Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design and Synthesis of New bis-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity

Author(s): Thoraya A. Farghaly*, Rami A. Pashameah, Abrar Bayazeed, Amerah M. Al-Soliemy, Amani M. R. Alsaedi and Marwa F. Harras

Volume 20, Issue 1, 2024

Published on: 31 August, 2023

Page: [63 - 77] Pages: 15

DOI: 10.2174/1573406419666230810124855

Price: $65

Abstract

Background: Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development.

Methods: In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride.

Results: The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 μM) and MDA-MB-231 (IC50 = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 μM) compared to palbociclib (IC50 = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation.

Conclusion: According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.

Graphical Abstract

[1]
Li, Y.; Du, R.; Nie, Y.; Wang, T.; Ma, Y.; Fan, Y. Design, synthesis and biological assessment of novel CDK4 inhibitor with potent anticancer activity. Bioorg. Chem., 2021, 109, 104717.
[http://dx.doi.org/10.1016/j.bioorg.2021.104717]
[2]
Vijayaraghavan, S.; Moulder, S.; Keyomarsi, K.; Layman, R.M. Inhibiting CDK in cancer therapy: Current evidence and future directions. Target. Oncol., 2018, 13(1), 21-38.
[http://dx.doi.org/10.1007/s11523-017-0541-2] [PMID: 29218622]
[3]
Harras, M.F.; Sabour, R. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorg. Chem., 2018, 78, 149-157.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.014] [PMID: 29567429]
[4]
Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M. Targeting cyclin-dependent kinases in human cancers: From small molecules to Peptide inhibitors. Cancers, 2015, 7(1), 179-237.
[http://dx.doi.org/10.3390/cancers7010179] [PMID: 25625291]
[5]
Smalley, K.S.M.; Contractor, R.; Nguyen, T.K.; Xiao, M.; Edwards, R.; Muthusamy, V.; King, A.J.; Flaherty, K.T.; Bosenberg, M.; Herlyn, M.; Nathanson, K.L. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res., 2008, 68(14), 5743-5752.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0235] [PMID: 18632627]
[6]
Dobashi, Y.; Goto, A.; Fukayama, M.; Abe, A.; Ooi, A. Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma. Int. J. Cancer, 2004, 110(4), 532-541.
[http://dx.doi.org/10.1002/ijc.20167] [PMID: 15122585]
[7]
Heptinstall, A.B.; Adiyasa, I.W.S.; Cano, C.; Hardcastle, I.R. Recent advances in CDK inhibitors for cancer therapy. Future Med. Chem., 2018, 10(11), 1369-1388.
[http://dx.doi.org/10.4155/fmc-2017-0246] [PMID: 29846081]
[8]
Cheng, W.; Yang, Z.; Wang, S.; Li, Y.; Wei, H.; Tian, X.; Kan, Q. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures. Eur. J. Med. Chem., 2019, 164, 615-639.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.003] [PMID: 30639897]
[9]
Spring, L.M.; Wander, S.A.; Zangardi, M.; Bardia, A. CDK 4/6 inhibitors in breast cancer: Current controversies and future directions. Curr. Oncol. Rep., 2019, 21(3), 25.
[http://dx.doi.org/10.1007/s11912-019-0769-3] [PMID: 30806829]
[10]
Thangavel, C.; Boopathi, E.; Liu, Y.; McNair, C.; Haber, A.; Perepelyuk, M.; Bhardwaj, A.; Addya, S.; Ertel, A.; Shoyele, S.; Birbe, R.; Salvino, J.M.; Dicker, A.P.; Knudsen, K.E.; Den, R.B. Therapeutic challenge with a CDK 4/6 inhibitor induces an RB-dependent SMAC-mediated apoptotic response in non-small cell lung cancer. Clin. Cancer Res., 2018, 24(6), 1402-1414.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2074] [PMID: 29311118]
[11]
Cimini, A.; d’Angelo, M.; Benedetti, E.; D’Angelo, B.; Laurenti, G.; Antonosante, A.; Cristiano, L.; Di Mambro, A.; Barbarino, M.; Castelli, V.; Cinque, B.; Cifone, M.G.; Ippoliti, R.; Pentimalli, F.; Giordano, A. Flavopiridol: An old drug with new perspectives? Implication for development of new drugs. J. Cell. Physiol., 2017, 232(2), 312-322.
[http://dx.doi.org/10.1002/jcp.25421] [PMID: 27171480]
[12]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med., 2015, 3(10), 135.
[PMID: 26207228]
[13]
Aspeslagh, S.; Shailubhai, K.; Bahleda, R.; Gazzah, A.; Varga, A.; Hollebecque, A.; Massard, C.; Spreafico, A.; Reni, M.; Soria, J.C. Phase I dose-escalation study of milciclib in combination with gemcitabine in patients with refractory solid tumors. Cancer Chemother. Pharmacol., 2017, 79(6), 1257-1265.
[http://dx.doi.org/10.1007/s00280-017-3303-z] [PMID: 28424962]
[14]
Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Prabhavalkar, D.; Wiswell, D.; Seghezzi, W.; Paruch, K.; Dwyer, M.P.; Doll, R.; Nomeir, A.; Windsor, W.; Fischmann, T.; Wang, Y.; Oft, M.; Chen, T.; Kirschmeier, P.; Lees, E.M. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther., 2010, 9(8), 2344-2353.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0324] [PMID: 20663931]
[15]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[16]
Graf, F.; Mosch, B.; Koehler, L.; Bergmann, R.; Wuest, F.; Pietzsch, J. Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: Perspectives in cancer therapy and imaging. Mini Rev. Med. Chem., 2010, 10(6), 527-539.
[http://dx.doi.org/10.2174/138955710791384072] [PMID: 20370706]
[17]
Ribnikar, D.; Volovat, S.R.; Cardoso, F. Targeting CDK4/6 pathways and beyond in breast cancer. Breast, 2019, 43, 8-17.
[http://dx.doi.org/10.1016/j.breast.2018.10.001] [PMID: 30359883]
[18]
Parylo, S.; Vennepureddy, A.; Dhar, V.; Patibandla, P.; Sokoloff, A. Role of cyclin-dependent kinase 4/6 inhibitors in the current and future eras of cancer treatment. J. Oncol. Pharm. Pract., 2019, 25(1), 110-129.
[http://dx.doi.org/10.1177/1078155218770904] [PMID: 29726787]
[19]
Sobhani, N.; D’Angelo, A.; Pittacolo, M.; Roviello, G.; Miccoli, A.; Corona, S.P.; Bernocchi, O.; Generali, D.; Otto, T. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells, 2019, 8(4), 321.
[http://dx.doi.org/10.3390/cells8040321] [PMID: 30959874]
[20]
O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol., 2016, 13(7), 417-430.
[http://dx.doi.org/10.1038/nrclinonc.2016.26] [PMID: 27030077]
[21]
Ribociclib approved for advanced breast cancer. Cancer Discov., 2017, 7, OF3.
[22]
Kim, E.S. Abemaciclib: First global approval. Drugs, 2017, 77(18), 2063-2070.
[http://dx.doi.org/10.1007/s40265-017-0840-z] [PMID: 29128965]
[23]
Lee, D.W.; Ho, G.F. Palbociclib in the treatment of recurrent ovarian cancer. Gynecol. Oncol. Rep., 2020, 34, 100626.
[http://dx.doi.org/10.1016/j.gore.2020.100626] [PMID: 32953960]
[24]
Neven, P.; Sonke, G.S.; Jerusalem, G. Ribociclib plus fulvestrant in the treatment of breast cancer. Expert Rev. Anticancer Ther., 2020, 21(1), 93-106.
[PMID: 33085548]
[25]
O’Brien, N.; Conklin, D.; Beckmann, R.; Luo, T.; Chau, K.; Thomas, J.; Mc Nulty, A.; Marchal, C.; Kalous, O.; von Euw, E.; Hurvitz, S.; Mockbee, C.; Slamon, D.J. Preclinical activity of abemaciclib alone or in combination with antimitotic and targeted therapies in breast cancer. Mol. Cancer Ther., 2018, 17(5), 897-907.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0290] [PMID: 29483214]
[26]
Li, Z.; Zou, W.; Zhang, J.; Zhang, Y.; Xu, Q.; Li, S.; Chen, C. Mechanisms of CDK4/6 inhibitor resistance in luminal breast cancer. Front. Pharmacol., 2020, 11, 580251.
[http://dx.doi.org/10.3389/fphar.2020.580251] [PMID: 33364954]
[27]
Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. 2-Indolinone a versatile scaffold for treatment of cancer: A patent review (2008–2014). Expert Opin. Ther. Pat., 2016, 26(2), 149-173.
[http://dx.doi.org/10.1517/13543776.2016.1118059] [PMID: 26561198]
[28]
Kumar, N.P.; Vanjari, Y.; Thatikonda, S.; Pooladanda, V.; Sharma, P.; Sridhar, B.; Godugu, C.; Kamal, A.; Shankaraiah, N. Synthesis of enamino-2-oxindoles via conjugate addition between α-azido ketones and 3-alkenyl oxindoles: Cytotoxicity evaluation and apoptosis inducing studies. Bioorg. Med. Chem. Lett., 2018, 28(22), 3564-3573.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.038] [PMID: 30318440]
[29]
Eldehna, W.M.; Abo-Ashour, M.F.; Ibrahim, H.S.; Al-Ansary, G.H.; Ghabbour, H.A.; Elaasser, M.M.; Ahmed, H.Y.A.; Safwat, N.A. Novel [(3-indolylmethylene)hydrazono]indolin-2-ones as apoptotic anti-proliferative agents: Design, synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 686-700.
[http://dx.doi.org/10.1080/14756366.2017.1421181] [PMID: 29560733]
[30]
Karthikeyan, C.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: A molecular hybridization approach. Biomed. Preventive Nutr., 2013, 3(4), 325-330.
[http://dx.doi.org/10.1016/j.bionut.2013.04.001]
[31]
Debnath, B.; Ganguly, S. Synthesis, biological evaluation, in silico docking, and virtual ADME studies of 2-[2-oxo-3-(arylimino) indolin-1-yl]-N-arylacetamides as potent antibreast cancer agents. Chem. Monthly, 2016, 147, 565-574.
[32]
Al-Warhi, T.; El Kerdawy, A.M.; Aljaeed, N.; Ismael, O.E.; Ayyad, R.R.; Eldehna, W.M.; Abdel-Aziz, H.A.; Al-Ansary, G.H. Synthesis, biological evaluation and in silico studies of certain oxindole-indole conjugates as anticancer CDK inhibitors. Molecules, 2020, 25(9), 2031.
[http://dx.doi.org/10.3390/molecules25092031] [PMID: 32349307]
[33]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; El-Bady, S.M.; El-Bady, Sh.M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2483-2488.
[http://dx.doi.org/10.1016/j.bmc.2003.10.063] [PMID: 15080944]
[34]
Kamal, A.; Mahesh, R.; Nayak, V.L.; Babu, K.S.; Kumar, G.B.; Shaik, A.B.; Kapure, J.S.; Alarifi, A. Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach. Eur. J. Med. Chem., 2016, 108, 476-485.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.046] [PMID: 26708114]
[35]
Wang, B.; Peng, F.; Huang, W.; Zhou, J.; Zhang, N.; Sheng, J.; Haruehanroengra, P.; He, G.; Han, B. Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma. Acta. Pharm. Sin. B, 2020, 10(8), 1492-1510.
[http://dx.doi.org/10.1016/j.apsb.2019.12.013] [PMID: 32963945]
[36]
Alsaedi, A.M.R.; Farghaly, T.A.; Shaaban, M.R. Fluorinated azole anticancer drugs: Synthesis, elaborated structure elucidation and docking studies. Arab. J. Chem., 2022, 15(5), 103782.
[http://dx.doi.org/10.1016/j.arabjc.2022.103782]
[37]
Alhasani, M.A.; Farghaly, T.A.; El-Ghamry, H.A. Mono- and bimetallic complexes of pyrazolone based ligand: Synthesis, characterization, antitumor and molecular docking studies. J. Mol. Struct., 2022, 1249, 131607.
[http://dx.doi.org/10.1016/j.molstruc.2021.131607]
[38]
Alsaedi, A.M.R.; Almehmadi, S.J.; Farghaly, T.A.; Harras, M.F.; Khalil, K.D. VEGFR2 and hepatocellular carcinoma inhibitory activities of trisubstituted triazole derivatives. J. Mol. Struct., 2022, 1250, 131832.
[http://dx.doi.org/10.1016/j.molstruc.2021.131832]
[39]
Shaaban, M.R.; Farghaly, T.A.; Alsaedi, A.M.R.; Abdulwahab, H.G. Microwaves assisted synthesis of antitumor agents of novel azoles, azines, and azoloazines pendant to phenyl sulfone moiety and molecular docking for VEGFR-2 kinase. J. Mol. Struct., 2022, 1249, 131657.
[http://dx.doi.org/10.1016/j.molstruc.2021.131657]
[40]
Katowah, D.F.; Hassaneen, H.M.E.; Farghaly, T.A. Novel spiro-pyrrolizidine-oxindole and spiropyrrolidine-oxindoles: Green synthesis under Classical, Ultrasonic, and microwave conditions and Molecular docking simulation for antitumor and type 2 diabetes. Arab. J. Chem., 2022, 15(7), 103930.
[http://dx.doi.org/10.1016/j.arabjc.2022.103930]
[41]
Elnaggar, D.H.; Mohamed, A.M.; Abdel Hafez, N.A.; Azab, M.E.; Elasasy, M.E.A.; Awad, H.M.; Farghaly, T.A.; Amr, A.E.G.E. Antiproliferative activity of some newly synthesized substituted nicotinamides candidates using pyridine-2(1H) thione derivatives as synthon. ACS Omega, 2022, 7(12), 10304-10316.
[http://dx.doi.org/10.1021/acsomega.1c06951] [PMID: 35382307]
[42]
Farghaly, T.A.; Abbas, E.M.H.; Al-Soliemy, A.M.; Sabour, R.; Shaaban, M.R. Novel sulfonyl thiazolyl-hydrazone derivatives as EGFR inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Bioorg. Chem., 2022, 121, 105684.
[http://dx.doi.org/10.1016/j.bioorg.2022.105684] [PMID: 35183860]
[43]
Almehmadi, S.J.; Alsaedi, A.M.R.; Harras, M.F.; Farghaly, T.A. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg. Chem., 2021, 117, 105431.
[http://dx.doi.org/10.1016/j.bioorg.2021.105431] [PMID: 34688130]
[44]
Mahmoud, H.K.; Gomha, S.M.; Farghaly, T.A.; Awad, H.M. Synthesis of thiazole linked imidazo[2,1-b]thiazoles as anticancer agents. Polycycl. Aromat. Compd., 2021, 41(8), 1608-1622.
[http://dx.doi.org/10.1080/10406638.2019.1689514]
[45]
Sana, S.; Reddy, V.G.; Bhandari, S.; Reddy, T.S.; Tokala, R.; Sakla, A.P.; Bhargava, S.K.; Shankaraiah, N. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur. J. Med. Chem., 2020, 200, 112457.
[http://dx.doi.org/10.1016/j.ejmech.2020.112457] [PMID: 32422489]
[46]
Reddy, V.G.; Reddy, T.S.; Jadala, C.; Reddy, M.S.; Sultana, F.; Akunuri, R.; Bhargava, S.K.; Wlodkowic, D.; Srihari, P.; Kamal, A. Pyrazolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model. Eur. J. Med. Chem., 2019, 182, 111609.
[http://dx.doi.org/10.1016/j.ejmech.2019.111609] [PMID: 31445229]
[47]
Sultana, F.; Reddy Bonam, S.; Reddy, V.G.; Nayak, V.L.; Akunuri, R.; Rani Routhu, S.; Alarifi, A.; Halmuthur, M.S.K.; Kamal, A. Synthesis of benzo[ d]imidazo[2,1- b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 76, 1-12.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.019] [PMID: 29102724]
[48]
Ganga, R.V.; Srinivasa, R.T.; Lakshma, N.V.; Prasad, B.; Reddy, A.P.; Ravikumar, A.; Taj, S.; Kamal, A. Design, synthesis and biological evaluation of N -((1-benzyl-1 H -1,2,3-triazol-4-yl)methyl)-1,3-diphenyl-1 H -pyrazole-4-carboxamides as CDK1/Cdc2 inhibitors. Eur. J. Med. Chem., 2016, 122, 164-177.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.011] [PMID: 27344493]
[49]
Day, P.J.; Cleasby, A.; Tickle, I.J.; O’Reilly, M.; Coyle, J.E.; Holding, F.P.; McMenamin, R.L.; Yon, J.; Chopra, R.; Lengauer, C.; Jhoti, H. Crystal structure of human CDK4 in complex with a D-type cyclin. Proc. Natl. Acad. Sci., 2009, 106(11), 4166-4170.
[http://dx.doi.org/10.1073/pnas.0809645106] [PMID: 19237565]
[50]
Althagafi, I.I.; Abouzied, A.S.; Farghaly, T.A.; Al-Qurashi, N.T.; Alfaifi, M.Y.; Shaaban, M.R.; Abdel Aziz, M.R. Novel nano-sized bis-indoline derivatives as antitumor agents. J. Heterocycl. Chem., 2019, 56(2), 391-399.
[http://dx.doi.org/10.1002/jhet.3410]
[51]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesis of 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones/spiro[indoline-3,3′-[1,2,4]triazolidine]-2,5′-diones. Synth. Commun., 2017, 47(21), 1999-2006.
[http://dx.doi.org/10.1080/00397911.2017.1359844]
[52]
Dandia, A.; Singh, R.; Sachdeva, H.; Arya, K. Microwave assisted one pot synthesis of a series of trifluoromethyl substituted spiro [indole–triazoles]. J. Fluor. Chem., 2001, 111(1), 61-67.
[http://dx.doi.org/10.1016/S0022-1139(01)00429-8]
[53]
Almerico, A.M.; Tutone, M.; Guarcello, A.; Lauria, A. in vitro and in silico studies of polycondensed diazine systems as anti-parasitic agents. Bioorg. Med. Chem. Lett., 2012, 22(2), 1000-1004.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.004] [PMID: 22197138]
[54]
Molteni, G.; Ponti, A. Stereoselective nitrilimine cycloadditions to the CN bond of enantiopure N-(1-phenylethyl)-1-arylmethanimines. Tetrahedron Asymmetry, 2004, 15(23), 3711-3714.
[http://dx.doi.org/10.1016/j.tetasy.2004.10.028]
[55]
Lauria, A.; Guarcello, A.; Macaluso, G.; Dattolo, G.; Almerico, A.M. Reactivity of asymmetric benzo-condensed diazines with nitrilimine dipoles in the 1,3-dipolar cycloaddition reactions. Tetrahedron Lett., 2009, 50(52), 7333-7336.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.062]
[56]
El Azzaoui, B.; Rachid, B.; Doumbia, M.L.; Essassi, E.M.; Gornitzka, H.; Bellan, J. Unexpected opening of benzimidazole derivatives during 1,3-dipolar cycloaddition. Tetrahedron Lett., 2006, 47(50), 8807-8810.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.071]
[57]
Deeds, L.; Teodorescu, S.; Chu, M.; Yu, Q.; Chen, C.Y. A p53-independent G1 cell cycle checkpoint induced by the suppression of protein kinase C alpha and theta isoforms. J. Biol. Chem., 2003, 278(41), 39782-39793.
[http://dx.doi.org/10.1074/jbc.M306854200] [PMID: 12896972]
[58]
Macleod, K.F.; Sherry, N.; Hannon, G.; Beach, D.; Tokino, T.; Kinzler, K.; Vogelstein, B.; Jacks, T. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev., 1995, 9(8), 935-944.
[http://dx.doi.org/10.1101/gad.9.8.935] [PMID: 7774811]
[59]
Luo, L.; Wang, Q.; Liao, Y. The inhibitors of CDK4/6 from a library of marine compound database: A pharmacophore, ADMET, molecular docking and molecular dynamics study. Mar. Drugs, 2022, 20(5), 319.
[http://dx.doi.org/10.3390/md20050319] [PMID: 35621970]
[60]
Ramachandran, B.; Kesavan, S.; Rajkumar, T. Molecular modeling and docking of small molecule inhibitors against NEK2. Bioinformation, 2016, 12(2), 62-68.
[http://dx.doi.org/10.6026/97320630012062] [PMID: 28104962]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy