Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Basal Ganglia Downstream Control of Action – An Evolutionarily Conserved Strategy

Author(s): Johanna Frost-Nylén, William Scott Thompson, Brita Robertson and Sten Grillner*

Volume 22, Issue 9, 2024

Published on: 10 August, 2023

Page: [1419 - 1430] Pages: 12

DOI: 10.2174/1570159X21666230810141746

Price: $65

Abstract

The motor areas of the cortex and the basal ganglia both contribute to determining which motor actions will be recruited at any moment in time, and their functions are intertwined. Here, we review the basal ganglia mechanisms underlying the selection of behavior of the downstream control of motor centers in the midbrain and brainstem and show that the basic organization of the forebrain motor system is evolutionarily conserved throughout vertebrate phylogeny. The output level of the basal ganglia (e.g. substantia nigra pars reticulata) has GABAergic neurons that are spontaneously active at rest and inhibit a number of specific motor centers, each of which can be relieved from inhibition if the inhibitory output neurons themselves become inhibited. The motor areas of the cortex act partially via the dorsolateral striatum (putamen), which has specific modules for the forelimb, hindlimb, trunk, etc. Each module operates in turn through the two types of striatal projection neurons that control the output modules of the basal ganglia and thereby the downstream motor centers. The mechanisms for lateral inhibition in the striatum are reviewed as well as other striatal mechanisms contributing to action selection. The motor cortex also exerts a direct excitatory action on specific motor centers. An overview is given of the basal ganglia control exerted on the different midbrain/brainstem motor centers, and the efference copy information fed back via the thalamus to the striatum and cortex, which is of importance for the planning of future movements.

Graphical Abstract

[1]
Bjursten, L.M.; Norrsell, K.; Norrsell, U. Behavioural repertory of cats without cerebral cortex from infancy. Exp. Brain Res., 1976, 25(2), 115-130.
[http://dx.doi.org/10.1007/BF00234897] [PMID: 1278272]
[2]
Kawai, R.; Markman, T.; Poddar, R.; Ko, R.; Fantana, A.L.; Dhawale, A.K.; Kampff, A.R.; Ölveczky, B.P. Motor cortex is required for learning but not for executing a motor skill. Neuron, 2015, 86(3), 800-812.
[http://dx.doi.org/10.1016/j.neuron.2015.03.024] [PMID: 25892304]
[3]
Ericsson, J.; Silberberg, G.; Robertson, B.; Wikström, M.A.; Grillner, S. Striatal cellular properties conserved from lampreys to mammals. J. Physiol., 2011, 589(12), 2979-2992.
[http://dx.doi.org/10.1113/jphysiol.2011.209643] [PMID: 21502291]
[4]
Ericsson, J.; Stephenson-Jones, M.; Kardamakis, A.; Robertson, B.; Silberberg, G.; Grillner, S. Evolutionarily conserved differences in pallial and thalamic short-term synaptic plasticity in striatum. J. Physiol., 2013, 591(4), 859-874.
[http://dx.doi.org/10.1113/jphysiol.2012.236869] [PMID: 23148315]
[5]
Ericsson, J.; Stephenson-Jones, M.; Pérez-Fernández, J.; Robertson, B.; Silberberg, G.; Grillner, S. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. J. Neurosci., 2013, 33(18), 8045-8054.
[http://dx.doi.org/10.1523/JNEUROSCI.5881-12.2013] [PMID: 23637194]
[6]
Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100.
[http://dx.doi.org/10.1016/j.cub.2016.06.041] [PMID: 27780050]
[7]
Stephenson-Jones, M.; Ericsson, J.; Robertson, B.; Grillner, S. Evolution of the basal ganglia: Dual-output pathways conserved throughout vertebrate phylogeny. J. Comp. Neurol., 2012, 520(13), 2957-2973.
[http://dx.doi.org/10.1002/cne.23087] [PMID: 22351244]
[8]
Stephenson-Jones, M.; Kardamakis, A.A.; Robertson, B.; Grillner, S. Independent circuits in the basal ganglia for the evaluation and selection of actions. Proc. Natl. Acad. Sci. USA, 2013, 110(38), E3670-E3679.
[http://dx.doi.org/10.1073/pnas.1314815110] [PMID: 24003130]
[9]
Stephenson-Jones, M.; Samuelsson, E.; Ericsson, J.; Robertson, B.; Grillner, S. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr. Biol., 2011, 21(13), 1081-1091.
[http://dx.doi.org/10.1016/j.cub.2011.05.001] [PMID: 21700460]
[10]
Ocaña, F.M.; Suryanarayana, S.M.; Saitoh, K.; Kardamakis, A.A.; Capantini, L.; Robertson, B.; Grillner, S. The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr. Biol., 2015, 25(4), 413-423.
[http://dx.doi.org/10.1016/j.cub.2014.12.013] [PMID: 25619762]
[11]
Suryanarayana, S.M.; Pérez-Fernández, J.; Robertson, B.; Grillner, S. The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol., 2020, 4(4), 639-651.
[http://dx.doi.org/10.1038/s41559-020-1137-2] [PMID: 32203472]
[12]
Suryanarayana, S.M.; Robertson, B.; Wallén, P.; Grillner, S. The lamprey pallium provides a blueprint of the mammalian layered cortex. Curr. Biol., 2017, 27(21), 3264-3277.e5.
[http://dx.doi.org/10.1016/j.cub.2017.09.034] [PMID: 29056451]
[13]
Pérez-Fernández, J.; Kardamakis, A.A.; Suzuki, D.G.; Robertson, B.; Grillner, S. Direct dopaminergic projections from the SNc modulate visuomotor transformation in the lamprey tectum. Neuron, 2017, 96(4), 910-924.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.09.051] [PMID: 29107519]
[14]
Pérez-Fernández, J.; Stephenson-Jones, M.; Suryanarayana, S.M.; Robertson, B.; Grillner, S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J. Comp. Neurol., 2014, 522(17), 3775-3794.
[http://dx.doi.org/10.1002/cne.23639] [PMID: 24942187]
[15]
Ryczko, D.; Dubuc, R. Dopamine and the brainstem locomotor networks: From lamprey to human. Front. Neurosci., 2017, 11, 295.
[http://dx.doi.org/10.3389/fnins.2017.00295] [PMID: 28603482]
[16]
Ryczko, D.; Grätsch, S.; Alpert, M.H.; Cone, J.J.; Kasemir, J.; Ruthe, A.; Beauséjour, P.A.; Auclair, F.; Roitman, M.F.; Alford, S.; Dubuc, R. Descending dopaminergic inputs to reticulospinal neurons promote locomotor movements. J. Neurosci., 2020, 40(44), 8478-8490.
[http://dx.doi.org/10.1523/JNEUROSCI.2426-19.2020] [PMID: 32998974]
[17]
von Twickel, A.; Kowatschew, D.; Saltürk, M.; Schauer, M.; Robertson, B.; Korsching, S.; Walkowiak, W.; Grillner, S.; Pérez-Fernández, J. Individual dopaminergic neurons of lamprey SNc/] VTA project to both the striatum and optic tectum but restrict Co-release of glutamate to striatum only. Curr. Biol., 2019, 29(4), 677-685.e6.
[http://dx.doi.org/10.1016/j.cub.2019.01.004] [PMID: 30713108]
[18]
Oorschot, D.E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol., 1996, 366(4), 580-599.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960318)366:4<580:AID-CNE3>3.0.CO;2-0] [PMID: 8833111]
[19]
Foster, N.N.; Barry, J.; Korobkova, L.; Garcia, L.; Gao, L.; Becerra, M.; Sherafat, Y.; Peng, B.; Li, X.; Choi, J.H.; Gou, L.; Zingg, B.; Azam, S.; Lo, D.; Khanjani, N.; Zhang, B.; Stanis, J.; Bowman, I.; Cotter, K.; Cao, C.; Yamashita, S.; Tugangui, A.; Li, A.; Jiang, T.; Jia, X.; Feng, Z.; Aquino, S.; Mun, H.S.; Zhu, M.; Santarelli, A.; Benavidez, N.L.; Song, M.; Dan, G.; Fayzullina, M.; Ustrell, S.; Boesen, T.; Johnson, D.L.; Xu, H.; Bienkowski, M.S.; Yang, X.W.; Gong, H.; Levine, M.S.; Wickersham, I.; Luo, Q.; Hahn, J.D.; Lim, B.K.; Zhang, L.I.; Cepeda, C.; Hintiryan, H.; Dong, H.W. The mouse cortico–basal ganglia–thalamic network. Nature, 2021, 598(7879), 188-194.
[http://dx.doi.org/10.1038/s41586-021-03993-3] [PMID: 34616074]
[20]
Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398.
[http://dx.doi.org/10.1038/s41593-020-00712-5] [PMID: 32989293]
[21]
Planert, H.; Szydlowski, S.N.; Hjorth, J.J.J.; Grillner, S.; Silberberg, G. Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J. Neurosci., 2010, 30(9), 3499-3507.
[http://dx.doi.org/10.1523/JNEUROSCI.5139-09.2010] [PMID: 20203210]
[22]
Taverna, S.; Ilijic, E.; Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J. Neurosci., 2008, 28(21), 5504-5512.
[http://dx.doi.org/10.1523/JNEUROSCI.5493-07.2008] [PMID: 18495884]
[23]
Doig, N.M.; Moss, J.; Bolam, J.P. Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J. Neurosci., 2010, 30(44), 14610-14618.
[http://dx.doi.org/10.1523/JNEUROSCI.1623-10.2010] [PMID: 21048118]
[24]
Lacey, C.J.; Bolam, J.P.; Magill, P.J. Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J. Neurosci., 2007, 27(16), 4374-4384.
[http://dx.doi.org/10.1523/JNEUROSCI.5519-06.2007] [PMID: 17442822]
[25]
Morishima, M.; Kawaguchi, Y. Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J. Neurosci., 2006, 26(16), 4394-4405.
[http://dx.doi.org/10.1523/JNEUROSCI.0252-06.2006] [PMID: 16624959]
[26]
Shepherd, G.M.G. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 2013, 14(4), 278-291.
[http://dx.doi.org/10.1038/nrn3469] [PMID: 23511908]
[27]
Mermelstein, P.G.; Song, W.J.; Tkatch, T.; Yan, Z.; Surmeier, D.J. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J. Neurosci., 1998, 18(17), 6650-6661.
[http://dx.doi.org/10.1523/JNEUROSCI.18-17-06650.1998] [PMID: 9712637]
[28]
Arber, S.; Costa, R.M. Connecting neuronal circuits for movement. Science, 2018, 360(6396), 1403-1404.
[http://dx.doi.org/10.1126/science.aat5994] [PMID: 29954969]
[29]
McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738.
[http://dx.doi.org/10.1016/j.neuron.2021.03.017]
[30]
Fujita, H.; Kodama, T.; du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 2020, 9, e58613.
[http://dx.doi.org/10.7554/eLife.58613] [PMID: 32639229]
[31]
Smith, Y.; Galvan, A.; Ellender, T.J.; Doig, N.; Villalba, R.M.; Huerta-Ocampo, I.; Wichmann, T.; Bolam, J.P. The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci., 2014, 8, 5.
[http://dx.doi.org/10.3389/fnsys.2014.00005] [PMID: 24523677]
[32]
Yamanaka, K.; Hori, Y.; Minamimoto, T.; Yamada, H.; Matsumoto, N.; Enomoto, K.; Aosaki, T.; Graybiel, A.M.; Kimura, M. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. J. Neural Transm., 2018, 125(3), 501-513.
[http://dx.doi.org/10.1007/s00702-017-1713-z] [PMID: 28324169]
[33]
Mandelbaum, G.; Taranda, J.; Haynes, T.M.; Hochbaum, D.R.; Huang, K.W.; Hyun, M.; Venkataraju, K.; Straub, C.; Wang, W.; Robertson, K.; Osten, P.; Sabatini, B.L. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 2019, 102(3), 636-652.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.02.035] [PMID: 30905392]
[34]
Dautan, D. Hacioğlu Bay, H.; Bolam, J.P.; Gerdjikov, T.V.; Mena-Segovia, J. Extrinsic sources of cholinergic innervation of the striatal complex: A whole-brain mapping analysis. Front. Neuroanat., 2016, 10, 1.
[http://dx.doi.org/10.3389/fnana.2016.00001] [PMID: 26834571]
[35]
Mena-Segovia, J.; Bolam, J.P. Rethinking the pedunculopontine nucleus: From cellular organization to function. Neuron, 2017, 94(1), 7-18.
[http://dx.doi.org/10.1016/j.neuron.2017.02.027] [PMID: 28384477]
[36]
Du, K.; Wu, Y.W.; Lindroos, R.; Liu, Y.; Rózsa, B.; Katona, G.; Ding, J.B.; Kotaleski, J.H. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(36), E7612-E7621.
[http://dx.doi.org/10.1073/pnas.1704893114] [PMID: 28827326]
[37]
Nylén, J.; Hjorth, J.J.J.; Kozlov, A.K.; Thunberg, W.; Kotaleski, J.; Grillner, S. The impact of surround inhibition in striatum in silico. Soc. Neurosci., 2022.
[38]
Kaila, K.; Price, T.J.; Payne, J.A.; Puskarjov, M.; Voipio, J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci., 2014, 15(10), 637-654.
[http://dx.doi.org/10.1038/nrn3819] [PMID: 25234263]
[39]
Khirug, S.; Yamada, J.; Afzalov, R.; Voipio, J.; Khiroug, L.; Kaila, K. GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J. Neurosci., 2008, 28(18), 4635-4639.
[http://dx.doi.org/10.1523/JNEUROSCI.0908-08.2008] [PMID: 18448640]
[40]
Frost, N.J.; Hjorth, J.J.J.; Grillner, S.; Hellgren, K.J. Dopaminergic and cholinergic modulation of large scale networks in silico using Snudda. Front. Neural Circuits, 2021, 15, 748989.
[http://dx.doi.org/10.3389/fncir.2021.748989] [PMID: 34744638]
[41]
Hjorth, J.J.J.; Kozlov, A.; Carannante, I.; Frost Nylén, J.; Lindroos, R.; Johansson, Y.; Tokarska, A.; Dorst, M.C.; Suryanarayana, S.M.; Silberberg, G.; Hellgren, K.J.; Grillner, S. The microcircuits of striatum in silico. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9554-9565.
[http://dx.doi.org/10.1073/pnas.2000671117] [PMID: 32321828]
[42]
da Silva, J.A.; Tecuapetla, F.; Paixão, V.; Costa, R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554(7691), 244-248.
[http://dx.doi.org/10.1038/nature25457] [PMID: 29420469]
[43]
Greengard, P. The neurobiology of slow synaptic transmission. Science, 2001, 294(5544), 1024-1030.
[http://dx.doi.org/10.1126/science.294.5544.1024] [PMID: 11691979]
[44]
Lindroos, R.; Dorst, M.C.; Du, K. Filipović M.; Keller, D.; Ketzef, M.; Kozlov, A.K.; Kumar, A.; Lindahl, M.; Nair, A.G.; Pérez-Fernández, J.; Grillner, S.; Silberberg, G.; Hellgren Kotaleski, J. Basal ganglia neuromodulation over multiple temporal and structural scales—simulations of direct pathway MSNs investigate the fast onset of dopaminergic effects and predict the role of Kv4.2. Front. Neural Circuits, 2018, 12, 3.
[http://dx.doi.org/10.3389/fncir.2018.00003] [PMID: 29467627]
[45]
Granger, A.J.; Wallace, M.L.; Sabatini, B.L. Multi-transmitter neurons in the mammalian central nervous system. Curr. Opin. Neurobiol., 2017, 45, 85-91.
[http://dx.doi.org/10.1016/j.conb.2017.04.007] [PMID: 28500992]
[46]
Papathanou, M.; Creed, M.; Dorst, M.C.; Bimpisidis, Z.; Dumas, S.; Pettersson, H.; Bellone, C.; Silberberg, G.; Lüscher, C.; Wallén-Mackenzie, Å. Targeting VGLUT2 in mature dopamine neurons decreases mesoaccumbal glutamatergic transmission and identifies a role for glutamate co-release in synaptic plasticity by increasing baseline AMPA/NMDA ratio. Front. Neural Circuits, 2018, 12, 64.
[http://dx.doi.org/10.3389/fncir.2018.00064] [PMID: 30210305]
[47]
Amemori, S.; Amemori, K.; Yoshida, T.; Papageorgiou, G.K.; Xu, R.; Shimazu, H.; Desimone, R.; Graybiel, A.M. Microstimulation of primate neocortex targeting striosomes induces negative decision‐making. Eur. J. Neurosci., 2020, 51(3), 731-741.
[http://dx.doi.org/10.1111/ejn.14555] [PMID: 31429499]
[48]
Brimblecombe, K.R.; Cragg, S.J. The striosome and matrix compartments of the striatum: A path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci., 2017, 8(2), 235-242.
[http://dx.doi.org/10.1021/acschemneuro.6b00333] [PMID: 27977131]
[49]
Grillner, S.; Robertson, B.; Kotaleski, J.H. Basal Ganglia-A motion perspective. Compr. Physiol., 2020, 10(4), 1241-1275.
[http://dx.doi.org/10.1002/cphy.c190045] [PMID: 32969510]
[50]
Klaus, A.; Alves da Silva, J.; Costa, R.M. What, If, and when to move: Basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci., 2019, 42(1), 459-483.
[http://dx.doi.org/10.1146/annurev-neuro-072116-031033] [PMID: 31018098]
[51]
Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 2000, 80(3), 953-978.
[http://dx.doi.org/10.1152/physrev.2000.80.3.953] [PMID: 10893428]
[52]
Grillner, S.; Hellgren, J.; Ménard, A.; Saitoh, K.; Wikström, M. Mechanisms for selection of basic motor programs - roles for the striatum and pallidum. Trends Neurosci., 2005, 28(7), 364-370.
[http://dx.doi.org/10.1016/j.tins.2005.05.004] [PMID: 15935487]
[53]
Takakusaki, K. Forebrain control of locomotor behaviors. Brain Res. Brain Res. Rev., 2008, 57(1), 192-198.
[http://dx.doi.org/10.1016/j.brainresrev.2007.06.024] [PMID: 17764749]
[54]
Grillner, S. The motor infrastructure: From ion channels to neuronal networks. Nat. Rev. Neurosci., 2003, 4(7), 573-586.
[http://dx.doi.org/10.1038/nrn1137] [PMID: 12838332]
[55]
Sitzia, G. The circuit and synaptic organization of the basal ganglia output: mechanistic insights on movements disorders and action control: Karolinska Institutet. PhD thesis, 2022.
[56]
Thompson, W.S.; Hjorth, J.J.J. The substantia nigra pars reticulata in vitro and in silico. Soc. Neurosci., 2022.
[57]
Ferreira-Pinto, M.J.; Kanodia, H.; Falasconi, A.; Sigrist, M.; Esposito, M.S.; Arber, S. Functional diversity for body actions in the mesencephalic locomotor region. Cell, 2021, 184(17), 4564-4578.e18.
[http://dx.doi.org/10.1016/j.cell.2021.07.002] [PMID: 34302739]
[58]
Jin, X.; Tecuapetla, F.; Costa, R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 2014, 17(3), 423-430.
[http://dx.doi.org/10.1038/nn.3632] [PMID: 24464039]
[59]
Nonomura, S.; Nishizawa, K.; Sakai, Y.; Kawaguchi, Y.; Kato, S.; Uchigashima, M.; Watanabe, M.; Yamanaka, K.; Enomoto, K.; Chiken, S.; Sano, H.; Soma, S.; Yoshida, J.; Samejima, K.; Ogawa, M.; Kobayashi, K.; Nambu, A.; Isomura, Y.; Kimura, M. Monitoring and updating of action selection for goal-directed behavior through the striatal direct and indirect pathways. Neuron, 2018, 99(6), 1302-1314.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.08.002] [PMID: 30146299]
[60]
Tecuapetla, F.; Jin, X.; Lima, S.Q.; Costa, R.M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell, 2016, 166(3), 703-715.
[http://dx.doi.org/10.1016/j.cell.2016.06.032] [PMID: 27453468]
[61]
Wallén-Mackenzie, Å.; Dumas, S.; Papathanou, M.; Martis Thiele, M.M.; Vlcek, B.; König, N.; Björklund, Å.K. Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun. Biol., 2020, 3(1), 338.
[http://dx.doi.org/10.1038/s42003-020-1028-8] [PMID: 32620779]
[62]
Nambu, A.; Takada, M.; Inase, M.; Tokuno, H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci., 1996, 16(8), 2671-2683.
[http://dx.doi.org/10.1523/JNEUROSCI.16-08-02671.1996] [PMID: 8786443]
[63]
Abecassis, Z.A.; Berceau, B.L.; Win, P.H.; García, D.; Xenias, H.S.; Cui, Q.; Pamukcu, A.; Cherian, S.; Hernández, V.M.; Chon, U.; Lim, B.K.; Kim, Y.; Justice, N.J.; Awatramani, R.; Hooks, B.M.; Gerfen, C.R.; Boca, S.M.; Chan, C.S. Npas1+-Nkx2.1+ neurons are an integral part of the cortico-pallido-cortical Loop. J. Neurosci., 2020, 40(4), 743-768.
[http://dx.doi.org/10.1523/JNEUROSCI.1199-19.2019] [PMID: 31811030]
[64]
Cui, Q.; Du, X.; Chang, I.Y.M.; Pamukcu, A.; Lilascharoen, V.; Berceau, B.L.; García, D.; Hong, D.; Chon, U.; Narayanan, A.; Kim, Y.; Lim, B.K.; Chan, C.S. Striatal direct pathway targets Npas1 + pallidal neurons. J. Neurosci., 2021, 41(18), 3966-3987.
[http://dx.doi.org/10.1523/JNEUROSCI.2306-20.2021] [PMID: 33731445]
[65]
Karube, F.; Takahashi, S.; Kobayashi, K.; Fujiyama, F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife, 2019, 8, e49511.
[http://dx.doi.org/10.7554/eLife.49511] [PMID: 31711567]
[66]
Ketzef, M.; Silberberg, G. Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron, 2021, 109(3), 516-529.e4.
[http://dx.doi.org/10.1016/j.neuron.2020.11.006] [PMID: 33248017]
[67]
Mallet, N.; Micklem, B.R.; Henny, P.; Brown, M.T.; Williams, C.; Bolam, J.P.; Nakamura, K.C.; Magill, P.J. Dichotomous organization of the external globus pallidus. Neuron, 2012, 74(6), 1075-1086.
[http://dx.doi.org/10.1016/j.neuron.2012.04.027] [PMID: 22726837]
[68]
Mallet, N.; Schmidt, R.; Leventhal, D.; Chen, F.; Amer, N.; Boraud, T.; Berke, J.D. Arkypallidal cells send a stop signal to striatum. Neuron, 2016, 89(2), 308-316.
[http://dx.doi.org/10.1016/j.neuron.2015.12.017] [PMID: 26777273]
[69]
Lilascharoen, V.; Wang, E.H.J.; Do, N.; Pate, S.C.; Tran, A.N.; Yoon, C.D.; Choi, J.H.; Wang, X.Y.; Pribiag, H.; Park, Y.G.; Chung, K.; Lim, B.K. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits. Nat. Neurosci., 2021, 24(4), 504-515.
[http://dx.doi.org/10.1038/s41593-021-00810-y] [PMID: 33723433]
[70]
Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci., 2014, 17(8), 1022-1030.
[http://dx.doi.org/10.1038/nn.3743] [PMID: 25065439]
[71]
Picconi, B.; Bagetta, V.; Ghiglieri, V.; Paillè, V.; Di Filippo, M.; Pendolino, V.; Tozzi, A.; Giampà, C.; Fusco, F.R.; Sgobio, C.; Calabresi, P. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134(2), 375-387.
[http://dx.doi.org/10.1093/brain/awq342] [PMID: 21183486]
[72]
Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762.
[http://dx.doi.org/10.1016/j.cub.2021.04.001] [PMID: 34102128]
[73]
Grillner, S.; El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev., 2020, 100(1), 271-320.
[http://dx.doi.org/10.1152/physrev.00015.2019] [PMID: 31512990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy