Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design and Synthesis of Gefitinib Derivatives as Potential Drugs fo r Cancer Treatment: Antiproliferative Activity, Molecular Docking, and ADMET Prediction

Author(s): Xiaoyan Ma, Min Shan and Yunlong Lu*

Volume 21, Issue 9, 2024

Published on: 17 October, 2023

Page: [1555 - 1568] Pages: 14

DOI: 10.2174/1570180820666230810164118

Price: $65

Abstract

Background: Non-small cell lung cancer is one of the most common cancers worldwide, and targeted chemotherapy has become a kind of the main treatment. Gefitinib, the most widely studied targeted agent in non-small cell lung cancer, is an orally active tyrosine kinase inhibitor. However, gefitinib inevitably generates acquired drug resistance, leading to treatment failure.

Objective: A new class of compounds containing 4-anilinoquinazoline lead structure was designed and synthesized by modifying the structure of gefitinib. These compounds are expected to exert better anticancer activity and better binding to the EGFR-TK domain, enrich the structure of 4-anilinoquinazoline derivatives and inspire further structural modifications.

Methods: The antiproliferative activity of nine derivatives was determined in three cancer cell lines (A549, PC9, and HepG2) using the MTT method. The ADMET profile of all compounds was predicted, and the binding affinity of the compounds (5 and 6) to EGFR was predicted by Schrödinger. In addition, the effect of these compounds (3-6) in inducing apoptosis in HepG2 cells was also studied.

Results: Four (3, 5, 6 and 9) of the newly synthesized derivatives exhibited superior antiproliferative activity against A549 to gefitinib (IC50 = 12.64 ± 3.59 μM), with compound 5 having the best activity (IC50 = 7.39 ± 1.24 μM). Moreover, the ability of compounds (3-6) to induce HepG2 cell apoptosis was significantly better than that of gefitinib.

Conclusion: Nine structures (compounds 2-10) were synthesized and characterized, and compound 5 had the best antiproliferative activity. Compound 3 possessed the best ability to induce HepG2 apoptosis. Also, ADMET calculations were performed in silico, and the results revealed that compound 3 has more suitable characteristics as a potential drug candidate.

Graphical Abstract

[1]
Carney, D.N. The biology of lung cancer. A review. Acta Oncol., 1989, 28(1), 1-5.
[http://dx.doi.org/10.3109/02841868909111172] [PMID: 2539844]
[2]
Argiris, A.; Mittal, N. Gefitinib as first-line, compassionate use therapy in patients with advanced non-small-cell lung cancer. Lung Cancer, 2004, 43(3), 317-322.
[http://dx.doi.org/10.1016/j.lungcan.2003.10.010] [PMID: 15165090]
[3]
Jänne, P.A.; Gurubhagavatula, S.; Yeap, B.Y.; Lucca, J.; Ostler, P.; Skarin, A.T.; Fidias, P.; Lynch, T.J.; Johnson, B.E. Outcomes of patients with advanced non-small cell lung cancer treated with gefitinib (ZD1839, ‘Iressa’) on an expanded access study. Lung Cancer, 2004, 44(2), 221-230.
[http://dx.doi.org/10.1016/j.lungcan.2003.12.014] [PMID: 15084387]
[4]
Liu, S.; Li, Q.; Li, G.; Zhang, Q.; Zhuo, L.; Han, X.; Zhang, M.; Chen, X.; Pan, T.; Yan, L.; Jin, T.; Wang, J.; Lv, Q.; Sui, X.; Xie, T. The mechanism of m6A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis., 2020, 11(11), 969.
[http://dx.doi.org/10.1038/s41419-020-03148-8] [PMID: 33177491]
[5]
Mendelsohn, J.; Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19(56), 6550-6565.
[http://dx.doi.org/10.1038/sj.onc.1204082] [PMID: 11426640]
[6]
Barlési, F.; Tchouhadjian, C.; Doddoli, C.; Villani, P.; Greillier, L.; Kleisbauer, J.P.; Thomas, P.; Astoul, P. Gefitinib (ZD1839, IressaR) in non-small-cell lung cancer: A review of clinical trials from a daily practice perspective. Fundam. Clin. Pharmacol., 2005, 19(3), 385-393.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00323.x] [PMID: 15910663]
[7]
Zhang, Q.; Xu, K. [Advances in the research of autophagy in EGFR-TKI treatment and resistance in lung cancer]. Zhongguo Fei Ai Za Zhi, 2016, 19(9), 607-614.
[PMID: 27666552]
[8]
Sun, C.; Gao, W.; Liu, J.; Cheng, H.; Hao, J. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respir. Res., 2020, 21(1), 210.
[http://dx.doi.org/10.1186/s12931-020-01477-y] [PMID: 32778129]
[9]
Wu, K.; Li, J.; Qi, Y.; Zhang, C.; Zhu, D.; Liu, D.; Zhao, S. SNHG14 confers gefitinib resistance in non-small cell lung cancer by up-regulating ABCB1 via sponging miR-206-3p. Biomed. Pharmacother., 2019, 116, 108995.
[http://dx.doi.org/10.1016/j.biopha.2019.108995] [PMID: 31121484]
[10]
Wu, M.; Yuan, Y.; Pan, Y.Y.; Zhang, Y. Combined gefitinib and pemetrexed overcome the acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Mol. Med. Rep., 2014, 10(2), 931-938.
[http://dx.doi.org/10.3892/mmr.2014.2243] [PMID: 24840891]
[11]
Ono, M.; Kuwano, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res., 2006, 12(24), 7242-7251.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0646] [PMID: 17189395]
[12]
Chen, Z.; Chen, Q.; Cheng, Z.; Gu, J.; Feng, W.; Lei, T.; Huang, J.; Pu, J.; Chen, X.; Wang, Z. Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis., 2020, 11(10), 858.
[http://dx.doi.org/10.1038/s41419-020-03047-y] [PMID: 33056982]
[13]
Recondo, G.; Facchinetti, F.; Olaussen, K.A.; Besse, B.; Friboulet, L. Making the first move in EGFR-driven or ALK-driven NSCLC: First-generation or next-generation TKI? Nat. Rev. Clin. Oncol., 2018, 15(11), 694-708.
[http://dx.doi.org/10.1038/s41571-018-0081-4] [PMID: 30108370]
[14]
Biaoxue, R.; Shuanying, Y.; Wei, L.; Wei, Z.; Zongjuan, M. Maintenance therapy of gefitinib for non-small-cell lung cancer after first-line chemotherapy regardless of epidermal growth factor receptor mutation: A review in Chinese patients. Curr. Med. Res. Opin., 2012, 28(10), 1699-1708.
[http://dx.doi.org/10.1185/03007995.2012.728525] [PMID: 22978775]
[15]
Blackledge, G.; Averbuch, S. Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br. J. Cancer, 2004, 90(3), 566-572.
[http://dx.doi.org/10.1038/sj.bjc.6601550] [PMID: 14760365]
[16]
Santarpia, M.; Menis, J.; Chaib, I.; Gonzalez Cao, M.; Rosell, R. Dacomitinib for the first-line treatment of patients with EGFR-mutated metastatic non-small cell lung cancer. Expert Rev. Clin. Pharmacol., 2019, 12(9), 831-840.
[http://dx.doi.org/10.1080/17512433.2019.1649136] [PMID: 31356117]
[17]
Asami, K.; Atagi, S. Epidermal growth factor receptor tyrosine kinase inhibitors for non-small cell lung cancer. World J. Clin. Oncol., 2014, 5(4), 646-659.
[http://dx.doi.org/10.5306/wjco.v5.i4.646] [PMID: 25302168]
[18]
Bracht, J.W.P.; Karachaliou, N.; Berenguer, J.; Pedraz-Valdunciel, C.; Filipska, M.; Codony-Servat, C.; Codony-Servat, J.; Rosell, R. Osimertinib and pterostilbene in EGFR-mutation-positive non-small cell lung cancer (NSCLC). Int. J. Biol. Sci., 2019, 15(12), 2607-2614.
[http://dx.doi.org/10.7150/ijbs.32889] [PMID: 31754333]
[19]
Nagano, T.; Tachihara, M.; Nishimura, Y. Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy. Cells, 2018, 7(11), 212.
[http://dx.doi.org/10.3390/cells7110212] [PMID: 30445769]
[20]
Tulchinsky, E.; Demidov, O.; Kriajevska, M.; Barlev, N.A.; Imyanitov, E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(1), 29-39.
[http://dx.doi.org/10.1016/j.bbcan.2018.10.003] [PMID: 30419315]
[21]
Suda, K.; Murakami, I.; Yu, H.; Kim, J.; Tan, A.C.; Mizuuchi, H.; Rozeboom, L.; Ellison, K.; Rivard, C.J.; Mitsudomi, T.; Hirsch, F.R. CD44 facilitates epithelial-to-mesenchymal transition phenotypic change at acquisition of resistance to EGFR kinase inhibitors in lung cancer. Mol. Cancer Ther., 2018, 17(10), 2257-2265.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1279] [PMID: 30049789]
[22]
Șandor, A.; Ionuț, I.; Marc, G.; Oniga, I.; Eniu, D.; Oniga, O. Structure–activity relationship studies based on quinazoline derivatives as EGFR kinase inhibitors (2017–Present). Pharmaceuticals, 2023, 16(4), 534.
[http://dx.doi.org/10.3390/ph16040534] [PMID: 37111291]
[23]
Kardile, R.A.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. Design, synthesis, and biological evaluation of novel quinoline derivatives as small molecule mutant EGFR inhibitors targeting resistance in NSCLC: in vitro screening and ADME predictions. Eur. J. Med. Chem., 2023, 245(Pt 1), 114889.
[http://dx.doi.org/10.1016/j.ejmech.2022.114889] [PMID: 36375337]
[24]
Zhang, B.; Xu, Z.; Liu, Q.; Xia, S.; Liu, Z.; Liao, Z.; Gou, S. Design, synthesis and biological evaluation of cinnamamide-quinazoline derivatives as potential EGFR inhibitors to reverse T790M mutation. Bioorg. Chem., 2021, 117, 105420.
[http://dx.doi.org/10.1016/j.bioorg.2021.105420] [PMID: 34655841]
[25]
Lin, X.; Ye, R.; Li, Z.; Zhang, B.; Huang, Y.; Du, J.; Wang, B.; Meng, H.; Xian, H.; Yang, X.; Zhang, X.; Zhong, Y.; Huang, Z. KIAA1429 promotes tumorigenesis and gefitinib resistance in lung adenocarcinoma by activating the JNK/MAPK pathway in an m6A-dependent manner. Drug Resist. Updat., 2023, 66, 100908.
[http://dx.doi.org/10.1016/j.drup.2022.100908] [PMID: 36493511]
[26]
Zhao, F.; Wang, M.; Zhang, Y.; Su, R.; He, C.; Gao, X.; Zan, Y.; Zhang, S.; Ma, Y. Corrigendum: LncRNA PSMB8-AS1 promotes colorectal cancer progression through sponging miR-1299 to upregulate ADAMTS5. Neoplasma, 2023, 70(1), 177-178.
[http://dx.doi.org/10.4149/neo_2022_220111N42COR] [PMID: 36916931]
[27]
Fu, B.; Dou, X.; Zou, M.; Lu, H.; Wang, K.; Liu, Q.; Liu, Y.; Wang, W.; Jin, M.; Kong, D. Anticancer effects of amlodipine alone or in combination with gefitinib in non-small cell lung cancer. Front. Pharmacol., 2022, 13, 902305.
[http://dx.doi.org/10.3389/fphar.2022.902305] [PMID: 35721193]
[28]
Noronha, V.; Patil, V.M.; Joshi, A.; Menon, N.; Chougule, A.; Mahajan, A.; Janu, A.; Purandare, N.; Kumar, R.; More, S.; Goud, S.; Kadam, N.; Daware, N.; Bhattacharjee, A.; Shah, S.; Yadav, A.; Trivedi, V.; Behel, V.; Dutt, A.; Banavali, S.D.; Prabhash, K. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR -mutated lung cancer. J. Clin. Oncol., 2020, 38(2), 124-136.
[http://dx.doi.org/10.1200/JCO.19.01154] [PMID: 31411950]
[29]
Hasanvand, Z.; Oghabi Bakhshaiesh, T.; Peytam, F.; Firoozpour, L.; Hosseinzadeh, E.; Motahari, R.; Moghimi, S.; Nazeri, E.; Toolabi, M.; Momeni, F.; Bijanzadeh, H.; Khalaj, A.; Baratte, B.; Josselin, B.; Robert, T.; Bach, S.; Esmaeili, R.; Foroumadi, A. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies. Bioorg. Chem., 2023, 133, 106383.
[http://dx.doi.org/10.1016/j.bioorg.2023.106383] [PMID: 36764231]
[30]
Jadidi, A.; Shokrgozar, M.A.; Sardari, S.; Maadani, A.M. Gefitinib-loaded polydopamine-coated hollow mesoporous silica nanoparticle for gastric cancer application. Int. J. Pharm., 2022, 629, 122342.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122342] [PMID: 36374799]
[31]
Liu, Y.; Dai, X.; Jiang, S.; Qahar, M.; Feng, C.; Guo, D.; Wang, L.; Ma, S.; Huang, L. Targeted co-delivery of gefitinib and rapamycin by aptamer-modified nanoparticles overcomes EGFR-TKI resistance in NSCLC via promoting autophagy. Int. J. Mol. Sci., 2022, 23(14), 8025.
[http://dx.doi.org/10.3390/ijms23148025] [PMID: 35887373]
[32]
Gautam, A.; Pal, K. Gefitinib conjugated PEG passivated graphene quantum dots incorporated PLA microspheres for targeted anticancer drug delivery. Heliyon, 2022, 8(12), e12512.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12512] [PMID: 36619399]
[33]
Sherif, A.Y.; Harisa, G.I.; Shahba, A.A.; Alanazi, F.K.; Qamar, W. Optimization of gefitinib-loaded nanostructured lipid carrier as a biomedical tool in the treatment of metastatic lung cancer. Molecules, 2023, 28(1), 448.
[http://dx.doi.org/10.3390/molecules28010448] [PMID: 36615641]
[34]
El-Shenawy, A.A.; Elsayed, M.M.A.; Atwa, G.M.K.; Abourehab, M.A.S.; Mohamed, M.S.; Ghoneim, M.M.; Mahmoud, R.A.; Sabry, S.A.; Anwar, W.; El-Sherbiny, M.; Hassan, Y.A.; Belal, A.; Ramadan, A.E. Anti-tumor activity of orally administered gefitinib-loaded nanosized cubosomes against colon cancer. Pharmaceutics, 2023, 15(2), 680.
[http://dx.doi.org/10.3390/pharmaceutics15020680] [PMID: 36840004]
[35]
Qiu, C.; Wu, Y.; Shi, Q.; Guo, Q.; Zhang, J.; Meng, Y.; Wang, C.; Xia, F.; Wang, J.; Xu, C. Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy. Int. J. Biol. Sci., 2023, 19(3), 789-810.
[http://dx.doi.org/10.7150/ijbs.79328] [PMID: 36778126]
[36]
Diao, D.; Zhai, J.; Yang, J.; Wu, H.; Jiang, J.; Dong, X.; Passaro, A.; Aramini, B.; Rao, S.; Cai, K. Delivery of gefitinib with an immunostimulatory nanocarrier improves therapeutic efficacy in lung cancer. Transl. Lung Cancer Res., 2021, 10(2), 926-935.
[http://dx.doi.org/10.21037/tlcr-21-144] [PMID: 33718033]
[37]
Sherif, A.Y.; Harisa, G.I.; Alanazi, F.K.; Nasr, F.A.; Alqahtani, A.S. PEGylated SLN as a promising approach for lymphatic delivery of gefitinib to lung cancer. Int. J. Nanomedicine, 2022, 17, 3287-3311.
[http://dx.doi.org/10.2147/IJN.S365974] [PMID: 35924261]
[38]
Wang, S.P.; Hsu, Y.P.; Chang, C.J.; Chan, Y.C.; Chen, C.H.; Wang, R.H.; Liu, K.K.; Pan, P.Y.; Wu, Y.H.; Yang, C.M.; Chen, C.; Yang, J.M.; Liang, M.C.; Wong, K.K.; Chao, J.I. A novel EGFR inhibitor suppresses survivin expression and tumor growth in human gefitinib-resistant EGFR-wild type and -T790M non-small cell lung cancer. Biochem. Pharmacol., 2021, 193, 114792.
[http://dx.doi.org/10.1016/j.bcp.2021.114792] [PMID: 34597670]
[39]
Lee, J.Y.; Yang, H.; Kim, D.; Kyaw, K.Z.; Hu, R.; Fan, Y.; Lee, S.K. Antiproliferative activity of a new quinazolin-4(3H)-one derivative via targeting aurora kinase a in non-small cell lung cancer. Pharmaceuticals, 2022, 15(6), 698.
[http://dx.doi.org/10.3390/ph15060698] [PMID: 35745617]
[40]
Wang, J.; Yan, P.; Wang, H.; Zuo, S.; Zhang, S.; Cao, Y.; Cao, L. Novel compound ZCJ14, a gefitinib analog, exhibited prominent anti-cancer effect among several cancer cell lines. Life Sci., 2022, 307, 120875.
[http://dx.doi.org/10.1016/j.lfs.2022.120875] [PMID: 35963298]
[41]
Qin, X.; Liu, P.; Li, Y.; Hu, L.; Liao, Y.; Cao, T.; Yang, L. Design, synthesis and biological evaluation of novel 3,4-dihydro-2H-[1,4]oxazino [2,3-f]quinazolin derivatives as EGFR-TKIs. Bioorg. Med. Chem. Lett., 2023, 80, 129104.
[http://dx.doi.org/10.1016/j.bmcl.2022.129104] [PMID: 36509365]
[42]
Chandregowda, V.; Kush, A.K.; Chandrasekara Reddy, G. Synthesis and in vitro antitumor activities of novel 4-anilinoquinazoline derivatives. Eur. J. Med. Chem., 2009, 44(7), 3046-3055.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.023] [PMID: 18771819]
[43]
Knesl, P.; Röseling, D.; Jordis, U. Improved synthesis of substituted 6,7-dihydroxy-4-quinazolineamines: Tandutinib, erlotinib and gefitinib. Molecules, 2006, 11(4), 286-297.
[http://dx.doi.org/10.3390/11040286] [PMID: 17962760]
[44]
Ban, H.S.; Tanaka, Y.; Nabeyama, W.; Hatori, M.; Nakamura, H. Enhancement of EGFR tyrosine kinase inhibition by C–C multiple bonds-containing anilinoquinazolines. Bioorg. Med. Chem., 2010, 18(2), 870-879.
[http://dx.doi.org/10.1016/j.bmc.2009.11.035] [PMID: 19969465]
[45]
Kumar, P.; Mazlee, M.T.F.; Abdul Wahab, M.K.; Belwal, C.K.; Kumar, R.; Sajid, S. Improved protocol for synthesis of N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy) quinazolin-4-amine (gefitinib). Chem. Pap., 2019, 73(1), 39-46.
[http://dx.doi.org/10.1007/s11696-018-0564-x]
[46]
Wu, K.D.; Chen, G.S.; Liu, J.R.; Hsieh, C.E.; Chern, J.W. Acrylamide functional group incorporation improves drug-like properties: An example with EGFR inhibitors. ACS Med. Chem. Lett., 2019, 10(1), 22-26.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00270] [PMID: 30655941]
[47]
Yamahana, H.; Kunieda, Y.; Tominaga, M.; Yamada, H.; Uto, Y. Development of a novel acetyl glucose-modified gefitinib derivative to enhance the radiosensitizing effect. Bioorg. Med. Chem., 2021, 29, 115889.
[http://dx.doi.org/10.1016/j.bmc.2020.115889] [PMID: 33260051]
[48]
Ju, Y.; Wu, J.; Yuan, X.; Zhao, L.; Zhang, G.; Li, C.; Qiao, R. Design and evaluation of potent EGFR inhibitors through the incorporation of macrocyclic polyamine moieties into the 4-anilinoquinazoline scaffold. J. Med. Chem., 2018, 61(24), 11372-11383.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01612] [PMID: 30508379]
[49]
Alam, M.M.; Hassan, A.H.E.; Kwon, Y.H.; Lee, H.J.; Kim, N.Y.; Min, K.H.; Lee, S.Y.; Kim, D.H.; Lee, Y.S. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch. Pharm. Res., 2018, 41(1), 35-45.
[http://dx.doi.org/10.1007/s12272-017-0977-z] [PMID: 29094267]
[50]
Yarden, Y. The EGFR family and its ligands in human cancer. Eur. J. Cancer, 2001, 37(Suppl. 4), 3-8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[51]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272.
[http://dx.doi.org/10.1074/jbc.M207135200] [PMID: 12196540]
[52]
Li, M.; Xue, N.; Liu, X.; Wang, Q.; Yan, H.; Liu, Y.; Wang, L.; Shi, X.; Cao, D.; Zhang, K.; Zhang, Y. Discovery of Potent EGFR Inhibitors With 6-Arylureido-4-anilinoquinazoline Derivatives. Front. Pharmacol., 2021, 12, 647591.
[http://dx.doi.org/10.3389/fphar.2021.647591] [PMID: 34122069]
[53]
Pawara, R.; Ahmad, I.; Nayak, D.; Wagh, S.; Wadkar, A.; Ansari, A.; Belamkar, S.; Surana, S.; Nath Kundu, C.; Patil, C.; Patel, H. Novel, selective acrylamide linked quinazolines for the treatment of double mutant EGFR-L858R/T790M Non-Small-Cell lung cancer (NSCLC). Bioorg. Chem., 2021, 115, 105234.
[http://dx.doi.org/10.1016/j.bioorg.2021.105234] [PMID: 34399322]
[54]
Wdowiak, P.; Matysiak, J.; Kuszta, P.; Czarnek, K.; Niezabitowska, E.; Baj, T. Quinazoline derivatives as potential therapeutic agents in urinary bladder cancer therapy. Front Chem., 2021, 9, 765552.
[http://dx.doi.org/10.3389/fchem.2021.765552] [PMID: 34805097]
[55]
Zheng, Q.; Xu, X.B.; Jin, H.; Zhang, W.; Rao, G.W. Synthesis and anti-proliferation activity evaluation of novel 2-chloroquinazoline as potential EGFR-TK inhibitors. Chem. Biodivers., 2021, 18(11), e2100478.
[http://dx.doi.org/10.1002/cbdv.202100478] [PMID: 34510749]
[56]
Gibson, K. H. Preparation of haloanilinoquinazolines as class I receptor tyrosine kinase inhibitors. WO9633980, 1996.
[57]
Xiang, F.; Zhang, B. Composition containing morpholinylpropoxyquinazoline derivative and its application in the treatment of bacterial infectious disease. CN110559301, 2019.
[58]
Xiang, F.; Chen, Y. Application of composition containing heterocyclic compounds in the preparation of lung cancer drugs. CN111297865, 2020.
[59]
Tung, R. Deuterated derivatives of gefitinib for the treatment of tyrosine receptor kinase-associated diseases, including cancers. US20090185999, 2009.
[60]
Wu, L.; Zhang, Y.; Liang, M.; Liu, Y.; Zheng, L. Synthesis of related substances of gefitinib. Zhongguo Yiyao Gongye Zazhi, 2014, 45(6), 513-516.
[61]
Zhang, G.; Zhang, Q.; Ma, Q. Preparation of quinazoline oxynitride N-(3-chloro-4-fluorophenyl)-7-methoxy-6-[3-(4-morpholinyl) propoxy)]quinazoline-4-amine-N-oxide used as reference substance. CN104817506, 2015.
[62]
Karunakara, C.; Aparna, U.; Reddy, C.G. Separation and estimation of intermediates formed during synthesis of gefitinib via 4-methylthio-quinazoline route using high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol., 2015, 38(7), 759-764.
[http://dx.doi.org/10.1080/10826076.2014.962146]
[63]
Telliez, A.; Desroses, M.; Pommery, N.; Briand, O.; Farce, A.; Laconde, G.; Lemoine, A.; Depreux, P.; Hénichart, J.P. Derivatives of Iressa, a specific epidermal growth factor receptor inhibitor, are powerful apoptosis inducers in PC3 prostatic cancer cells. ChemMedChem, 2007, 2(3), 318-332.
[http://dx.doi.org/10.1002/cmdc.200600128] [PMID: 17206733]
[64]
McKillop, D.; Hutchison, M.; Partridge, E.A.; Bushby, N.; Cooper, C.M.F.; Clarkson-Jones, J.A.; Herron, W.; Swaisland, H.C. Metabolic disposition of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat, dog and man. Xenobiotica, 2004, 34(10), 917-934.
[http://dx.doi.org/10.1080/00498250400009171] [PMID: 15764411]
[65]
Mckillop, D.; Mccormick, A.D.; Miles, G.S.; Phillips, P.J.; Pickup, K.J.; Bushby, N.; Hutchison, M. In vitro metabolism of gefitinib in human liver microsomes. Xenobiotica, 2004, 34(11-12), 983-1000.
[http://dx.doi.org/10.1080/02772240400015222] [PMID: 15801543]
[66]
McKillop, D.; Partridge, E.A.; Hutchison, M.; Rhead, S.A.; Parry, A.C.; Bardsley, J.; Woodman, H.M.; Swaisland, H.C. Pharmacokinetics of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat and dog. Xenobiotica, 2004, 34(10), 901-915.
[http://dx.doi.org/10.1080/00498250400009189] [PMID: 15764410]
[67]
Wang, L.Z.; Lim, M.Y.X.; Chin, T.M.; Thuya, W.L.; Nye, P.L.; Wong, A.; Chan, S.Y.; Goh, B.C.; Ho, P.C. Rapid determination of gefitinib and its main metabolite, O-desmethyl gefitinib in human plasma using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(22), 2155-2161.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.056] [PMID: 21703945]
[68]
Jiang, X.; Huang, H.; Liang, Y.; Liu, Y. Acid-sensitive gefitinib-BODIPY derivative and preparation method and medicinal application thereof. WO2019056376, 2019.
[69]
Zhang, J.; Zhu, H.; Zhang, X.; Wang, H.; Liu, X.; Liu, J.; Zhou, N.; Tian, J. Auto-synthesis of 11C-gefitinib and Micro PET/CT imaging for A549. Hejishu, 2012, 35(9), 709-714.
[70]
Holt, D.P.; Ravert, H.T.; Dannals, R.F.; Pomper, M.G. Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J. Labelled Comp. Radiopharm., 2006, 49(10), 883-888.
[http://dx.doi.org/10.1002/jlcr.1104]
[71]
Jiang, X.; Huang, H.; Liang, Y.; Liu, Y. Acid-sensitive phthalocyanine zinc-gefitinib complex, preparation method thereof and application in medicine thereof. WO2019056373, 2019.

© 2025 Bentham Science Publishers | Privacy Policy