulonis, U.; Wickens, M.; Tutt, A. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: A proof-of-concept trial. Lancet, 2010, 376(9737), 245-251.
[http://dx.doi.org/10.1016/S0140-6736(10)60893-8] [PMID: 20609468]
[119]
Gelmon, K.A.; Tischkowitz, M.; Mackay, H.; Swenerton, K.; Robidoux, A.; Tonkin, K.; Hirte, H.; Huntsman, D.; Clemons, M.; Gilks, B.; Yerushalmi, R.; Macpherson, E.; Carmichael, J.; Oza, A. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. Lancet Oncol., 2011, 12(9), 852-861.
[http://dx.doi.org/10.1016/S1470-2045(11)70214-5] [PMID: 21862407]
[120]
Matulonis, U.A.; Penson, R.T.; Domchek, S.M.; Kaufman, B.; Shapira-Frommer, R.; Audeh, M.W.; Kaye, S.; Molife, L.R.; Gelmon, K.A.; Robertson, J.D.; Mann, H.; Ho, T.W.; Coleman, R.L. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: A multistudy analysis of response rates and safety. Ann. Oncol., 2016, 27(6), 1013-1019.
[http://dx.doi.org/10.1093/annonc/mdw133] [PMID: 26961146]
[121]
Sandhu, S.K.; Schelman, W.R.; Wilding, G.; Moreno, V.; Baird, R.D.; Miranda, S.; Hylands, L.; Riisnaes, R.; Forster, M.; Omlin, A.; Kreischer, N.; Thway, K.; Gevensleben, H.; Sun, L.; Loughney, J.; Chatterjee, M.; Toniatti, C.; Carpenter, C.L.; Iannone, R.; Kaye, S.B.; de Bono, J.S.; Wenham, R.M. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial. Lancet Oncol., 2013, 14(9), 882-892.
[http://dx.doi.org/10.1016/S1470-2045(13)70240-7] [PMID: 23810788]
[122]
Coleman, R.L.; Sill, M.W.; Bell-McGuinn, K.; Aghajanian, C.; Gray, H.J.; Tewari, K.S.; Rubin, S.C.; Rutherford, T.J.; Chan, J.K.; Chen, A.; Swisher, E.M. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation — An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol., 2015, 137(3), 386-391.
[http://dx.doi.org/10.1016/j.ygyno.2015.03.042] [PMID: 25818403]
[123]
McNeish, I.A.; Amit, M.O.; Robert, L.C.; Clare, L.S.; Gottfried, E.K.; Anna, K. Results of ARIEL2: A Phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis. J Clin Oncol, 2015, 33(15.)
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.5508]
[124]
US National Library of Medicine. Veliparib with carboplatin and paclitaxel and as continuation maintenance therapy in adults with newly diagnosed stage III or IV, high-grade serous, epithelial ovarian, fallopian tube, or primary peritoneal cancer (VELIA). NCT02470585, 2015. Available from: http://www.clinicaltrials.gov/ct2/show/NCT02470585
[125]
Glickman, M.S.; Sawyers, C.L. Converting cancer therapies into cures: Lessons from infectious diseases. Cell, 2012, 148(6), 1089-1098.
[http://dx.doi.org/10.1016/j.cell.2012.02.015] [PMID: 22424221]
[126]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[127]
Yap, T.A.; Omlin, A.; de Bono, J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol., 2013, 31(12), 1592-1605.
[http://dx.doi.org/10.1200/JCO.2011.37.6418] [PMID: 23509311]
[128]
Paller, C.J.; Bradbury, P.A.; Ivy, S.P.; Seymour, L.; LoRusso, P.M.; Baker, L.; Rubinstein, L.; Huang, E.; Collyar, D.; Groshen, S.; Reeves, S.; Ellis, L.M.; Sargent, D.J.; Rosner, G.L.; LeBlanc, M.L.; Ratain, M.J. Design of phase I combination trials: Recommendations of the clinical trial design task force of the nci investigational drug steering committee. Clin. Cancer Res., 2014, 20(16), 4210-4217.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0521] [PMID: 25125258]
[129]
Matulonis, U.; Gerburg, M.W.; Michael, J.B.; Shannon, N.W.; Philippa, Q.; Katherine, M.B. Phase I study of oral BKM120 and oral olaparib for high-grade serous ovarian cancer (HGSC) or triple-negative breast cancer (TNBC). J Clin Oncol., 2014, 32, 2510.
[130]
US National Library of Medicine. Niraparib in combination with pembrolizumab in patients with triple-negative breast cancer or ovarian cancer (TOPACIO) NCT02657889, 2016. Available from: http://www.clinicaltrials.gov/ct2/show/NCT02657889
[131]
Coukos, G.; Tanyi, J.; Kandalaft, L.E. Opportunities in immunotherapy of ovarian cancer. Ann. Oncol., 2016, 27(S1), i11-i15.
[http://dx.doi.org/10.1093/annonc/mdw084] [PMID: 27141063]
[132]
US National Library of Medicine. Nivolumab with or without ipilimumab in treating patients with persistent or recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer NCT02498600, 2015. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02498600
[133]
Danhier, F.; Danhier, P.; De Saedeleer, C.J.; Fruytier, A.C.; Schleich, N.; Rieux, A.; Sonveaux, P.; Gallez, B.; Préat, V. Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors. Int. J. Pharm., 2015, 479(2), 399-407.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.009] [PMID: 25578367]
[134]
Ganta, S.; Singh, A.; Rawal, Y.; Cacaccio, J.; Patel, N.R.; Kulkarni, P.; Ferris, C.F.; Amiji, M.M.; Coleman, T.P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv., 2016, 23(3), 958-970.
[http://dx.doi.org/10.3109/10717544.2014.923068] [PMID: 24901206]
[135]
Tang, H.; Xie, Y.; Zhu, M.; Jia, J.; Liu, R.; Shen, Y.; Zheng, Y.; Guo, X.; Miao, D.; Pei, J. Estrone-conjugated pegylated liposome co-loaded paclitaxel and carboplatin improve anti-tumor efficacy in ovarian cancer and reduce acute toxicity of chemo-drugs. Int. J. Nanomedicine, 2022, 17, 3013-3041.
[http://dx.doi.org/10.2147/IJN.S362263] [PMID: 35836838]
[136]
Manzano, M.; Gabizón, A.; Vallet-Regí, M. Characterization of a mesoporous silica nanoparticle formulation loaded with mitomycin C lipidic prodrug (MLP) and in vitro comparison with a clinical-stage liposomal formulation of MLP. Pharmaceutics, 2022, 14(7), 1483.
[http://dx.doi.org/10.3390/pharmaceutics14071483] [PMID: 35890378]
[137]
Moore, K.N.; Lainie, P.M.; Shelly, M.S.; Todd, M.B.; O'Malley, D.M.; Raymond, P.P. Preliminary single agent activity of IMGN853, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in platinum-resistant epithelial ovarian cancer (EOC) patients (pts): phase I trial. J Clin Oncol, 2015, 33(15), 5518.
[138]
Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987.
[http://dx.doi.org/10.1038/nrd2656] [PMID: 19043449]
[139]
Cheok, C.F.; Verma, C.S.; Baselga, J.; Lane, D.P. Translating p53 into the clinic. Nat. Rev. Clin. Oncol., 2011, 8(1), 25-37.
[http://dx.doi.org/10.1038/nrclinonc.2010.174] [PMID: 20975744]
[140]
Liu, Y.; Zhang, X.; Han, C.; Wan, G.; Huang, X.; Ivan, C.; Jiang, D.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Rao, P.H.; Maru, D.M.; Pahl, A.; He, X.; Sood, A.K.; Ellis, L.M.; Anderl, J.; Lu, X. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature, 2015, 520(7549), 697-701.
[http://dx.doi.org/10.1038/nature14418] [PMID: 25901683]
[141]
Olaparib treatment in BRCA mutated ovarian cancer patients after complete or partial response to platinum chemotherapy. NCT01874353, 2013. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01874353
[142]
Testing the use of a single drug (olaparib) or the combination of two drugs (cediranib and olaparib) compared to the usual chemotherapy for women with platinum sensitive ovarian, fallopian tube, or primary peritoneal cancer. NCT02446600, 2015. Available from: http://www.clinicaltrials.gov/ct2/show/NCT02446600
[143]
US National Library of Medicine. Testing the combination of cediranib and olaparib in comparison to each drug alone or other chemotherapy in recurrent platinum-resistant ovarian cancer. NCT02502266, 2015. Available from: http://www.clinicaltrials.gov/ct2/show/NCT02502266
[144]
Oza, A.M.; Cibula, D.; Benzaquen, A.O.; Poole, C.; Mathijssen, R.H.J.; Sonke, G.S.; Colombo, N.; Špaček, J.; Vuylsteke, P.; Hirte, H.; Mahner, S.; Plante, M.; Schmalfeldt, B.; Mackay, H.; Rowbottom, J.; Lowe, E.S.; Dougherty, B.; Barrett, J.C.; Friedlander, M. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. Lancet Oncol., 2015, 16(1), 87-97.
[http://dx.doi.org/10.1016/S1470-2045(14)71135-0] [PMID: 25481791]
[145]
Liu, J.F.; Konstantinopoulos, P.A.; Matulonis, U.A. PARP inhibitors in ovarian cancer: Current status and future promise. Gynecol. Oncol., 2014, 133(2), 362-369.
[http://dx.doi.org/10.1016/j.ygyno.2014.02.039] [PMID: 24607283]
[146]
Scott, C.L.; Swisher, E.M.; Kaufmann, S.H. Poly (ADP-ribose) polymerase inhibitors: Recent advances and future development. J. Clin. Oncol., 2015, 33(12), 1397-1406.
[http://dx.doi.org/10.1200/JCO.2014.58.8848] [PMID: 25779564]
[147]
Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.L.; Meier, W.; Shapira-Frommer, R.; Safra, T.; Matei, D.; Fielding, A.; Spencer, S.; Dougherty, B.; Orr, M.; Hodgson, D.; Barrett, J.C.; Matulonis, U. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol., 2014, 15(8), 852-861.
[http://dx.doi.org/10.1016/S1470-2045(14)70228-1] [PMID: 24882434]
[148]
Kaufman, B.; Shapira-Frommer, R.; Schmutzler, R.K.; Audeh, M.W.; Friedlander, M.; Balmaña, J.; Mitchell, G.; Fried, G.; Stemmer, S.M.; Hubert, A.; Rosengarten, O.; Steiner, M.; Loman, N.; Bowen, K.; Fielding, A.; Domchek, S.M. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol., 2015, 33(3), 244-250.
[http://dx.doi.org/10.1200/JCO.2014.56.2728] [PMID: 25366685]
[149]
US National Library of Medicine. Olaparib maintenance monotherapy in patients with BRCA mutated ovarian cancer following first line platinum based chemotherapy. (SOLO-1) NCT01844986, 2013. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01844986
[150]
Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S.; Matsumura, N.; Abiko, K.; Baba, T.; Yamaguchi, K.; Ueda, A.; Hosoe, Y.; Morita, S.; Yokode, M.; Shimizu, A.; Honjo, T.; Konishi, I. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol., 2015, 33(34), 4015-4022.
[http://dx.doi.org/10.1200/JCO.2015.62.3397] [PMID: 26351349]
[151]
Cannistra, S.A.; Matulonis, U.A.; Penson, R.T.; Hambleton, J.; Dupont, J.; Mackey, H.; Douglas, J.; Burger, R.A.; Armstrong, D.; Wenham, R.; McGuire, W. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol., 2007, 25(33), 5180-5186.
[http://dx.doi.org/10.1200/JCO.2007.12.0782] [PMID: 18024865]
[152]
Gadducci, A.; Lanfredini, N.; Sergiampietri, C. Antiangiogenic agents in gynecological cancer: State of art and perspectives of clinical research. Crit. Rev. Oncol. Hematol., 2015, 96(1), 113-128.
[http://dx.doi.org/10.1016/j.critrevonc.2015.05.009] [PMID: 26126494]
[153]
Jackson, A.L.; Eisenhauer, E.L.; Herzog, T.J. Emerging therapies: Angiogenesis inhibitors for ovarian cancer. Expert Opin. Emerg. Drugs, 2015, 20(2), 331-346.
[http://dx.doi.org/10.1517/14728214.2015.1036739] [PMID: 26001052]
[154]
Matulonis, U.A.; Berlin, S.; Ivy, P.; Tyburski, K.; Krasner, C.; Zarwan, C.; Berkenblit, A.; Campos, S.; Horowitz, N.; Cannistra, S.A.; Lee, H.; Lee, J.; Roche, M.; Hill, M.; Whalen, C.; Sullivan, L.; Tran, C.; Humphreys, B.D.; Penson, R.T. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J. Clin. Oncol., 2009, 27(33), 5601-5606.
[http://dx.doi.org/10.1200/JCO.2009.23.2777] [PMID: 19826113]
[155]
Varga, A.; Sarina, A.P.; Patrick, A.O.; Janice, M.M.; Berton-Rigaud, D.; Elizabeth, A.J. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: Interim results from a phase Ib study. J Clin Oncol, 2015, 33(15)
[156]
Disis, M.L.; Manish, R.P.; Shubham, P.; Jeffrey, R.I.; Lockhart, A.C.; Karen, K. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with previously treated, recurrent or refractory ovarian cancer: A phase Ib, open-label expansion trial. J. Clin. Oncol., 2015, 33(15), 5509.
[157]
Hodi, F.S.; Butler, M.; Oble, D.A.; Seiden, M.V.; Haluska, F.G.; Kruse, A.; MacRae, S.; Nelson, M.; Canning, C.; Lowy, I.; Korman, A.; Lautz, D.; Russell, S.; Jaklitsch, M.T.; Ramaiya, N.; Chen, T.C.; Neuberg, D.; Allison, J.P.; Mihm, M.C.; Dranoff, G. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl. Acad. Sci., 2008, 105(8), 3005-3010.
[http://dx.doi.org/10.1073/pnas.0712237105] [PMID: 18287062]
[158]
Phase II study of ipilimumab monotherapy in recurrent platinum-sensitive ovarian cancer. NCT01611558, 2012. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01611558
[159]
Mirza, M.R.; Coleman, R.L.; González-Martín, A.; Moore, K.N.; Colombo, N.; Ray-Coquard, I.; Pignata, S. The forefront of ovarian cancer therapy: Update on PARP inhibitors. Ann. Oncol., 2020, 31(9), 1148-1159.
[http://dx.doi.org/10.1016/j.annonc.2020.06.004] [PMID: 32569725]
[160]
Calo, C.A.; O’Malley, D.M. Antibody-drug conjugates for the treatment of ovarian cancer. Expert Opin. Biol. Ther., 2021, 21(7), 875-887.
[http://dx.doi.org/10.1080/14712598.2020.1776253] [PMID: 32463296]
[161]
Mantia-Smaldone, G.M.; Corr, B.; Chu, C.S. Immunotherapy in ovarian cancer. Hum. Vaccin. Immunother., 2012, 8(9), 1179-1191.
[http://dx.doi.org/10.4161/hv.20738] [PMID: 22906947]
[162]
Boussios, S.; Karihtala, P.; Moschetta, M.; Karathanasi, A.; Sadauskaite, A.; Rassy, E.; Pavlidis, N. Combined strategies with poly (ADP-Ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer: A literature review. Diagnostics (Basel), 2019, 9(3), 87.
[http://dx.doi.org/10.3390/diagnostics9030087] [PMID: 31374917]
[163]
Browne, MK; Mackenzie, M.; Doyle, PJ. A controlled trial of taurolin in established bacterial peritonitis. Surg. Gynecol. Obstet., 1978, 146, 721-724.
[PMID: 347606]
[164]
Matei, D.; Shen, C.; Fang, F.; Schilder, J.; Li, M.; Arnold, A.; Zeng, Y.; Pilrose, J.M.; Kulesavage, C.; Balch, C.; Berry, W.; Wulfridge, P.; Huang, T.H.; Nephew, K.P. A phase II study of decitabine and carboplatin in recurrent platinum (Pt)-resistant ovarian cancer (OC). J. Clin. Oncol., 2011, 29(15_suppl), 5011.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.5011]
[165]
Glasspool, R.M.; Brown, R.; Gore, M.E.; Rustin, G.J.S.; McNeish, I.A.; Wilson, R.H.; Pledge, S.; Paul, J.; Mackean, M.; Hall, G.D.; Gabra, H.; Halford, S.E.R.; Walker, J.; Appleton, K.; Ullah, R.; Kaye, S. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br. J. Cancer, 2014, 110(8), 1923-1929.
[http://dx.doi.org/10.1038/bjc.2014.116] [PMID: 24642620]
[166]
Fu, S.; Hu, W.; Iyer, R.; Kavanagh, J.J.; Coleman, R.L.; Levenback, C.F.; Sood, A.K.; Wolf, J.K.; Gershenson, D.M.; Markman, M.; Hennessy, B.T.; Kurzrock, R.; Bast, R.C., Jr Phase 1b-2a study to reverse platinum resistance through use of a hypomethylating agent, azacitidine, in patients with platinum-resistant or platinum-refractory epithelial ovarian cancer. Cancer, 2011, 117(8), 1661-1669.
[http://dx.doi.org/10.1002/cncr.25701] [PMID: 21472713]
[167]
Falchook, G.S.; Fu, S.; Naing, A.; Hong, D.S.; Hu, W.; Moulder, S.; Wheler, J.J.; Sood, A.K.; Bustinza-Linares, E.; Parkhurst, K.L.; Kurzrock, R. Methylation and histone deacetylase inhibition in combination with platinum treatment in patients with advanced malignancies. Invest. New Drugs, 2013, 31(5), 1192-1200.
[http://dx.doi.org/10.1007/s10637-013-0003-3] [PMID: 23907406]
[168]
Herzog, T.J.; Armstrong, D.K.; Brady, M.F.; Coleman, R.L.; Einstein, M.H.; Monk, B.J.; Mannel, R.S.; Thigpen, J.T.; Umpierre, S.A.; Villella, J.A.; Alvarez, R.D. Ovarian cancer clinical trial endpoints: Society of gynecologic oncology white paper. Gynecol. Oncol., 2014, 132(1), 8-17.
[http://dx.doi.org/10.1016/j.ygyno.2013.11.008] [PMID: 24239753]
[169]
Matulonis, U.A.; Oza, A.M.; Ho, T.W.; Ledermann, J.A. Intermediate clinical endpoints: A bridge between progression-free survival and overall survival in ovarian cancer trials. Cancer, 2015, 121(11), 1737-1746.
[http://dx.doi.org/10.1002/cncr.29082] [PMID: 25336142]
[170]
Herzog, T.J.; Alvarez, R.D.; Secord, A.; Goff, B.A.; Mannel, R.S.; Monk, B.J.; Coleman, R.L. SGO guidance document for clinical trial designs in ovarian cancer: A changing paradigm. Gynecol. Oncol., 2014, 135(1), 3-7.
[http://dx.doi.org/10.1016/j.ygyno.2014.08.004] [PMID: 25124162]
[171]
Gnanasakthy, A.; DeMuro, C.; Clark, M.; Haydysch, E.; Ma, E.; Bonthapally, V. Patient-reported outcomes labeling for products approved by the office of hematology and oncology products of the US food and drug administration (2010-2014). J. Clin. Oncol., 2016, 34(16), 1928-1934.
[http://dx.doi.org/10.1200/JCO.2015.63.6480] [PMID: 27069082]
[172]
Farrell, D.; Ptak, K.; Panaro, N.J.; Grodzinski, P. Nanotechnology-based cancer therapeutics--promise and challenge--lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm. Res., 2011, 28(2), 273-278.
[http://dx.doi.org/10.1007/s11095-010-0214-7] [PMID: 20814720]
[173]
Kerbel, R.S.; Kamen, B.A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer, 2004, 4(6), 423-436.
[http://dx.doi.org/10.1038/nrc1369] [PMID: 15170445]
[174]
Ceelen, W.P.; Flessner, M.F. Intraperitoneal therapy for peritoneal tumors: Biophysics and clinical evidence. Nat. Rev. Clin. Oncol., 2010, 7(2), 108-115.
[http://dx.doi.org/10.1038/nrclinonc.2009.217] [PMID: 20010898]
[175]
Flessner, M.F. The transport barrier in intraperitoneal therapy. Am. J. Physiol. Renal Physiol., 2005, 288(3), F433-F442.
[http://dx.doi.org/10.1152/ajprenal.00313.2004] [PMID: 15692055]
[176]
Kohane, D.S.; Tse, J.Y.; Yeo, Y.; Padera, R.; Shubina, M.; Langer, R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J. Biomed. Mater. Res. A, 2006, 77A(2), 351-361.
[http://dx.doi.org/10.1002/jbm.a.30654] [PMID: 16425240]
[177]
van Dam, G.M.; Themelis, G.; Crane, L.M.A.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.G.; van der Zee, A.G.J.; Bart, J.; Low, P.S.; Ntziachristos, V. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med., 2011, 17(10), 1315-1319.
[http://dx.doi.org/10.1038/nm.2472] [PMID: 21926976]
[178]
Áyen, Á.; Jiménez Martínez, Y.; Marchal, J.; Boulaiz, H. Recent progress in gene therapy for ovarian cancer. Int. J. Mol. Sci., 2018, 19(7), 1930.
[http://dx.doi.org/10.3390/ijms19071930] [PMID: 29966369]
[179]
Delaney, J.R.; Patel, C.; McCabe, K.E.; Lu, D.; Davis, M.A.; Tancioni, I.; von Schalscha, T.; Bartakova, A.; Haft, C.; Schlaepfer, D.D.; Stupack, D.G. A strategy to combine pathway-targeted low toxicity drugs in ovarian cancer. Oncotarget, 2015, 6(31), 31104-31118.
[http://dx.doi.org/10.18632/oncotarget.5093] [PMID: 26418751]
[180]
Iwamoto, T. Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs. Biol. Pharm. Bull., 2013, 36(5), 715-718.
[http://dx.doi.org/10.1248/bpb.b12-01102] [PMID: 23649331]
[181]
Ye, H.; Karim, A.A.; Loh, X.J. Current treatment options and drug delivery systems as potential therapeutic agents for ovarian cancer: A review. Mater. Sci. Eng. C, 2014, 45, 609-619.
[http://dx.doi.org/10.1016/j.msec.2014.06.002] [PMID: 25491871]
[182]
Dharap, S.; Qiu, B.; Williams, G.C.; Sinko, P.; Stein, S.; Minko, T. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J. Control. Release, 2003, 91(1-2), 61-73.
[http://dx.doi.org/10.1016/S0168-3659(03)00209-8] [PMID: 12932638]
[183]
Khan, I.U.; Khan, R.U.; Asif, H.; Alamgeer; Khalid, S.H.; Asghar, S.; Saleem, M.; Shah, K.U.; Shah, S.U.; Rizvi, S.A.A.; Shahzad, Y. Co-delivery strategies to overcome multidrug resistance in ovarian cancer. Int. J. Pharm., 2017, 533(1), 111-124.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.060] [PMID: 28947245]
[184]
Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol., 2010, 177(3), 1053-1064.
[http://dx.doi.org/10.2353/ajpath.2010.100105] [PMID: 20651229]
[185]
Jaaback, K.; Johnson, N.; Lawrie, T.A. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Libr., 2016, 2016(1), CD005340.
[http://dx.doi.org/10.1002/14651858.CD005340.pub4] [PMID: 26755441]
[186]
Aletti, G.D.; Gallenberg, M.M.; Cliby, W.A.; Jatoi, A.; Hartmann, L.C. Current management strategies for ovarian cancer. Mayo Clin. Proc., 2007, 82(6), 751-770.
[http://dx.doi.org/10.1016/S0025-6196(11)61196-8] [PMID: 17550756]
[187]
Sugiyama, T.; Kumagai, S.; Nishida, T.; Ushijima, K.; Matsuo, T.; Yakushiji, M.; Hyon, S.H.; Ikada, Y. Experimental and clinical evaluation of cisplatin-containing microspheres as intraperitoneal chemotherapy for ovarian cancer. Anticancer Res., 1998, 18(4B), 2837-2842.
[PMID: 9713471]
[188]
Zahedi, P.; Yoganathan, R.; Piquette-Miller, M.; Allen, C. Recent advances in drug delivery strategies for treatment of ovarian cancer. Expert Opin. Drug Deliv., 2012, 9(5), 567-583.
[http://dx.doi.org/10.1517/17425247.2012.665366] [PMID: 22452661]
[189]
Eisenhauer, E.A. Real-world evidence in the treatment of ovarian cancer. Ann. Oncol., 2017, 28(Suppl. 8), viii61-, viii65.
[http://dx.doi.org/10.1093/annonc/mdx443] [PMID: 29232466]
[190]
D’Arcy, T.J.; Jayaram, V.; Lynch, M.; Soutter, W.P.; Cosgrove, D.O.; Harvey, C.J.; Patel, N. Ovarian cancer detected non-invasively by contrast-enhanced power Doppler ultrasound. BJOG, 2004, 111(6), 619-622.
[http://dx.doi.org/10.1111/j.1471-0528.2004.00157.x] [PMID: 15198792]
[191]
Ocak, M.; Gillman, A.G.; Bresee, J.; Zhang, L.; Vlad, A.M.; Müller, C.; Schibli, R.; Edwards, W.B.; Anderson, C.J.; Gach, H.M. Folate receptor-targeted multimodality imaging of ovarian cancer in a novel syngeneic mouse model. Mol. Pharm., 2015, 12(2), 542-553.
[http://dx.doi.org/10.1021/mp500628g] [PMID: 25536192]
[192]
Tobias, J.S.; Griffiths, C.T. Management of ovarian carcinoma. Current concepts and future prospects (first of two parts). N. Engl. J. Med., 1976, 294(15), 818-823.
[http://dx.doi.org/10.1056/NEJM197604082941506] [PMID: 765825]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy