Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Protective Effect of Tertiary Butylhydroquinone against Obesity-induced Skeletal Muscle Pathology in Post-weaning High Fat Diet Fed Rats

Author(s): Le Zhang*

Volume 25, Issue 10, 2024

Published on: 18 August, 2023

Page: [1276 - 1287] Pages: 12

DOI: 10.2174/1389201024666230810094809

Price: $65

Abstract

Background: Obesity deleteriously affects skeletal muscle functionality starting from infancy to adulthood, leading to dysfunctional skeletal muscle.

Objectives: This study, therefore, evaluated the protective action of tert-butylhydroquinone (tBHQ) against obesity-induced skeletal muscle pathology in high-fat diet (HFD) fed rats.

Methods: Twenty post-weaning male albino rats were randomized into four groups of five rats each as: Group 1 (control), Group 2 (HFD), Group 3 (orlistat) and Group 4 (tBHQ). Group one received rat pellets for 12 weeks, while groups 2 to 4 received HFD for 12 weeks. At the end of week 8, obesity was confirmed with Lee Obesity Index and body mass index values of ≥ 303 and ≥ 0.68 gcm2, respectively. Group 3 was given oral administration of orlistat (10 mg/kg, once daily), while group 4 was given oral administration of tBHQ (25 mg/kg, once daily). Administration of orlistat and tBHQ commenced from week 9 to the end of the experiment.

Results: Chronic exposure of post-weaning rats to HFD led to their development of the metabolic syndrome phenotypes in adulthood, characterized by obesity, hyperglycemia, dyslipidaemia, hyperinsulinaemia, insulin resistance as well as induction of oxidative stress and alteration of skeletal muscle markers, which were mitigated following supplementation with orlistat and tBHQ.

Conclusion: The study showed the anti-obesity potentials of tBHQ and its protective action against HFD obesity-induced skeletal muscular pathology.

Graphical Abstract

[1]
Kim, I.; Kim, H.R.; Kim, J.H.; Om, A.S. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet. J. Sci. Food Agric., 2013, 93(11), 2749-2757.
[http://dx.doi.org/10.1002/jsfa.6094] [PMID: 23606129]
[2]
Sour, S.; Belarbi, M.; Sari, N.; Benammar, C.H.; Baghdad, C.H.; Visioli, F. Argan oil reduces, in rats, the high fat diet-induced metabolic effects of obesity. Nutr. Metab. Cardiovasc. Dis., 2015, 25(4), 382-387.
[http://dx.doi.org/10.1016/j.numecd.2015.01.001] [PMID: 25694362]
[4]
Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet, 2011, 378(9793), 804-814.
[http://dx.doi.org/10.1016/S0140-6736(11)60813-1] [PMID: 21872749]
[5]
Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats. J. Complement. Integr. Med., 2016, 13(2), 137-143.
[http://dx.doi.org/10.1515/jcim-2015-0070] [PMID: 26845728]
[6]
Lalanza, J.F.; Caimari, A.; del Bas, J.M.; Torregrosa, D.; Cigarroa, I.; Pallàs, M.; Capdevila, L.; Arola, L.; Escorihuela, R.M. Effects of a post-weaning cafeteria diet in young rats: Metabolic syndrome, reduced activity and low anxiety-like behaviour. PLoS One, 2014, 9(1), e85049.
[http://dx.doi.org/10.1371/journal.pone.0085049] [PMID: 24482678]
[7]
Bhadoria, A.S.; Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R. Childhood obesity: Causes and consequences. J. Family Med. Prim. Care, 2015, 4(2), 187-192.
[http://dx.doi.org/10.4103/2249-4863.154628] [PMID: 25949965]
[8]
Andrich, D.E.; Melbouci, L.; Ou, Y.; Auclair, N.; Mercier, J.; Grenier, J.C.; Lira, F.S.; Barreiro, L.B.; Danialou, G.; Comtois, A.S.; Lavoie, J.C.; St-Pierre, D.H. A short-term high-fat diet alters glutathione levels and IL-6 gene expression in oxidative skeletal muscles of young rats. Front. Physiol., 2019, 10, 372.
[http://dx.doi.org/10.3389/fphys.2019.00372] [PMID: 31024337]
[9]
Konopelniuk, V.V.; Goloborodko, I.I.; Ishchuk, T.V.; Synelnyk, T.B.; Ostapchenko, L.I.; Spivak, M.Y.; Bubnov, R.V. Efficacy of Fenugreek-based bionanocomposite on renal dysfunction and endogenous intoxication in high-calorie diet-induced obesity rat model—comparative study. EPMA J., 2017, 8(4), 377-390.
[http://dx.doi.org/10.1007/s13167-017-0098-2] [PMID: 29209440]
[10]
Hu, Z.; Wang, H.; Lee, I.H.; Modi, S.; Wang, X.; Du, J.; Mitch, W.E. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes, 2010, 59(6), 1312-1320.
[http://dx.doi.org/10.2337/db09-1155] [PMID: 20200318]
[11]
Heo, J.W.; Yoo, S.Z.; No, M.H.; Park, D.H.; Kang, J.H.; Kim, T.W.; Kim, C.J.; Seo, D.Y.; Han, J.; Yoon, J.H.; Jung, S.J.; Kwak, H.B. Exercise training attenuates obesity-induced skeletal muscle remodelling and mitochondria-mediated apoptosis in the skeletal muscle. Int. J. Environ. Res. Public Health, 2018, 15(10), 2301.
[http://dx.doi.org/10.3390/ijerph15102301] [PMID: 30347719]
[12]
Jimoh, A.; Tanko, Y.; Ahmed, A.; Mohammed, A.; Ayo, J.O. Resveratrol prevents high-fat diet-induced obesity and oxidative stress in rabbits. Pathophysiology, 2018, 25(4), 359-364.
[http://dx.doi.org/10.1016/j.pathophys.2018.07.003] [PMID: 30017743]
[13]
Nakanishi, T.; Tsujii, M.; Asano, T.; Iino, T.; Sudo, A. Protective effect of edaravone against oxidative stress in C2C12 myoblast and impairment of skeletal muscle regeneration exposed to ischemic injury in Ob/ob mice. Front. Physiol., 2020, 10, 1596.
[http://dx.doi.org/10.3389/fphys.2019.01596] [PMID: 32009986]
[14]
Timmers, S.; de Vogel-van den Bosch, J.; Towler, M.C.; Schaart, G.; Moonen-Kornips, E.; Mensink, R.P.; Hesselink, M.K.; Hardie, D.G.; Schrauwen, P. Prevention of high-fat diet-induced muscular lipid accumulation in rats by α lipoic acid is not mediated by AMPK activation. J. Lipid Res., 2010, 51(2), 352-359.
[http://dx.doi.org/10.1194/jlr.M000992] [PMID: 19690335]
[15]
Ramírez, N.M.; Toledo, R.C.L.; Moreira, M.E.C.; Martino, H.S.D.; Benjamin, L.A.; de Queiroz, J.H.; Ribeiro, A.Q.; Ribeiro, S.M.R. Anti-obesity effects of tea from Mangifera indica L. leaves of the Ubá variety in high-fat diet-induced obese rats. Biomed. Pharmacother., 2017, 91, 938-945.
[http://dx.doi.org/10.1016/j.biopha.2017.05.015] [PMID: 28514832]
[16]
Cho, Y.R.; Lee, J.A.; Kim, Y.Y.; Kang, J.S.; Lee, J.H.; Ahn, E.K. Anti-obesity effects of Clausena excavata in high-fat diet-induced obese mice. Biomed. Pharmacother., 2018, 99, 253-260.
[http://dx.doi.org/10.1016/j.biopha.2018.01.069] [PMID: 29334669]
[17]
Jang, W.S.; Choung, S.Y. Antiobesity effects of the ethanol extract of laminaria japonica areshoung in high-fat-diet-induced obese rat. Evid. Based Complement. Alternat. Med., 2013, 2013, 492807.
[18]
Zhang, Y.; Fang , Liu. F. Bi, X.; Wang, S.; Wu, X.; Jiang, F. The antioxidant compound tert-butylhydroquinone activates Akt in myocardium, suppresses apoptosis and ameliorates pressure overload-induced cardiac dysfunction. Sci. Rep., 2015, 5(1), 13005.
[http://dx.doi.org/10.1038/srep13005] [PMID: 26260024]
[19]
Nishizono, S.; Hayami, T.; Ikeda, I.; Imaizumi, K. Protection against the diabetogenic effect of feeding tert-butylhydroquinone to rats prior to the administration of streptozotocin. Biosci. Biotechnol. Biochem., 2000, 64(6), 1153-1158.
[http://dx.doi.org/10.1271/bbb.64.1153] [PMID: 10923784]
[20]
Jin, W.; Ni, H.; Dai, Y.; Wang, H.; Lu, T.; Wu, J.; Jiang, J.; Liang, W. Effects of tert-butylhydroquinone on intestinal inflammatory response and apoptosis following traumatic brain injury in mice. In: Mediators Inflamm; , 2010; 2010, p. 502564.
[http://dx.doi.org/10.1155/2010/502564]
[21]
Li, S.; Li, J.; Shen, C.; Zhang, X.; Sun, S.; Cho, M.; Sun, C.; Song, Z. tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2014, 1841(1), 22-33.
[http://dx.doi.org/10.1016/j.bbalip.2013.09.004] [PMID: 24055888]
[22]
Sargazi, S.; Galavi, H.; Zarei, S. Evaluation of attenuative effect of tert-butylhydroquinone against diazinon-induced oxidative stress on hematological indices in male Wistar rats. Biomed. Rep., 2018, 8(6), 565-570.
[http://dx.doi.org/10.3892/br.2018.1090] [PMID: 29774145]
[23]
Triwitono, P.; Marsono, Y.; Murdiati, A.; Marseno, D.W. Physiological effects of mung bean starch rs-3 on the obesity index and adipose cell profile of sprague-dawley rats. Pak. J. Nutr., 2016, 15(10), 913-920.
[http://dx.doi.org/10.3923/pjn.2016.913.920]
[24]
Zeng, X.P.; Li, X.J.; Zhang, Q.Y.; Liu, Q.W.; Li, L.; Xiong, Y.; He, C.X.; Wang, Y.F.; Ye, Q.F. Tert-Butylhydroquinone protects liver against ischemia/reperfusion injury in rats through Nrf2-activating antioxidative activity. Transplant. Proc., 2017, 49(2), 366-372.
[http://dx.doi.org/10.1016/j.transproceed.2016.12.008] [PMID: 28219600]
[25]
Zaitone, S.A.; Essawy, S. Addition of a low dose of rimonabant to orlistat therapy decreases weight gain and reduces adiposity in dietary obese rats. Clin. Exp. Pharmacol. Physiol., 2012, 39(6), 551-559.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05717.x] [PMID: 22524969]
[26]
Ji, W.; Zhao, M.; Wang, M.; Yan, W.; Liu, Y.; Ren, S.; Lu, J.; Wang, B.; Chen, L. Effects of canagliflozin on weight loss in high-fat diet-induced obese mice. PLoS One, 2017, 12(6), e0179960.
[http://dx.doi.org/10.1371/journal.pone.0179960] [PMID: 28665967]
[27]
Amin, K.A.; Nagy, M.A. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabetol. Metab. Syndr., 2009, 1(1), 17.
[http://dx.doi.org/10.1186/1758-5996-1-17] [PMID: 19835614]
[28]
Kim, J.H.; Hahm, D.H.; Yang, D.C.; Kim, J.H.; Lee, H.J.; Shim, I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J. Pharmacol. Sci., 2005, 97(1), 124-131.
[http://dx.doi.org/10.1254/jphs.FP0040184] [PMID: 15655288]
[29]
Cavalcanti, M.H.; Roseira, J.P.S.; Leandro, E.S.; Arruda, S.F. Effect of a freeze-dried coffee solution in a high-fat diet-induced obesity model in rats: Impact on inflammatory response, lipid profile, and gut microbiota. PLoS One, 2022, 17(1), e0262270.
[http://dx.doi.org/10.1371/journal.pone.0262270] [PMID: 35081143]
[30]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[31]
Castro, M.C.; Francini, F.; Schinella, G.; Caldiz, C.I.; Zubiría, M.G.; Gagliardino, J.J.; Massa, M.L. Apocynin administration prevents the changes induced by a fructose-rich diet on rat liver metabolism and the antioxidant system. Clin. Sci., 2012, 123(12), 681-692.
[http://dx.doi.org/10.1042/CS20110665] [PMID: 22738259]
[32]
Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In: Methods in enzymolgy; Flesicher, S.; Packer, L., Eds.; Academic Press: New York, NY, 1978; pp. 302-310.
[33]
Fridovich, I.; Mc-Cord, J.M. Superoxide dismutase an enzymatic function for erythrocuperin. J. Biol. Chem., 1969, 244, 6045-6055.
[34]
Doğan, P.; Tanrikulu, G.; Soyuer, Ü.; Köse, K. Oxidative enzymes of polymorphonuclear leucocytes and plasma fibrinogen, ceruloplasmin, and copper levels in Behcet’s disease. Clin. Biochem., 1994, 27(5), 413-418.
[http://dx.doi.org/10.1016/0009-9120(94)90046-9] [PMID: 7867220]
[35]
Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem., 1972, 47(2), 389-394.
[http://dx.doi.org/10.1016/0003-2697(72)90132-7] [PMID: 4556490]
[36]
Tietz, N.W. Clinical Guide to Laboratory Tests, 3rd ed; WB Saunders Company: Philadelphia, 1995, pp. 518-519.
[37]
Cheng, H.S.; Ton, S.H.; Phang, S.C.W.; Tan, J.B.L.; Abdul Kadir, K. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome. J. Adv. Res., 2017, 8(6), 743-752.
[http://dx.doi.org/10.1016/j.jare.2017.10.002] [PMID: 29062573]
[38]
Bais, S.; Singh, S.G.; Sharma, R. Anti-obesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats. Advances in Biology, 2014.
[39]
Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric., 2014, 94(14), 2972-2977.
[http://dx.doi.org/10.1002/jsfa.6642] [PMID: 24615565]
[40]
Wu, D.; Gao, B.; Li, M.; Yao, L.; Wang, S.; Chen, M.; Li, H.; Ma, C.; Ji, A.; Li, Y. Hydrogen sulfide mitigates kidney injury in high fat diet induced obese mice. Oxid. Med. Cell. Longev., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/2715718] [PMID: 27413418]
[41]
Nadeem, S.; Dhore, P.; Quazi, M.; Pawar, S.; Raj, N. Lagenaria siceraria fruit extract ameliorate fat amassment and serum TNF–in high–fat diet–induced obese rats. Asian Pac. J. Trop. Med., 2012, 5(9), 698-702.
[http://dx.doi.org/10.1016/S1995-7645(12)60109-6] [PMID: 22805720]
[42]
Boqué, N.; Campión, J.; de la Iglesia, R.; de la Garza, A.L.; Milagro, F.I.; San Román, B.; Bañuelos, Ó.; Martínez, J.A. Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats. J. Sci. Food Agric., 2013, 93(5), 1226-1232.
[http://dx.doi.org/10.1002/jsfa.5884] [PMID: 23080265]
[43]
Rufino, A.T.; Costa, V.M.; Carvalho, F.; Fernandes, E. Flavonoids as antiobesity agents: A review. Med. Res. Rev., 2020, 41(1), 556-585.
[PMID: 33084093]
[44]
Vasudevan, D.M.; Sreekumari, S.; Vaidyanathan, K. Textbook of Biochemistry for Medical Students, 7th ed; Jaypee Brothers Medical Publishers Ltd, 2013, p. 305.
[45]
Lee, H.S.; Jeon, Y.E.; Jung, J.I.; Kim, S.M.; Hong, S.H.; Lee, J.; Hwang, J.S.; Hwang, M.O.; Kwon, K.; Kim, E.J. Anti-obesity effect of Cydonia oblonga Miller extract in high-fat diet-induced obese C57BL/6 mice. J. Funct. Foods, 2022, 89, 104945.
[http://dx.doi.org/10.1016/j.jff.2022.104945]
[46]
Amitani, M.; Asakawa, A.; Amitani, H.; Inui, A. The role of leptin in the control of insulin-glucose axis. Front. Neurosci., 2013, 7, 51.
[http://dx.doi.org/10.3389/fnins.2013.00051] [PMID: 23579596]
[47]
Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; Caro, J.F. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med., 1996, 334(5), 292-295.
[http://dx.doi.org/10.1056/NEJM199602013340503] [PMID: 8532024]
[48]
Mopuri, R.; Ganjayi, M.; Banavathy, K.S.; Parim, B.N.; Meriga, B. Evaluation of anti-obesity activities of ethanolic extract of Terminalia paniculata bark on high fat diet-induced obese rats. BMC Complement. Altern. Med., 2015, 15(1), 76.
[http://dx.doi.org/10.1186/s12906-015-0598-3] [PMID: 25887331]
[49]
Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; Ezaki, O.; Akanuma, Y.; Gavrilova, O.; Vinson, C.; Reitman, M.L.; Kagechika, H.; Shudo, K.; Yoda, M.; Nakano, Y.; Tobe, K.; Nagai, R.; Kimura, S.; Tomita, M.; Froguel, P.; Kadowaki, T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 2001, 7(8), 941-946.
[http://dx.doi.org/10.1038/90984] [PMID: 11479627]
[50]
Sung, Y.Y.; Yoon, T.; Kim, S.J.; Yang, W.K.; Kim, H.K. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol. Med. Rep., 2011, 4(3), 431-435.
[PMID: 21468588]
[51]
Lei, F.; Zhang, X.N.; Wang, W.; Xing, D.M.; Xie, W.D.; Su, H.; Du, L.J. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int. J. Obes., 2007, 31(6), 1023-1029.
[http://dx.doi.org/10.1038/sj.ijo.0803502] [PMID: 17299386]
[52]
de la Garza, A.; Milagro, F.; Boque, N.; Campión, J.; Martínez, J. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med., 2011, 77(8), 773-785.
[http://dx.doi.org/10.1055/s-0030-1270924] [PMID: 21412692]
[53]
Skowron, M.; Zalejska-Fiolka, J.; Błaszczyk, U.; Chwalińska, E.; Owczarek, A.; Birkner, E. Antioxidant enzyme activities in rabbits under oxidative stress induced by high fat diet. J. Vet. Res., 2018, 62(2), 199-205.
[http://dx.doi.org/10.2478/jvetres-2018-0019] [PMID: 30364903]
[54]
Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical markers of muscular damage. cclm, 2010, 48(6), 757-767.
[http://dx.doi.org/10.1515/CCLM.2010.179] [PMID: 20518645]
[55]
Akuru, U.B.; Tebekeme, O. Lipidemic properties of sorghum vulgare leaf sheath on oxidative markers and heart function enzymes of dyslipidemic wistar-albino rats. Biochem. Anal. Biochem., 2017, 6, 343.
[56]
Huang, W.; Liu, J.; Zhao, J.; Wang, B.; Liu, B.; Xie, M. Yiqi Yangyin and Huatan Quyu granule can improve skeletal muscle energy metabolism in a type 2 diabetic rat model by promoting the AMPK/SIRT/PGC-1α signalling pathway. J. Tradit. Chin. Med. Sci., 2018, 5(2), 128-138.
[http://dx.doi.org/10.1016/j.jtcms.2018.03.004]
[57]
Huang, Q.; Ma, S.; Tominaga, T.; Suzuki, K.; Liu, C. An 8-Week, low carbohydrate, high fat, ketogenic diet enhanced exhaustive exercise capacity in mice part 2: Effect on fatigue recovery, post-exercise biomarkers and anti-oxidation capacity. Nutrients, 2018, 10(10), 1339.
[http://dx.doi.org/10.3390/nu10101339] [PMID: 30241310 ]
[58]
Chikezie, C.M.; Ojiako, O.A.; Emejulu, A.A.; Chikezie, P.C. Serum lactate dehydrogenase activity and visceral organs and body weights of diabetic rats administered single and combinatorial herbal formulations. Pharmacogn. Commun., 2018, 8(1), 37-42.
[http://dx.doi.org/10.5530/pc.2018.1.7]
[59]
Olorunnisola, O.S.; Fadahunsi, O.S.; Adegbola, P.I.; Ajilore, B.S.; Ajayi, F.A.; Olaniyan, L.W.B. Phyllanthus amarus attenuated derangement in renal-cardiac function, redox status, lipid profile and reduced TNF-α, interleukins-2, 6 and 8 in high salt diet fed rats. Heliyon, 2021, 7(10), e08106.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08106] [PMID: 34660924]
[60]
Shin, K.A.; Park, K.D.; Ahn, J.; Park, Y.; Kim, Y.J. Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running. Medicine, 2016, 95(20), e3657.
[http://dx.doi.org/10.1097/MD.0000000000003657] [PMID: 27196469]
[61]
Gujjala, S.; Putakala, M.; Nukala, S.; Bangeppagari, M.; Rajendran, R.; Desireddy, S. Modulatory effects of Caralluma fimbriata extract against high-fat diet induced abnormalities in carbohydrate metabolism in Wistar rats. Biomed. Pharmacother., 2017, 92, 1062-1072.
[http://dx.doi.org/10.1016/j.biopha.2017.06.016] [PMID: 28618651]
[62]
FAO/WHO. Evaluation of certain food additives and contaminants. Forty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ. Tech. Rep. Ser., 1999, 884, i-viii, 1-96.
[PMID: 10079756]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy