Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

Miniaturization of Nucleic Acid Assemblies in Nanodevice: Nano-Oddities

Author(s): Vedhantham Keerthana, Sanjay Kisan Metkar, Agnishwar Girigoswami and Koyeli Girigoswami*

Volume 9, Issue 3, 2024

Published on: 09 October, 2023

Page: [180 - 192] Pages: 13

DOI: 10.2174/2405461508666230809151727

Price: $65

Abstract

In the past decades, it has been evident that nano miniaturization technology plays a vital role in innovations, biomedical and industrial applications. Most importantly, the use of Lab on chip (LOC) is revolutionizing and highly replacing the use of conventional technologies due to its advantages that include reliability, biocompatibility, tunability, portability, controllability, cost-effective, low time, and energy consumption with more accurate results. The different nucleic acid structures formed by non-classical ways of pairing can result in highly stable structures, known as nano-oddities. These nucleic acid nano-oddities could be fabricated for a wide range of applications with unique properties. This review encompasses the major findings, advances, fabrication, miniaturization, applications, and the future prospects of nucleic acid assemblies in different kinds of nanodevices.

Graphical Abstract

[1]
Yatsunyk LA, Mendoza O, Mergny JL. “Nano-oddities”: Unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc Chem Res 2014; 47(6): 1836-44.
[http://dx.doi.org/10.1021/ar500063x] [PMID: 24871086]
[2]
Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design. Nature 2016; 537(7620): 320-7.
[http://dx.doi.org/10.1038/nature19946] [PMID: 27629638]
[3]
Bale JB, Gonen S, Liu Y, et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 2016; 353(6297): 389-94.
[http://dx.doi.org/10.1126/science.aaf8818] [PMID: 27463675]
[4]
Xavier PL, Chandrasekaran AR. DNA-based construction at the nanoscale: Emerging trends and applications. Nanotechnology 2018; 29(6): 062001.
[http://dx.doi.org/10.1088/1361-6528/aaa120] [PMID: 29232197]
[5]
Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 2016; 45(9): 2583-602.
[http://dx.doi.org/10.1039/C5CS00645G] [PMID: 26954935]
[6]
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: Controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114(5): 2881-941.
[http://dx.doi.org/10.1021/cr400354z] [PMID: 24576227]
[7]
Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem Rev 1999; 99(7): 1849-62.
[http://dx.doi.org/10.1021/cr970071p] [PMID: 11849013]
[8]
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382(6592): 607-9.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[9]
Alivisatos AP, Johnsson KP, Peng X, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996; 382(6592): 609-11.
[http://dx.doi.org/10.1038/382609a0] [PMID: 8757130]
[10]
Cassell AM, Scrivens WA, Tour JM. Assembly of DNA/Fullerene hybrid materials. Angew Chem Int Ed 1998; 37(11): 1528-31.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1528::AID-ANIE1528>3.0.CO;2-Q] [PMID: 29710932]
[11]
Niemeyer CM, Bürger W, Peplies J. Covalent DNA-streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew Chem Int Ed 1998; 37(16): 2265-8.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F] [PMID: 29711452]
[12]
Coffer JL, Bigham SR, Li X, et al. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl Phys Lett 1996; 69(25): 3851-3.
[http://dx.doi.org/10.1063/1.117126]
[13]
Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL. DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 1998; 120(48): 12674-5.
[http://dx.doi.org/10.1021/ja982721s]
[14]
Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998; 391(6669): 775-8.
[http://dx.doi.org/10.1038/35826] [PMID: 9486645]
[15]
Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997; 277(5329): 1078-81.
[http://dx.doi.org/10.1126/science.277.5329.1078] [PMID: 9262471]
[16]
Liu X, Zhang X. Aptamer-based technology for food analysis. Appl Biochem Biotechnol 2015; 175(1): 603-24.
[http://dx.doi.org/10.1007/s12010-014-1289-0] [PMID: 25338114]
[17]
Watson JD, Crick FHC. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737-8.
[http://dx.doi.org/10.1038/171737a0] [PMID: 13054692]
[18]
Hoogsteen K. The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Crystallogr 1959; 12(10): 822-3.
[http://dx.doi.org/10.1107/S0365110X59002389]
[19]
Felsenfeld G, Davies DR, Rich A. Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 1957; 79(8): 2023-4.
[http://dx.doi.org/10.1021/ja01565a074]
[20]
Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn 1985; 3(2): 327-38.
[http://dx.doi.org/10.1080/07391102.1985.10508420] [PMID: 3917024]
[21]
Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD. DNA H form requires a homopurine-homopyrimidine mirror repeat. Nature 1987; 330(6147): 495-7.
[http://dx.doi.org/10.1038/330495a0] [PMID: 2825028]
[22]
Jain A, Wang G, Vasquez KM. DNA triple helices: Biological consequences and therapeutic potential. Biochimie 2008; 90(8): 1117-30.
[http://dx.doi.org/10.1016/j.biochi.2008.02.011] [PMID: 18331847]
[23]
Han H, Dervan PB. Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation. Proc Natl Acad Sci 1993; 90(9): 3806-10.
[http://dx.doi.org/10.1073/pnas.90.9.3806] [PMID: 7683407]
[24]
Le Doan T, Perrouault L, Praseuth D, et al. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-(α]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res 1987; 15(19): 7749-60.
[http://dx.doi.org/10.1093/nar/15.19.7749] [PMID: 3671065]
[25]
Fox K, Rusling D, Broughton-Head V, Brown T. Towards the targeted modulation of gene expression by modified triplex-forming oligonucleotides. Curr Chem Biol 2008; 2(1): 1-10.
[http://dx.doi.org/10.2174/2212796810802010001]
[26]
Beal PA, Dervan PB. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 1991; 251(4999): 1360-3.
[http://dx.doi.org/10.1126/science.2003222] [PMID: 2003222]
[27]
Durland RH, Kessler DJ, Gunnell S, Duvic M, Hogan ME, Pettitt BM. Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry 1991; 30(38): 9246-55.
[http://dx.doi.org/10.1021/bi00102a017] [PMID: 1892832]
[28]
Rusling DA, Powers VE, Ranasinghe RT, et al. Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 2005; 33(9): 3025-32.
[http://dx.doi.org/10.1093/nar/gki625] [PMID: 15911633]
[29]
Rusling DA, Brown T, Fox KR. DNA triple-helix formation at target sites containing duplex mismatches. Biophys Chem 2006; 123(2-3): 134-40.
[http://dx.doi.org/10.1016/j.bpc.2006.04.016] [PMID: 16735088]
[30]
Koshlap KM, Schultze P, Brunar H, Dervan PB, Feigon J. Solution structure of an intramolecular DNA triplex containing an N7-glycosylated guanine which mimics a protonated cytosine. Biochemistry 1997; 36(9): 2659-68.
[http://dx.doi.org/10.1021/bi962438a] [PMID: 9054573]
[31]
Asensio JL, Brown T, Lane AN. Solution conformation of a parallel DNA triple helix with 5′ and 3′ triplex–duplex junctions. Structure 1999; 7(1): 1-11.
[http://dx.doi.org/10.1016/S0969-2126(99)80004-5] [PMID: 10368268]
[32]
Roberts RW, Crothers DM. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci 1991; 88(21): 9397-401.
[http://dx.doi.org/10.1073/pnas.88.21.9397] [PMID: 1946351]
[33]
Rougée M, Faucon B, Mergny JL, et al. Kinetics and thermodynamics of triple-helix formation: Effects of ionic strength and mismatched. Biochemistry 1992; 31(38): 9269-78.
[http://dx.doi.org/10.1021/bi00153a021] [PMID: 1390713]
[34]
Mergny JL, Sun JS, Rougée M, et al. Sequence specificity in triple helix formation: Experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 1991; 30(40): 9791-8.
[http://dx.doi.org/10.1021/bi00104a031] [PMID: 1911764]
[35]
Best GC, Dervan PB. Energetics of formation of sixteen triple helical complexes which vary at a single position within a pyrimidine motif. J Am Chem Soc 1995; 117(4): 1187-93.
[http://dx.doi.org/10.1021/ja00109a001]
[36]
James PL, Brown T, Fox KR. Thermodynamic and kinetic stability of intermolecular triple helices containing different proportions of C+*GC and T*AT triplets. Nucleic Acids Res 2003; 31(19): 5598-606.
[http://dx.doi.org/10.1093/nar/gkg782] [PMID: 14500823]
[37]
Yildiz U, Coban B. Novel naphthalimide derivatives as selective G-quadruplex DNA binders. Appl Biochem Biotechnol 2018; 186(3): 547-62.
[http://dx.doi.org/10.1007/s12010-018-2749-8] [PMID: 29671192]
[38]
Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature 2000; 406(6796): 605-8.
[http://dx.doi.org/10.1038/35020524] [PMID: 10949296]
[39]
Chandrasekaran AR, Rusling DA. Triplex-forming oligonucleotides: A third strand for DNA nanotechnology. Nucleic Acids Res 2018; 46(3): 1021-37.
[http://dx.doi.org/10.1093/nar/gkx1230] [PMID: 29228337]
[40]
Brucale M, Zuccheri G, Samorì B. The dynamic properties of an intramolecular transition from DNA duplex to cytosine–thymine motif triplex. Org Biomol Chem 2005; 3(4): 575-7.
[http://dx.doi.org/10.1039/B418353N] [PMID: 15703789]
[41]
Kolaric B, Sliwa M, Brucale M, et al. Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. Photochem Photobiol Sci 2007; 6(6): 614-8.
[http://dx.doi.org/10.1039/b618689k] [PMID: 17549262]
[42]
Idili A, Vallée-Bélisle A, Ricci F. Programmable pH-triggered DNA nanoswitches. J Am Chem Soc 2014; 136(16): 5836-9.
[http://dx.doi.org/10.1021/ja500619w] [PMID: 24716858]
[43]
Li XM, Song J, Cheng T, Fu PY. A duplex–triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis. Anal Bioanal Chem 2013; 405(18): 5993-9.
[http://dx.doi.org/10.1007/s00216-013-7037-4] [PMID: 23695490]
[44]
Chen Y, Mao C. pH-induced reversible expansion/contraction of gold nanoparticle aggregates. Small 2008; 4(12): 2191-4.
[http://dx.doi.org/10.1002/smll.200800569] [PMID: 19016526]
[45]
Minero GAS, Wagler PF, Oughli AA, McCaskill JS. Electronic pH switching of DNA triplex reactions. RSC Adv 2015; 5(35): 27313-25.
[http://dx.doi.org/10.1039/C5RA02628H]
[46]
Jacobsen MF, Ravnsbæk JB, Gothelf KV. Small molecule induced control in duplex and triplex DNA-directed chemical reactions. Org Biomol Chem 2010; 8(1): 50-2.
[http://dx.doi.org/10.1039/B919387A] [PMID: 20024130]
[47]
Han X, Zhou Z, Yang F, Deng Z. Catch and release: DNA tweezers that can capture, hold, and release an object under control. J Am Chem Soc 2008; 130(44): 14414-5.
[http://dx.doi.org/10.1021/ja805945r] [PMID: 18850700]
[48]
Del Grosso E, Idili A, Porchetta A, Ricci F. A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. Nanoscale 2016; 8(42): 18057-61.
[http://dx.doi.org/10.1039/C6NR06026A] [PMID: 27714163]
[49]
Liao WC, Riutin M, Parak WJ, Willner I. Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots. ACS Nano 2016; 10(9): 8683-9.
[http://dx.doi.org/10.1021/acsnano.6b04056] [PMID: 27526081]
[50]
Romoser A, Ritter D, Majitha R, Meissner KE, McShane M, Sayes CM. Mitigation of quantum dot cytotoxicity by microencapsulation. PLoS One 2011; 6(7): e22079.
[http://dx.doi.org/10.1371/journal.pone.0022079] [PMID: 21814567]
[51]
Li Y, Miao X, Ling L. Triplex DNA: A new platform for polymerase chain reaction - based biosensor. Sci Rep 2015; 5(1): 13010.
[http://dx.doi.org/10.1038/srep13010] [PMID: 26268575]
[52]
Hégarat N, Novopashina D, Fokina AA, et al. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation. FEBS J 2014; 281(5): 1417-31.
[http://dx.doi.org/10.1111/febs.12714] [PMID: 24423253]
[53]
Liu Z, Mao C. Reporting transient molecular events by DNA strand displacement. Chem Commun 2014; 50(60): 8239-41.
[http://dx.doi.org/10.1039/C4CC03291H] [PMID: 24938726]
[54]
Amodio A, Zhao B, Porchetta A, et al. Rational design of pH-controlled DNA strand displacement. J Am Chem Soc 2014; 136(47): 16469-72.
[http://dx.doi.org/10.1021/ja508213d] [PMID: 25369216]
[55]
Amodio A, Adedeji AF, Castronovo M, Franco E, Ricci F. pH-Controlled assembly of DNA tiles. J Am Chem Soc 2016; 138(39): 12735-8.
[http://dx.doi.org/10.1021/jacs.6b07676] [PMID: 27631465]
[56]
Wu N, Willner I. pH-Stimulated reconfiguration and structural isomerization of origami dimer and trimer systems. Nano Lett 2016; 16(10): 6650-5.
[http://dx.doi.org/10.1021/acs.nanolett.6b03418] [PMID: 27586163]
[57]
Liu Z, Li Y, Tian C, Mao C. A smart DNA tetrahedron that isothermally assembles or dissociates in response to the solution pH value changes. Biomacromolecules 2013; 14(6): 1711-4.
[http://dx.doi.org/10.1021/bm400426f] [PMID: 23647463]
[58]
Jung YH, Lee KB, Kim YG, Choi IS. Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed 2006; 45(36): 5960-3.
[http://dx.doi.org/10.1002/anie.200601089] [PMID: 16888827]
[59]
Yan H, Xiong C, Yuan H, Zeng Z, Ling L. Spacer control the dynamic of triplex formation between oligonucleotide-modified gold nanoparticles. J Phys Chem C 2009; 113(40): 17326-31.
[http://dx.doi.org/10.1021/jp905408q]
[60]
Guerrini L, McKenzie F, Wark AW, Faulds K, Graham D. Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: Correlation between plasmonic and surface-enhanced Raman scattering responses. Chem Sci 2012; 3(7): 2262-9.
[http://dx.doi.org/10.1039/c2sc20031g]
[61]
Han MS, Lytton-Jean AKR, Mirkin CA. A gold nanoparticle based approach for screening triplex DNA binders. J Am Chem Soc 2006; 128(15): 4954-5.
[http://dx.doi.org/10.1021/ja0606475] [PMID: 16608320]
[62]
Xiong C, Wu C, Zhang H, Ling L. Gold nanoparticles-based colorimetric investigation of triplex formation under weak alkalic pH environment with the aid of Ag+. Spectrochim Acta A Mol Biomol Spectrosc 2011; 79(5): 956-61.
[http://dx.doi.org/10.1016/j.saa.2011.04.002] [PMID: 21632279]
[63]
Ihara T, Ishii T, Araki N, Wilson AW, Jyo A. Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. J Am Chem Soc 2009; 131(11): 3826-7.
[http://dx.doi.org/10.1021/ja809702n] [PMID: 19243184]
[64]
Zhao C, Qu K, Xu C, Ren J, Qu X. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: A triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic Acids Res 2011; 39(9): 3939-48.
[http://dx.doi.org/10.1093/nar/gkq1347] [PMID: 21227925]
[65]
Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable triplex-based DNA hydrogels. Chem Sci 2015; 6(7): 4190-5.
[http://dx.doi.org/10.1039/C5SC00594A] [PMID: 29218185]
[66]
Hu Y, Guo W, Kahn JS, Aleman-Garcia MA, Willner I. A shape-memory DNA-based hydrogel exhibiting two internal memories. Angew Chem Int Ed 2016; 55(13): 4210-4.
[http://dx.doi.org/10.1002/anie.201511201] [PMID: 26915713]
[67]
Ojha RP, Tiwari RK. Molecular dynamics simulation study of DNA triplex formed by mixed sequences in solution. J Biomol Struct Dyn 2002; 19(6): 107-26.
[http://dx.doi.org/10.1080/07391102.2002.10506797] [PMID: 12144358]
[68]
Li Y, Syed J, Sugiyama H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 2016; 23(11): 1325-33.
[http://dx.doi.org/10.1016/j.chembiol.2016.09.011] [PMID: 27773629]
[69]
Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature 1998; 394(6693): 539-44.
[http://dx.doi.org/10.1038/28998] [PMID: 9707114]
[70]
Liu CP, Wey MT, Chang CC, Kan LS. Direct observation of single molecule conformational change of tight-turn paperclip DNA triplex in solution. Appl Biochem Biotechnol 2009; 159(1): 261-9.
[http://dx.doi.org/10.1007/s12010-008-8390-1] [PMID: 18931945]
[71]
Heuer-Jungemann A, Liedl T. From DNA tiles to functional DNA materials. Trends Chem 2019; 1(9): 799-814.
[http://dx.doi.org/10.1016/j.trechm.2019.07.006]
[72]
Rusling DA, Broughton-Head VJ, Tuck A, et al. Kinetic studies on the formation of DNA triplexes containing the nucleoside analogue 2′-O-(2-aminoethyl)-5-(3-amino-1-propynyl)uridine. Org Biomol Chem 2008; 6(1): 122-9.
[http://dx.doi.org/10.1039/B713088K] [PMID: 18075656]
[73]
Rusling DA, Fox KR. Sequence-specific recognition of DNA nanostructures. Methods 2014; 67(2): 123-33.
[http://dx.doi.org/10.1016/j.ymeth.2014.02.028] [PMID: 24583116]
[74]
Tumpane J, Kumar R, Lundberg EP, et al. Triplex addressability as a basis for functional DNA nanostructures. Nano Lett 2007; 7(12): 3832-9.
[http://dx.doi.org/10.1021/nl072512i] [PMID: 17983251]
[75]
Rusling DA, Nandhakumar IS, Brown T, Fox KR. Triplex-directed recognition of a DNA nanostructure assembled by crossover strand exchange. ACS Nano 2012; 6(4): 3604-13.
[http://dx.doi.org/10.1021/nn300718z] [PMID: 22443318]
[76]
Liu F, Sha R, Seeman NC. Modifying the surface features of two-dimensional DNA crystals. J Am Chem Soc 1999; 121(5): 917-22.
[http://dx.doi.org/10.1021/ja982824a]
[77]
Chandrasekaran AR, Zhuo R. A ‘tile’ tale: Hierarchical self-assembly of DNA lattices. Appl Mater Today 2016; 2: 7-16.
[http://dx.doi.org/10.1016/j.apmt.2015.11.004]
[78]
Yamagata Y, Emura T, Hidaka K, Sugiyama H, Endo M. Triple helix formation in a topologically controlled DNA nanosystem. Chemistry 2016; 22(16): 5494-8.
[http://dx.doi.org/10.1002/chem.201505030] [PMID: 26938310]
[79]
Zheng J, Birktoft JJ, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 2009; 461(7260): 74-7.
[http://dx.doi.org/10.1038/nature08274] [PMID: 19727196]
[80]
Liu D, Wang M, Deng Z, Walulu R, Mao C. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 2004; 126(8): 2324-5.
[http://dx.doi.org/10.1021/ja031754r] [PMID: 14982434]
[81]
Abdallah HO, Ohayon YP, Chandrasekaran AR, et al. Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking. Chem Commun 2016; 52(51): 8014-7.
[http://dx.doi.org/10.1039/C6CC03695C] [PMID: 27265774]
[82]
Wang T, Sha R, Birktoft J, Zheng J, Mao C, Seeman NC. A DNA crystal designed to contain two molecules per asymmetric unit. J Am Chem Soc 2010; 132(44): 15471-3.
[http://dx.doi.org/10.1021/ja104833t] [PMID: 20958065]
[83]
Barone F, Chirico G, Matzeu M, Mazzei F, Pedone F. Triple helix DNA oligomer melting measured by fluorescence polarization anisotropy. Eur Biophys J 1998; 27(2): 137-46.
[http://dx.doi.org/10.1007/s002490050119] [PMID: 10950635]
[84]
Zhao J, Chandrasekaran AR, Li Q, et al. Post-assembly stabilization of rationally designed DNA crystals. Angew Chem Int Ed 2015; 54(34): 9936-9.
[http://dx.doi.org/10.1002/anie.201503610] [PMID: 26136359]
[85]
Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H. Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J Am Chem Soc 2011; 133(37): 14488-91.
[http://dx.doi.org/10.1021/ja204546h] [PMID: 21859143]
[86]
Nelson LD, Bender C, Mannsperger H, et al. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 2012; 11(1): 38.
[http://dx.doi.org/10.1186/1476-4598-11-38] [PMID: 22682314]
[87]
Rajeswari MR. DNA triplex structures in neurodegenerative disorder, Friedreich’s ataxia. J Biosci 2012; 37(3): 519-32.
[http://dx.doi.org/10.1007/s12038-012-9219-1] [PMID: 22750988]
[88]
Singh HN, Rajeswari MR. DNA-triplex forming purine repeat containing genes in acinetobacter baumannii and their association with infection and adaptation. Front Cell Infect Microbiol 2017; 7: 250.
[http://dx.doi.org/10.3389/fcimb.2017.00250] [PMID: 28670571]
[89]
Grayson ACR, Shawgo RS, Johnson AM, et al. BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 2004; 92(1): 6-21.
[http://dx.doi.org/10.1109/JPROC.2003.820534]
[90]
Verpoorte E, De Rooij NF. Microfluidics meets MEMS. Proc IEEE 2003; 91(6): 930-53.
[http://dx.doi.org/10.1109/JPROC.2003.813570]
[91]
Convery N, Gadegaard N. 30 years of microfluidics. Micro Nano Eng 2019; 2: 76-91.
[http://dx.doi.org/10.1016/j.mne.2019.01.003]
[92]
Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: A review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020; 11(6): 599.
[http://dx.doi.org/10.3390/mi11060599] [PMID: 32570945]
[93]
Metkar SK, Girigoswami K. Diagnostic biosensors in medicine - A review. Biocatal Agric Biotechnol 2019; 17: 271-83.
[http://dx.doi.org/10.1016/j.bcab.2018.11.029]
[94]
Jagannathan NR. Potential of Magnetic Resonance (MR) methods in clinical cancer research. In: Biomedical Translational Research. Singapore: Springer 2022; pp. 339-60.
[http://dx.doi.org/10.1007/978-981-16-4345-3_21]
[95]
Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine 2019; 14(15): 2067-82.
[http://dx.doi.org/10.2217/nnm-2019-0155] [PMID: 31355709]
[96]
Kumar V, Raj SB, Kanakaraj L, et al. Aptamer: A review on it’s in vitro selection and drug delivery system. Int J Appl Pharm 2022; 14: 35-42.
[http://dx.doi.org/10.22159/ijap.2022v14i2.43594]
[97]
Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Mater Adv 2021; 2(9): 2876-91.
[http://dx.doi.org/10.1039/D1MA00069A]
[98]
Agraharam G, Girigoswami A, Girigoswami K. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: A study on zebrafish embryos. Chemistry 2021; 4(1): 1-17.
[http://dx.doi.org/10.3390/chemistry4010001]
[99]
Girigoswami K, Girigoswami A, Murugesan R, Agraharam G. Method and process of nanoformulation of liposomal myricetin and uses thereof Indian Patent 384885, 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy