Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Expression and Regulatory Roles of Small Nucleolar RNA Host Gene 4 in Gastric Cancer

Author(s): Navid Pourghasem, Shadi Ghorbanzadeh and Azim Nejatizadeh*

Volume 24, Issue 9, 2023

Published on: 31 August, 2023

Page: [767 - 779] Pages: 13

DOI: 10.2174/1389203724666230810094548

Price: $65

Abstract

Aims: The role of SNHG4 in the initiation and development of gastric cancer.

Background: Gastric cancer is one of the leading causes of cancer death worldwide. Studies have shown that lncRNAs have a regulatory function in human diseases, particularly cancers. Small nuclear RNA host gene 4 (SNHG4) has been known as an oncogenic long noncoding RNA (lncRNA) in various cancers, and its dysregulation can lead to tumorigenesis and cancer progression.

Objective: Alteration of SNHG4 expression in gastric cancer and its correlation with clinical features of patients with stomach cancer; also, the accomplishment of bioinformatic analysis to find the potential pathways which could be impressed by changes in SNHG4 RNA expression.

Methods: The present study aims to determine the molecular mechanism of SNHG4 and the effects of its expression on the development of GC. Based on the bioinformatics investigations, we studied gene expression analysis, Kaplan-Meier survival, Gene ontology (GO), KEGG pathway enrichment, microRNA targets, transcription factor targets, and proteins interacting with SNHG4. During the experimental phase, SNHG4 expression was examined by quantitative real-time PCR (qRTPCR) in 40 paired gastric adenocarcinoma tissues and normal neighboring tissues. Also, we investigated the correlation between SNHG4 expression and patients' clinicopathological characteristics.

Results: Increased SNHG4 expression was detected in GC tissues, which is significantly associated with the TNM stage, grade group, tumor size, and metastatic status. Evaluation survival analysis demonstrated that overexpression of SNHG4 in GC tissues is remarkably related to poor overall survival (OS). SNHG4 is closely related to miR-490 and E2F family transcription factors. GO analysis suggested the possible role of SNHG4 in cell-cell adhesion, and KEGG enrichment analysis revealed that SNHG4 could be associated with the gastric cancer signaling pathway. ELAVL1 and IGF2BP2 have the highest number of SNHG4 target sites, and these proteins are involved in the PI3K-Akt-mTOR and ERK-MAPK signaling pathways.

Conclusion: Based on our results, we conclude that SNHG4 may have a function in GC development by regulating tumor-related signaling pathways.

« Previous
Graphical Abstract

[1]
Marqués-Lespier, J.M.; González-Pons, M.; Cruz-Correa, M. Current perspectives on gastric cancer. Gastroenterol. Clin. North Am., 2016, 45(3), 413-428.
[http://dx.doi.org/10.1016/j.gtc.2016.04.002] [PMID: 27546840]
[2]
Ajani, J.A.; Lee, J.; Sano, T.; Janjigian, Y.Y.; Fan, D.; Song, S. Gastric adenocarcinoma. Nat. Rev. Dis. Primers, 2017, 3(1), 17036.
[http://dx.doi.org/10.1038/nrdp.2017.36] [PMID: 28569272]
[3]
Qian, C.N.; Mei, Y.; Zhang, J. Cancer metastasis: Issues and challenges. Chin. J. Cancer, 2017, 36(1), 38.
[http://dx.doi.org/10.1186/s40880-017-0206-7] [PMID: 28372569]
[4]
Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet., 2015, 6, 2.
[http://dx.doi.org/10.3389/fgene.2015.00002] [PMID: 25674102]
[5]
Dykes, I.M.; Emanueli, C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteom. Bioinformat., 2017, 15(3), 177-186.
[http://dx.doi.org/10.1016/j.gpb.2016.12.005] [PMID: 28529100]
[6]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[7]
Yuan, Y.; Ren, X.; Xie, Z.; Wang, X. A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quant. Biol., 2016, 4(1), 47-57.
[http://dx.doi.org/10.1007/s40484-016-0062-5]
[8]
An, Y.; Furber, K.L.; Ji, S. Pseudogenes regulate parental gene expression via ceRNA network. J. Cell. Mol. Med., 2017, 21(1), 185-192.
[http://dx.doi.org/10.1111/jcmm.12952] [PMID: 27561207]
[9]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[10]
Bai, Y.; Long, J.; Liu, Z.; Lin, J.; Huang, H.; Wang, D.; Yang, X.; Miao, F.; Mao, Y.; Sang, X.; Zhao, H. Comprehensive analysis of a ceRNA network reveals potential prognostic cytoplasmic lncRNAs involved in HCC progression. J. Cell. Physiol., 2019, 234(10), 18837-18848.
[http://dx.doi.org/10.1002/jcp.28522] [PMID: 30916406]
[11]
Huang, X.; Zhi, X.; Gao, Y.; Ta, N.; Jiang, H.; Zheng, J. LncRNAs in pancreatic cancer. Oncotarget, 2016, 7(35), 57379-57390.
[http://dx.doi.org/10.18632/oncotarget.10545] [PMID: 27429196]
[12]
Hao, N.B.; He, Y.F.; Li, X.Q.; Wang, K.; Wang, R.L. The role of miRNA and lncRNA in gastric cancer. Oncotarget, 2017, 8(46), 81572-81582.
[http://dx.doi.org/10.18632/oncotarget.19197] [PMID: 29113415]
[13]
Xu, Y.D.; Shang, J.; Li, M.; Zhang, Y.Y. LncRNA DANCR accelerates the development of multidrug resistance of gastric cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(7), 2794-2802.
[PMID: 31002130]
[14]
Fu, J.; Kong, Y.; Sun, X. Long noncoding RNA NEAT1 is an unfavorable prognostic factor and regulates migration and invasion in gastric cancer. J. Cancer Res. Clin. Oncol., 2016, 142(7), 1571-1579.
[http://dx.doi.org/10.1007/s00432-016-2152-1] [PMID: 27095450]
[15]
Yu, Y-T.; Scharl, E.C.; Smith, C.M.; Steitz, J.A. The growing world of small nuclear ribonucleoproteins. Cold Spring Harbor Monograph Series, 1999, 37, 487-524.
[16]
Stepanov, GA; Filippova, JA; Komissarov, AB; Kuligina, EV; Richter, VA; Semenov, DV Regulatory role of small nucleolar RNAs in human diseases. BioMed Res. Int., 2015.
[http://dx.doi.org/10.1155/2015/206849]
[17]
Qin, Y.; Sun, W.; Wang, Z.; Dong, W.; He, L.; Zhang, T.; Zhang, H. Long non-coding small nucleolar RNA host genes (SNHGs) in endocrine-related cancers. OncoTargets Ther., 2020, 13, 7699-7717.
[http://dx.doi.org/10.2147/OTT.S267140] [PMID: 32848414]
[18]
Chu, Q.; Gu, X.; Zheng, Q.; Guo, Z.; Shan, D.; Wang, J.; Zhu, H. Long noncoding RNA SNHG4: A novel target in human diseases. Cancer Cell Int., 2021, 21(1), 583.
[http://dx.doi.org/10.1186/s12935-021-02292-1] [PMID: 34717631]
[19]
Deng, M.; Brägelmann, J.; Schultze, J.L.; Perner, S. Web-TCGA: An online platform for integrated analysis of molecular cancer data sets. BMC Bioinform, 2016, 17(1), 72.
[http://dx.doi.org/10.1186/s12859-016-0917-9] [PMID: 26852330]
[20]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[21]
Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27.
[http://dx.doi.org/10.1016/j.neo.2022.01.001] [PMID: 35078134]
[22]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[23]
Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[24]
Fock, K.M. Review article: The epidemiology and prevention of gastric cancer. Aliment. Pharmacol. Ther., 2014, 40(3), 250-260.
[http://dx.doi.org/10.1111/apt.12814] [PMID: 24912650]
[25]
Yang, G.; Lu, X.; Yuan, L. LncRNA: A link between RNA and cancer. Biochimica et Biophysica Acta (BBA). Biochim Biophys Acta Gene Regul Mech., 2014, 1839(11), 1097-1109.
[26]
Iaccarino, I; Klapper, W. LncRNA as cancer biomarkers. Methods Mol Biol, 2021, 2348, 27-41.
[http://dx.doi.org/10.1007/978-1-0716-1581-2_2]
[27]
Bratkovič, T.; Rogelj, B. Biology and applications of small nucleolar RNAs. Cell. Mol. Life Sci., 2011, 68(23), 3843-3851.
[http://dx.doi.org/10.1007/s00018-011-0762-y] [PMID: 21748470]
[28]
Dieci, G.; Preti, M.; Montanini, B. Eukaryotic snoRNAs: A paradigm for gene expression flexibility. Genomics, 2009, 94(2), 83-88.
[http://dx.doi.org/10.1016/j.ygeno.2009.05.002] [PMID: 19446021]
[29]
Li, Y.; Zhao, Z.; Liu, W.; Li, X. SNHG3 functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming. Appl. Biochem. Biotechnol., 2020, 191(3), 1084-1099.
[http://dx.doi.org/10.1007/s12010-020-03244-7] [PMID: 31956955]
[30]
Chen, G.Y.; Zhang, Z.S.; Chen, Y.; Li, Y. Long non-coding RNA SNHG9 inhibits ovarian cancer progression by sponging microRNA-214‑5p. Oncol. Lett., 2020, 21(2), 80.
[http://dx.doi.org/10.3892/ol.2020.12341] [PMID: 33363617]
[31]
Wang, F.; Quan, Q. The long non-coding RNA SNHG4/microRNA-let-7e/KDM3A/p21 pathway is involved in the development of non-small cell lung cancer. Mol. Ther. Oncolytics, 2021, 20, 634-645.
[http://dx.doi.org/10.1016/j.omto.2020.12.010] [PMID: 33816782]
[32]
Yang, H.; Jiang, Z.; Wang, S.; Zhao, Y.; Song, X.; Xiao, Y.; Yang, S. Long non‐coding small nucleolar RNA host genes in digestive cancers. Cancer Med., 2019, 8(18), 7693-7704.
[http://dx.doi.org/10.1002/cam4.2622] [PMID: 31691514]
[33]
Wang, S.; Zhu, W.; Qiu, J.; Chen, F. lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging miR-204-5p in gastric cancer. Mol. Med. Rep., 2021, 23(1), 1.
[PMID: 33236157]
[34]
Yu, H.; Sun, J.; Jiang, S.; Xu, Y. MicroRNA-490-3p regulates cell proliferation and apoptosis in gastric cancer via direct targeting of AKT1. Exp. Ther. Med., 2019, 17(2), 1330-1336.
[PMID: 30680010]
[35]
Guo, X.; Guo, L.; Ji, J.; Zhang, J.; Zhang, J.; Chen, X.; Cai, Q.; Li, J.; Gu, Q.; Liu, B.; Zhu, Z.; Yu, Y. miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem. Biophys. Res. Commun., 2010, 398(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2010.05.082] [PMID: 20510161]
[36]
Harbour, J.W.; Dean, D.C. The Rb/E2F pathway: Expanding roles and emerging paradigms. Genes Dev., 2000, 14(19), 2393-2409.
[http://dx.doi.org/10.1101/gad.813200] [PMID: 11018009]
[37]
Cell–matrix adhesion complexes: Master control machinery of cell migration. Semin. Cancer Biol., 2008, 18(1), 65-76.
[38]
Koch, L. Functional genomics: Screening for lncRNA function. Nat. Rev. Genet., 2017, 18(2), 70.
[PMID: 28045101]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy