Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

The Effects of Apigenin in the Treatment of Diabetic Nephropathy: A Systematic Review of Non-clinical Studies

Author(s): Thikra Majid Muhammed, Abduladheem Turki Jalil*, Waam Mohammed Taher, Zafar Aminov, Fahad Alsaikhan, Andrés Alexis Ramírez-Coronel, Pushpamala Ramaiah and Bagher Farhood*

Volume 24, Issue 3, 2024

Published on: 13 September, 2023

Page: [341 - 354] Pages: 14

DOI: 10.2174/1389557523666230811092423

Price: $65

Abstract

Purpose: Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy.

Methods: In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on “the effects of apigenin against diabetic nephropathy” in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review.

Results: The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects.

Conclusion: The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.

Graphical Abstract

[1]
Diagnosis and classification of diabetes mellitus. Diabetes. Care., 2014, 37(1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
Sever, B.; Altıntop, M.D.; Demir, Y.; Türkeş, C.; Özbaş, K.; Çiftçi, G.A.; Beydemir, Ş.; Özdemir, A. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open. Chem., 2021, 19(1), 347-357.
[http://dx.doi.org/10.1515/chem-2021-0032]
[3]
Sever, B.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[4]
Sever, B.; Altıntop, M.D.; Demir, Y.; Pekdoğan, M.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J. Mol. Struct., 2021, 1224, 129446.
[http://dx.doi.org/10.1016/j.molstruc.2020.129446]
[5]
Tiss, M.; Hamden, K. Globularia alypum extracts attenuate hyperglycemia and protect against various organ toxicities in alloxan-induced experimental diabetic rats. Evid.-based complem. altern. Med.: ECAM, 2022, 2022, 6816942.
[http://dx.doi.org/10.1155/2022/6816942]
[6]
Sever, B.; Altıntop, M.D.; Demir, Y.; Yılmaz, N.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact., 2021, 345, 109576.
[http://dx.doi.org/10.1016/j.cbi.2021.109576] [PMID: 34252406]
[7]
Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep., 2019, 21(4), 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[8]
Ma, J.; Yang, Z.; Jia, S.; Yang, R. A systematic review of preclinical studies on the taurine role during diabetic nephropathy: Focused on anti-oxidative, anti-inflammation, and anti-apoptotic effects. Toxicol. Mech. Methods, 2022, 32(6), 420-430.
[http://dx.doi.org/10.1080/15376516.2021.2021579] [PMID: 34933643]
[9]
Fowler, M.J. Microvascular and macrovascular complications of diabetes. Clin. Diabetes, 2008, 26(2), 77-82.
[http://dx.doi.org/10.2337/diaclin.26.2.77]
[10]
Asgary, S.; Naderi, G.A.; Sarraf-Zadegan, N.; Vakili, R. The inhibitory effects of pure flavonoids on in vitro protein glycosylation. J. Herb. Pharmacother., 2002, 2(2), 47-55.
[http://dx.doi.org/10.1080/J157v02n02_05] [PMID: 15277096]
[11]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[12]
Demir, Y.; Köksal, Z. Some sulfonamides as aldose reductase inhibitors: Therapeutic approach in diabetes. Arch. Physiol. Biochem., 2022, 128(4), 979-984.
[http://dx.doi.org/10.1080/13813455.2020.1742166] [PMID: 32202954]
[13]
Demir, Y.; Özaslan, M.S.; Duran, H.E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70, 103195.
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[14]
Fineberg, D.; Jandeleit-Dahm, K.A.M.; Cooper, M.E. Diabetic nephropathy: Diagnosis and treatment. Nat. Rev. Endocrinol., 2013, 9(12), 713-723.
[http://dx.doi.org/10.1038/nrendo.2013.184] [PMID: 24100266]
[15]
Martínez-Castelao, A.; Navarro-González, J.; Górriz, J.; de Alvaro, F. The concept and the epidemiology of diabetic nephropathy have changed in recent years. J. Clin. Med., 2015, 4(6), 1207-1216.
[http://dx.doi.org/10.3390/jcm4061207] [PMID: 26239554]
[16]
Amiri, A.A.; Rezaee, M.R.S.; Hashemi-Soteh, M.; Daneshvar, F.; Emady-Jamaly, R.; Jafari, R.; Soleimani, B.; Haghiaminjan, H. Aldose reductase C-106T gene polymorphism in type 2 diabetics with microangiopathy in Iranian individuals. Indian J. Endocrinol. Metab., 2015, 19(1), 95-99.
[http://dx.doi.org/10.4103/2230-8210.131762] [PMID: 25593834]
[17]
Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease. Clin. J. Am. Soc. Nephrol., 2017, 12(12), 2032-2045.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[18]
Wang, H.; Wang, D.; Song, H.; Zou, D.; Feng, X.; Ma, X.; Miao, J.; Yang, W.; Wang, H. The effects of probiotic supplementation on renal function, inflammation, and oxidative stress in diabetic nephropathy: A systematic review and meta-analysis of randomized controlled trials. Mater. Express, 2021, 11(7), 1122-1131.
[http://dx.doi.org/10.1166/mex.2021.1888]
[19]
Yu, S.M.W.; Bonventre, J.V. Acute kidney injury and progression of diabetic kidney disease. Adv. Chronic Kidney Dis., 2018, 25(2), 166-180.
[http://dx.doi.org/10.1053/j.ackd.2017.12.005] [PMID: 29580581]
[20]
Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol., 2018, 2018, 1875870.
[http://dx.doi.org/10.1155/2018/1875870] [PMID: 29808088]
[21]
Yang, G.; Zhao, Z.; Zhang, X.; Wu, A.; Huang, Y.; Miao, Y.; Yang, M. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. Drug Des. Devel. Ther., 2017, 11, 1065-1079.
[http://dx.doi.org/10.2147/DDDT.S124971] [PMID: 28408805]
[22]
Wu, L.; Derynck, R. Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev. Cell, 2009, 17(1), 35-48.
[http://dx.doi.org/10.1016/j.devcel.2009.05.010] [PMID: 19619490]
[23]
Elmarakby, A.A.; Abdelsayed, R.; Yao, Liu J.; Mozaffari, M.S. Inflammatory cytokines as predictive markers for early detection and pro-gression of diabetic nephropathy. EPMA J., 2010, 1(1), 117-129.
[http://dx.doi.org/10.1007/s13167-010-0004-7] [PMID: 23199046]
[24]
Elmarakby, A.A.; Sullivan, J.C. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc. Ther., 2012, 30(1), 49-59.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00218.x] [PMID: 20718759]
[25]
Donate-Correa, J.; Martín-Núñez, E.; Muros-de-Fuentes, M.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory cytokines in diabetic nephropathy. J. Diabetes Res., 2015, 2015, 948417.
[http://dx.doi.org/10.1155/2015/948417] [PMID: 25785280]
[26]
Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. Diabetic nephropathy: Diagnosis, prevention, and treatment. Diabetes Care, 2005, 28(1), 164-176.
[http://dx.doi.org/10.2337/diacare.28.1.164] [PMID: 15616252]
[27]
Sanlier, N.; Gencer, F. Role of spices in the treatment of diabetes mellitus: A minireview. Trends Food Sci. Technol., 2020, 99, 441-449.
[http://dx.doi.org/10.1016/j.tifs.2020.03.018]
[28]
Hajizadeh-Sharafabad, F.; Varshosaz, P.; Jafari-Vayghan, H.; Alizadeh, M.; Maleki, V. Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: A systematic review. Complement. Ther. Med., 2020, 48, 102284.
[http://dx.doi.org/10.1016/j.ctim.2019.102284] [PMID: 31987240]
[29]
Giovannini, P.; Howes, M.J.R.; Edwards, S.E. Data on medicinal plants used in Central America to manage diabetes and its sequelae (skin conditions, cardiovascular disease, kidney disease, urinary problems and vision loss). Data Brief, 2016, 7, 1217-1220.
[http://dx.doi.org/10.1016/j.dib.2016.03.102] [PMID: 27761504]
[30]
Türkeş, C.; Demir, Y.; Beydemir, Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH Inhibitors. Chemistry Select, 2022, 7(48), e202204050.
[http://dx.doi.org/10.1002/slct.202204050]
[31]
Sellem, I.; Chakchouk-Mtibaa, A.; Smaoui, S.; Mellouli, L. Total Polyphenol, Flavonoid, and proanthocyanidin contents and biological activities of Inula Graveolens collected from chebba (Tunisia). Salt Marsh. J. Herbs Spices Med. Plants, 2021, 27(4), 426-444.
[http://dx.doi.org/10.1080/10496475.2021.1947928]
[32]
Zhang, Y.; Cheng, L.; Liu, Y.; Wu, Z.; Weng, P. The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity. Food Rev. Int., 2021, 1-14.
[33]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from plantago subulata l. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[http://dx.doi.org/10.1002/cbdv.202200280] [PMID: 35796520]
[34]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[35]
Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab., 2015, 12(1), 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[36]
Ceylan, H.; Demir, Y.; Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein Pept. Lett., 2019, 26(5), 364-370.
[http://dx.doi.org/10.2174/0929866526666190301115122] [PMID: 30827223]
[37]
Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[38]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22(1), 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[39]
Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.; Martins, N. The therapeutic potential of apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[40]
Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr., 2017, 8(3), 423-435.
[41]
Haytowitz, D.; Bhagwat, S.; Harnly, J.; Holden, J.; Gebhardt, S. Sources of flavonoids in the US diet using USDA’s updated database on the flavonoid content of selected foods. US Department of Agriculture (USDA); Agricultural Research Service, Beltsville Human Nutrition Research Center, Nutrient Data Laboratory and Food Composition Laboratory: Beltsville, MD, 2006.
[42]
Buwa, C.C.; Mahajan, U.B.; Patil, C.R.; Goyal, S.N. Apigenin Attenuates β-Receptor-stimulated myocardial injury via safeguarding cardiac functions and escalation of antioxidant defence system. Cardiovasc. Toxicol., 2016, 16(3), 286-297.
[http://dx.doi.org/10.1007/s12012-015-9336-9] [PMID: 26186996]
[43]
Warat, M.; Szliszka, E.; Korzonek-Szlacheta, I.; Król, W.; Czuba, Z. Chrysin, apigenin and acacetin inhibit tumor necrosis factor-related apoptosis-inducing ligand receptor-1 (TRAIL-R1) on activated RAW264.7 macrophages. Int. J. Mol. Sci., 2014, 15(7), 11510-11522.
[http://dx.doi.org/10.3390/ijms150711510] [PMID: 24979133]
[44]
Bandyopadhyay, S.; Lion, J.M.; Mentaverri, R.; Ricupero, D.A.; Kamel, S.; Romero, J.R.; Chattopadhyay, N. Attenuation of osteoclastogenesis and osteoclast function by apigenin. Biochem. Pharmacol., 2006, 72(2), 184-197.
[http://dx.doi.org/10.1016/j.bcp.2006.04.018] [PMID: 16750176]
[45]
Masuelli, L.; Benvenuto, M.; Mattera, R.; Di Stefano, E.; Zago, E.; Taffera, G.; Tresoldi, I.; Giganti, M.G.; Frajese, G.V.; Berardi, G.; Modesti, A.; Bei, R. In vitro and In vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front. Pharmacol., 2017, 8, 373.
[http://dx.doi.org/10.3389/fphar.2017.00373] [PMID: 28674496]
[46]
Sharma, N.K. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in vitro. J. Radiat. Res., 2013, 54(5), 789-797.
[http://dx.doi.org/10.1093/jrr/rrs117] [PMID: 23764456]
[47]
Panda, S.; Kar, A. Apigenin (4′,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J. Pharm. Pharmacol., 2007, 59(11), 1543-1548.
[http://dx.doi.org/10.1211/jpp.59.11.0012] [PMID: 17976266]
[48]
Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur. J. Pharmacol., 2016, 773, 13-23.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.002] [PMID: 26801071]
[49]
Suh, K.S.; Oh, S.; Woo, J.T.; Kim, S.W.; Kim, J.W.; Kim, Y.S.; Chon, S. Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic β-cells. Biol. Pharm. Bull., 2012, 35(1), 121-126.
[http://dx.doi.org/10.1248/bpb.35.121] [PMID: 22223348]
[50]
Hou, Y.; Zhang, Y.; Lin, S.; Yu, Y.; Yang, L.; Li, L.; Wang, W. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. Am. J. Transl. Res., 2021, 13(4), 2006-2020.
[PMID: 34017372]
[51]
Moher, D; Liberati, A; Tetzlaff, J; Altman, DG Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. inter. med., 2009, 151(4), 264-269.
[52]
Zhang, J.; Zhao, X.; Zhu, H.; Wang, J.; Ma, J.; Gu, M. Apigenin protects against renal tubular epithelial cell injury and oxidative stress by high glucose via regulation of NF-E2-Related Factor 2 (Nrf2) pathway. Med. Sci. Monit., 2019, 25, 5280-5288.
[http://dx.doi.org/10.12659/MSM.915038] [PMID: 31309931]
[53]
Rauter, A.P.; Martins, A.; Borges, C.; Mota-Filipe, H.; Pinto, R.; Sepodes, B.; Justino, J. Antihyperglycaemic and protective effects of flavonoids on streptozotocin-induced diabetic rats. Phytother. Res., 2010, 24(S2)(Suppl. 2), S133-S138.
[http://dx.doi.org/10.1002/ptr.3017] [PMID: 20309949]
[54]
Hossain, C.M.; Ghosh, M.K.; Satapathy, B.S.; Dey, N.S.; Mukherjee, B. Apigenin causes biochemical modulation, GLUT4 and Cd38 alterations to improve diabetes and to protect damages of some vital organs in experimental diabetes. Am. J. Pharmacol. Toxicol., 2014, 9(1), 39-52.
[http://dx.doi.org/10.3844/ajptsp.2014.39.52]
[55]
Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol., 2017, 313(2), F414-F422.
[http://dx.doi.org/10.1152/ajprenal.00393.2016] [PMID: 28566504]
[56]
Anandan, S.; Urooj, A. Hypoglycemic effects of apigenin from morus indica in streptozotocin induced diabetic rats. Int. J. Curr. Res. Rev., 2021, 13(2), 100-105.
[http://dx.doi.org/10.31782/IJCRR.2021.13213]
[57]
Sezik, E.; Aslan, M.; Yesilada, E.; Ito, S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci., 2005, 76(11), 1223-1238.
[http://dx.doi.org/10.1016/j.lfs.2004.07.024] [PMID: 15642593]
[58]
Ogura, Y.; Kitada, M.; Xu, J.; Monno, I.; Koya, D. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD+/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats. Aging (Albany NY), 2020, 12(12), 11325-11336.
[http://dx.doi.org/10.18632/aging.103410] [PMID: 32507768]
[59]
Akdağ, M.; Özçelik, A.B.; Demir, Y.; Beydemir, Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J. Mol. Struct., 2022, 1258, 132675.
[http://dx.doi.org/10.1016/j.molstruc.2022.132675]
[60]
Ertano, B.Y.; Demir, Y.; Nural, Y.; Erdoğan, O. Investigation of the effect of acylthiourea derivatives on diabetes‐associated enzymes. ChemistrySelect, 2022, 7(46), e202204149.
[http://dx.doi.org/10.1002/slct.202204149]
[61]
Beckman, J.A.; Creager, M.A.; Libby, P. Diabetes and Atherosclerosis. JAMA, 2002, 287(19), 2570-2581.
[http://dx.doi.org/10.1001/jama.287.19.2570] [PMID: 12020339]
[62]
Türkeş, C.; Demir, Y.; Biçer, A.; Cin, G.T.; Gültekin, M.S.; Beydemir, Ş. Exploration of some bis‐sulfide and bis‐sulfone derivatives as non‐classical aldose reductase inhibitors. ChemistrySelect, 2023, 8(5), e202204350.
[http://dx.doi.org/10.1002/slct.202204350]
[63]
Hosseini, A.; Samadi, M.; Baeeri, M.; Rahimifard, M.; Haghi-Aminjan, H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front. Pharmacol., 2022, 13, 984499.
[http://dx.doi.org/10.3389/fphar.2022.984499] [PMID: 36120309]
[64]
Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: An overview. Methods Mol. Biol., 2020, 2067, 3-7.
[http://dx.doi.org/10.1007/978-1-4939-9841-8_1] [PMID: 31701441]
[65]
Salles, B.C.C.; Leme, K.C.; da Silva, M.A.; da Rocha, C.Q.; Tangerina, M.M.P.; Vilegas, W.; Figueiredo, S.A.; Duarte, S.M.S.; Rodrigues, M.R.; de Araújo Paula, F.B. Protective effect of flavonoids from Passiflora edulis Sims on diabetic complications in rats. J. Pharm. Pharmacol., 2021, 73(10), 1361-1368.
[http://dx.doi.org/10.1093/jpp/rgab046] [PMID: 33772554]
[66]
Jain, D.; Saha, S. Antioxidant and antihyperglycaemic effects of naringenin arrest the progression of diabetic nephropathy in diabetic rats. Egyptian Pharmaceut. J., 2017, 16(3), 144.
[http://dx.doi.org/10.4103/epj.epj_24_17]
[67]
Das, J.; Sil, P.C. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids, 2012, 43(4), 1509-1523.
[http://dx.doi.org/10.1007/s00726-012-1225-y] [PMID: 22302365]
[68]
Darwish, I.; Ismail, C.; Geumei, A.; Abdelbary, A. Role of targeting asymmetric dimethylarginine in streptozotocin-induced diabetic nephropathy in rats: Effects of taurine and rosiglitazone. Acta Endocrinol. (Bucur.), 2015, 11(4), 449-456.
[http://dx.doi.org/10.4183/aeb.2015.449]
[69]
Pandya, K.; Clark, G.J.; Lau-Cam, C.A. Investigation of the role of a supplementation with taurine on the effects of hypoglycemic-hypotensive therapy against diabetes-induced nephrotoxicity in rats. Adv. Exp. Med. Biol., 2017, 975(Pt 1), 371-400.
[http://dx.doi.org/10.1007/978-94-024-1079-2_32] [PMID: 28849470]
[70]
Wang, L.; Zhang, L.; Yu, Y.; Wang, Y.; Niu, N. The protective effects of taurine against early renal injury in STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression. Ren. Fail., 2008, 30(8), 763-771.
[http://dx.doi.org/10.1080/08860220802272563] [PMID: 18791949]
[71]
Vasavada, N.; Agarwal, R. Role of oxidative stress in diabetic nephropathy. Adv. Chronic Kidney Dis., 2005, 12(2), 146-154.
[http://dx.doi.org/10.1053/j.ackd.2005.01.001] [PMID: 15822050]
[72]
Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051.
[http://dx.doi.org/10.1016/j.lfs.2020.118051] [PMID: 32634426]
[73]
Ramaiah, P.; Jalil, A.T.; Farhood, B.; Latacela, G.A.; Patra, I.; Gupta, R.; Madaminov, F.A.; Shaker Shafik, S.; Al-Gazally, M.E.; Ansari, M.J.; Kandeel, M.; Mustafa, Y.F. The radioprotective potentials of silymarin/silibinin against radiotherapy- induced toxicities: A systematic review of clinical and experimental studies. Curr. Med. Chem., 2023, 30(33), 3775-3797.
[http://dx.doi.org/10.2174/0929867330666221124155339] [PMID: 36424777]
[74]
Moutabian, H.; Majdaeen, M.; Ghahramani-Asl, R.; Yadollahi, M.; Gharepapagh, E.; Ataei, G.; Falahatpour, Z.; Bagheri, H.; Farhood, B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int., 2022, 22(1), 142.
[http://dx.doi.org/10.1186/s12935-022-02561-7] [PMID: 35366874]
[75]
Yan, L.J. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J. Diabetes Res., 2014, 2014, 137919.
[http://dx.doi.org/10.1155/2014/137919] [PMID: 25019091]
[76]
Derlacz, R.A.; Sliwinska, M.; Piekutowska, A.; Winiarska, K.; Drozak, J.; Bryla, J. Melatonin is more effective than taurine and 5-hydroxytryptophan against hyperglycemia-induced kidney-cortex tubules injury. J. Pineal Res., 2007, 42(2), 203-209.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00405.x] [PMID: 17286753]
[77]
Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454.
[http://dx.doi.org/10.2337/db08-0057] [PMID: 18511445]
[78]
Zhang, R.; Wang, X.; Gao, Q.; Jiang, H.; Zhang, S.; Lu, M.; Liu, F.; Xue, X. Taurine supplementation reverses diabetes-induced podocytes injury via modulation of the CSE/TRPC6 Axis and Improvement of Mitochondrial Function. Nephron J., 2020, 144(2), 84-95.
[http://dx.doi.org/10.1159/000503832] [PMID: 31865328]
[79]
Yahyapour, R.; Motevaseli, E.; Rezaeyan, A.; Abdollahi, H.; Farhood, B.; Cheki, M. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: Molecular mechanisms and implications in radiation therapeutics. clinical & translational oncology: official publication of the federation of spanish oncology societies and of the national. Cancer, 2018, 20(8), 975-988.
[80]
Hasan Kadhim, A.; Shamkhi Noor, A.; Amer Ali, M. The effectiveness of biotin (vitamin b7) added to the diet in improving the efficiency of productivity, and some physiological traits for broiler chickens (ross-308) exposed to oxidative stress. Arch. Razi Inst., 2022, 77(5), 1805-1811.
[PMID: 37123153]
[81]
Varadhan, S.; Venkatachalam, R.; Perumal, S.M.; Ayyamkulamkara, S.S. Evaluation of oxidative stress parameters and antioxidant status in coronary artery disease patients. Arch. Razi Inst., 2022, 77(2), 853-859.
[PMID: 36284944]
[82]
Afsar, T.; Razak, S.; Batoo, K.M.; Khan, M.R. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC Complement. Altern. Med., 2017, 17(1), 554.
[http://dx.doi.org/10.1186/s12906-017-2061-0] [PMID: 29284479]
[83]
Ahmadvand, H.; Tavafi, M.; Khosrowbeygi, A. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. J. Diabet. Complicat., 2012, 26(6), 476-482.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.004] [PMID: 22795334]
[84]
Lin, C.Y.; Yin, M.C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum. Nutr., 2012, 67(3), 303-308.
[http://dx.doi.org/10.1007/s11130-012-0294-0] [PMID: 22581156]
[85]
Abdelrahman, A.M.; Al Suleimani, Y.; Shalaby, A.; Ashique, M.; Manoj, P.; Ali, B.H. Effect of tocilizumab, an interleukin-6 inhibitor, on early stage streptozotocin-induced diabetic nephropathy in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(8), 1005-1013.
[http://dx.doi.org/10.1007/s00210-019-01655-w] [PMID: 31025143]
[86]
Prince Vijeya Singh, J.; Selvendiran, K.; Mumtaz Banu, S.; Padmavathi, R.; Sakthisekaran, D. Protective role of apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in wistar albino rats. Phytomedicine, 2004, 11(4), 309-314.
[http://dx.doi.org/10.1078/0944711041495254] [PMID: 15185843]
[87]
Ahmad, A.; Kumari, P.; Ahmad, M. Apigenin attenuates edifenphos-induced toxicity by modulating ROS-mediated oxidative stress, mitochondrial dysfunction and caspase signal pathway in rat liver and kidney. Pestic. Biochem. Physiol., 2019, 159, 163-172.
[http://dx.doi.org/10.1016/j.pestbp.2019.06.010] [PMID: 31400778]
[88]
Goudarzi, M.; Kalantar, M.; Sadeghi, E.; Karamallah, M.H.; Kalantar, H. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(3), 523-531.
[http://dx.doi.org/10.1007/s00210-020-01991-2] [PMID: 33057777]
[89]
Cicek, M.; Unsal, V.; Doganer, A.; Demir, M. Investigation of oxidant/antioxidant and anti‐inflammatory effects of apigenin on apoptosis in sepsis‐induced rat lung. J. Biochem. Mol. Toxicol., 2021, 35(5), e22743.
[http://dx.doi.org/10.1002/jbt.22743] [PMID: 33605009]
[90]
Wang, N.; Yi, W.J.; Tan, L.; Zhang, J.H.; Xu, J.; Chen, Y.; Qin, M.; Yu, S.; Guan, J.; Zhang, R. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. In vitro Cell. Dev. Biol. Anim., 2017, 53(6), 554-563.
[http://dx.doi.org/10.1007/s11626-017-0135-4] [PMID: 28181104]
[91]
Prasad, N.R.; Thayalan, K.; Begum, N. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(1), 45.
[http://dx.doi.org/10.4103/2231-0738.93134]
[92]
Itoh, K.; Mimura, J.; Yamamoto, M. Discovery of the negative regulator of Nrf2, Keap1: A historical overview. Antioxid. Redox Signal., 2010, 13(11), 1665-1678.
[http://dx.doi.org/10.1089/ars.2010.3222] [PMID: 20446768]
[93]
Sun, Q.; Shen, Z.; Meng, Q.; Liu, H.; Duan, W.; Xia, Z. The role of DJ-1/Nrf2 pathway in the pathogenesis of diabetic nephropathy in rats. Ren. Fail., 2016, 38(2), 294-304.
[http://dx.doi.org/10.3109/0886022X.2015.1120119] [PMID: 26643903]
[94]
Neves, K.; Montezano, A.; Alves-Lopes, R.; Bruder-Nascimento, T.; Costa, R.; Costa, R.; Touyz, R.; Tostes, R. Upregulation of Nrf2 and decreased redox signaling contribute to renoprotective effects of chemerin receptor blockade in diabetic mice. Int. J. Mol. Sci., 2018, 19(8), 2454.
[http://dx.doi.org/10.3390/ijms19082454] [PMID: 30126255]
[95]
Al-Waili, N.; Al-Waili, H.; Al-Waili, T.; Salom, K. Natural antioxidants in the treatment and prevention of diabetic nephropathy; a potential approach that warrants clinical trials. Redox Rep., 2017, 22(3), 99-118.
[96]
Aluksanasuwan, S.; Plumworasawat, S.; Malaitad, T.; Chaiyarit, S.; Thongboonkerd, V. High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach. Sci. Rep., 2020, 10(1), 5843.
[http://dx.doi.org/10.1038/s41598-020-62665-w] [PMID: 32246012]
[97]
Ogura, Y; Kitada, M; Monno, I; Kanasaki, K; Watanabe, A; Koya, D Renal mitochondrial oxidative stress is enhanced by the reduction of sirt3 activity, in zucker diabetic fatty rats. redox report : Communications in free radical research. 2018, 23(1), 153-159.
[98]
Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alphalipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741.
[http://dx.doi.org/10.1016/j.intimp.2021.107741] [PMID: 33989970]
[99]
Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173.
[http://dx.doi.org/10.1016/j.lfs.2019.117173] [PMID: 31843530]
[100]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241.
[http://dx.doi.org/10.1016/j.lfs.2019.05.009] [PMID: 31077716]
[101]
Daemen, M.A.R.C.; van ’t Veer, C.; Denecker, G.; Heemskerk, V.H.; Wolfs, T.G.A.M.; Clauss, M.; Vandenabeele, P.; Buurman, W.A. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J. Clin. Invest., 1999, 104(5), 541-549.
[http://dx.doi.org/10.1172/JCI6974] [PMID: 10487768]
[102]
Morrissey, J.J.; Klahr, S. Effect of AT2 receptor blockade on the pathogenesis of renal fibrosis. Am. J. Physiol., 1999, 276(1), F39-F45.
[PMID: 9887078]
[103]
Shimizu, A.; Kitamura, H.; Masuda, Y.; Ishizaki, M.; Sugisaki, Y.; Yamanaka, N. Apoptosis in the repair process of experimental proliferative glomerulonephritis. Kidney Int., 1995, 47(1), 114-121.
[http://dx.doi.org/10.1038/ki.1995.13] [PMID: 7731136]
[104]
Baker, A.J.; Mooney, A.; Hughes, J.; Lombardi, D.; Johnson, R.J.; Savill, J. Mesangial cell apoptosis: The major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J. Clin. Invest., 1994, 94(5), 2105-2116.
[http://dx.doi.org/10.1172/JCI117565] [PMID: 7962557]
[105]
Ortiz, A; Ziyadeh, FN; Neilson, EG Expression of apoptosisregulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J. investigat Med., 1997, 45(2), 50-56.
[106]
Allen, D.A.; Harwood, S.M.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. High glucose‐induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J., 2003, 17(8), 1-21.
[http://dx.doi.org/10.1096/fj.02-0130fje] [PMID: 12670885]
[107]
Wolf, G.; Chen, S.; Ziyadeh, F.N. From the periphery of the glomerular capillary wall toward the center of disease: Podocyte injury comes of age in diabetic nephropathy. Diabetes, 2005, 54(6), 1626-1634.
[http://dx.doi.org/10.2337/diabetes.54.6.1626] [PMID: 15919782]
[108]
Mishra, R.; Emancipator, S.N.; Kern, T.; Simonson, M.S. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int., 2005, 67(1), 82-93.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00058.x] [PMID: 15610231]
[109]
Bondeva, T.; Wolf, G. Reactive oxygen species in diabetic nephropathy: friend or foe? Nephrol. Dial. Transplant., 2014, 29(11), 1998-2003.
[http://dx.doi.org/10.1093/ndt/gfu037] [PMID: 24589719]
[110]
Christidi, E.; Brunham, L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis., 2021, 12(4), 339.
[http://dx.doi.org/10.1038/s41419-021-03614-x] [PMID: 33795647]
[111]
Susin, S.A.; Lorenzo, H.K.; Zamzami, N.; Marzo, I.; Snow, B.E.; Brothers, G.M.; Mangion, J.; Jacotot, E.; Costantini, P.; Loeffler, M.; Larochette, N.; Goodlett, D.R.; Aebersold, R.; Siderovski, D.P.; Penninger, J.M.; Kroemer, G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999, 397(6718), 441-446.
[http://dx.doi.org/10.1038/17135] [PMID: 9989411]
[112]
Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91(4), 479-489.
[http://dx.doi.org/10.1016/S0092-8674(00)80434-1] [PMID: 9390557]
[113]
Hajra, K.M.; Liu, J.R. Apoptosome dysfunction in human cancer. Apoptosis, 2004, 9(6), 691-704.
[http://dx.doi.org/10.1023/B:APPT.0000045786.98031.1d]
[114]
Chen, G.; Xu, R.; Wang, Y.; Wang, P.; Zhao, G.; Xu, X.; Gruzdev, A.; Zeldin, D.C.; Wang, D.W. Genetic disruption of soluble epoxide hydrolase is protective against streptozotocin-induced diabetic nephropathy. Am. J. Physiol. Endocrinol. Metab., 2012, 303(5), E563-E575.
[http://dx.doi.org/10.1152/ajpendo.00591.2011] [PMID: 22739108]
[115]
Pal, P.B.; Sinha, K.; Sil, P.C. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PLoS One, 2014, 9(9), e107220.
[http://dx.doi.org/10.1371/journal.pone.0107220] [PMID: 25233093]
[116]
Fakhruddin, S.; Alanazi, W.; Jackson, K.E. Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J. Diabetes Res., 2017, 2017, 8379327.
[http://dx.doi.org/10.1155/2017/8379327] [PMID: 28164134]
[117]
De Borst, M.H.; Prakash, J.; Melenhorst, W.B.W.H.; van den Heuvel, M.C.; Kok, R.J.; Navis, G.; van Goor, H. Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J. Pathol., 2007, 213(2), 219-228.
[http://dx.doi.org/10.1002/path.2228] [PMID: 17891746]
[118]
Lin, C.L.; Wang, F.S.; Kuo, Y.R.; Huang, Y.T.; Huang, H.C.; Sun, Y.C.; Kuo, Y.H. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int., 2006, 69(9), 1593-1600.
[http://dx.doi.org/10.1038/sj.ki.5000329] [PMID: 16572112]
[119]
Maestroni, A.; Tentori, F.; Meregalli, G.; Gabellini, D.; Asnaghi, V.; Ruggieri, D.; Zerbini, G. Inhibition of MAP-kinase cascade normalizes the proliferation rate of fibroblasts from patients with Type 1 diabetes and nephropathy. J. Diabet. Complicat., 2005, 19(5), 291-296.
[http://dx.doi.org/10.1016/j.jdiacomp.2005.03.005] [PMID: 16112505]
[120]
Rane, M.J.; Song, Y.; Jin, S.; Barati, M.T.; Wu, R.; Kausar, H.; Tan, Y.; Wang, Y.; Zhou, G.; Klein, J.B.; Li, X.; Cai, L. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2010, 298(1), F49-F61.
[http://dx.doi.org/10.1152/ajprenal.00032.2009] [PMID: 19726550]
[121]
Begum, N.; Prasad, N.R. Apigenin, a dietary antioxidant, modulates gamma radiation-induced oxidative damages in human peripheral blood lymphocytes. Biomed. Preventive Nutrit., 2012, 2(1), 16-24.
[http://dx.doi.org/10.1016/j.bionut.2011.11.003]
[122]
Nikbakht, F.; Khadem, Y.; Haghani, S.; Hoseininia, H.; Moein Sadat, A.; Heshemi, P.; Jamali, N. Protective role of apigenin against Aβ 25-35 toxicity via inhibition of mitochondrial cytochrome c release. Basic Clin. Neurosci., 2019, 10(6), 557-566.
[PMID: 32477473]
[123]
Hashemi, P.; Fahanik Babaei, J.; Vazifekhah, S.; Nikbakht, F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran. J. Basic Med. Sci., 2019, 22(7), 752-758.
[PMID: 32373296]
[124]
Sharma, H.; Kanwal, R.; Bhaskaran, N.; Gupta, S. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells. PLoS One, 2014, 9(3), e91588.
[http://dx.doi.org/10.1371/journal.pone.0091588] [PMID: 24614817]
[125]
Ahmad, A.; Zafar, A.; Ahmad, M. Mitigating effects of apigenin on edifenphos-induced oxidative stress, dna damage and apoptotic cell death in human peripheral blood lymphocytes. Food Chem. Toxicol., 2019, 127, 218-227.
[126]
Zhang, Y.; Tan, R.; Zhang, X.; Yu, Y.; Yu, C. Calycosin ameliorates diabetes-induced renal inflammation via the nf-κb pathway in vitro and in vivo. Med. Sci. Monit., 2019, 25, 1671-1678.
[http://dx.doi.org/10.12659/MSM.915242] [PMID: 30830898]
[127]
Mohamed, R.; Jayakumar, C.; Chen, F.; Fulton, D.; Stepp, D.; Gansevoort, R.T.; Ramesh, G. Low-Dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J. Am. Soc. Nephrol., 2016, 27(3), 745-765.
[http://dx.doi.org/10.1681/ASN.2014111136] [PMID: 26334030]
[128]
Gao, J.; Wang, W.; Wang, F.; Guo, C. promotes proliferation, fibrogenesis and epithelial-to-mesenchymal transition by targeting miR-743b-5p in diabetic nephropathy. Biomed. Pharmaco., 2018, 106, 543-552.
[129]
Wu, X.Y.; Zhai, J.; Huan, X.K.; Xu, W.W.; Tian, J.; Farhood, B. A systematic review of the therapeutic potential of resveratrol during colo-rectal cancer chemotherapy. Mini Rev. Med. Chem., 2022.
[PMID: 36173048]
[130]
Sheikholeslami, S.; Aryafar, T.; Abedi-Firouzjah, R.; Banaei, A.; Dorri-Giv, M.; Zamani, H.; Ataei, G.; Majdaeen, M.; Farhood, B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci., 2021, 281, 119721.
[http://dx.doi.org/10.1016/j.lfs.2021.119721] [PMID: 34146555]
[131]
Nam, J.S.; Cho, M.H.; Lee, G.T.; Park, J.S.; Ahn, C.W.; Cha, B.S.; Lim, S.K.; Kim, K.R.; Ha, H.J.; Lee, H.C. The activation of NF-κB and AP-1 in peripheral blood mononuclear cells isolated from patients with diabetic nephropathy. Diabetes Res. Clin. Pract., 2008, 81(1), 25-32.
[http://dx.doi.org/10.1016/j.diabres.2008.01.032] [PMID: 18485515]
[132]
Guijarro, C.; Egido, J. Transcription factor-κB (NF-κB) and renal disease. Kidney Int., 2001, 59(2), 415-424.
[http://dx.doi.org/10.1046/j.1523-1755.2001.059002415.x] [PMID: 11168923]
[133]
Mima, A. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets. J. Diabetes Res., 2013, 2013, 248563.
[http://dx.doi.org/10.1155/2013/248563] [PMID: 23862164]
[134]
Liu, R.M.; Desai, L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol., 2015, 6, 565-577.
[http://dx.doi.org/10.1016/j.redox.2015.09.009] [PMID: 26496488]
[135]
Jiang, W.; Zhang, Y.; Wu, H.; Zhang, X.; Gan, H.; Sun, J.; Chen, Q.; Guo, M.; Zhang, Z. Role of cross-talk between the Smad2 and MAPK pathways in TGF-beta1-induced collagen IV expression in mesangial cells. Int. J. Mol. Med., 2010, 26(4), 571-576.
[PMID: 20818498]
[136]
Wang, T.; Chen, S.S.; Chen, R.; Yu, D.M.; Yu, P. Reduced beta 2 glycoprotein I improves diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2321-2333.
[PMID: 26045739]
[137]
Kang, O.H.; Lee, J.H.; Kwon, D.Y. Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol. Immunotoxicol., 2011, 33(3), 473-479.
[http://dx.doi.org/10.3109/08923973.2010.538851] [PMID: 21142820]
[138]
Ai, X.Y.; Qin, Y.; Liu, H.J.; Cui, Z.H.; Li, M.; Yang, J.H.; Zhong, W.L.; Liu, Y.R.; Chen, S.; Sun, T.; Zhou, H.G.; Yang, C. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget, 2017, 8(59), 100216-100226.
[http://dx.doi.org/10.18632/oncotarget.22145] [PMID: 29245972]
[139]
Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2019, 75, 105697.
[http://dx.doi.org/10.1016/j.intimp.2019.105697] [PMID: 31352326]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy