Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Green and Convenient Synthesis of Pharmaceutically Active Mono and Bis-dihydroquinazolines via a One-pot Multicomponent Reaction Under Sulfamic Acid Catalysis

Author(s): Amir Samiei, Mohammad Ali Bodaghifard* and Mahdia Hamidinasab

Volume 11, Issue 2, 2024

Published on: 31 August, 2023

Page: [194 - 200] Pages: 7

DOI: 10.2174/2213346110666230809141555

Price: $65

Abstract

Introduction: Multicomponent reactions (MCRs) and green chemistry are essential criteria for the development of efficient chemical syntheses for valuable organic compounds.

Methods: The design, synthesis, and development of sustainable procedures for the production of novel biological and pharmaceutical molecules have gained high importance. Herein, an environmentally benign synthesis of mono- and bis-2,3-dihydroquinazolin-4(1H)-ones as pharmaceutically active compounds was carried out in good to high yields of 80-99% within 45-120 minutes.

Results: The desired products were synthesized via three-component and pseudo five-component condensations of isatoic anhydride, a primary amine (aniline or ammonium acetate), and an aldehyde/dialdehyde using sulfamic acid (20%) as a solid acidic catalyst under the solvent-free condition at 100°C.

Conclusion: The easy work-up procedure, metal-free and environmentally benign catalyst, green reaction conditions for performing MCRs, and high yields of pure products are some advantages of the presented protocol.

Graphical Abstract

[1]
Costanzo, P.; Nardi, M.; Oliverio, M. Similarity and competition between biginelli and hantzsch reactions: An opportunity for modern medicinal chemistry. Eur. J. Org. Chem., 2020, 2020(26), 3954-3964.
[http://dx.doi.org/10.1002/ejoc.201901923]
[2]
Badolato, M.; Aiello, F.; Neamati, N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv., 2018, 8(37), 20894-20921.
[http://dx.doi.org/10.1039/C8RA02827C] [PMID: 35542353]
[3]
Kothayer, H.; Ibrahim, S.M.; Soltan, M.K.; Rezq, S.; Mahmoud, S.S. Synthesis, in vivo and in silico evaluation of novel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential anticonvulsant agents. Drug Dev. Res., 2019, 80(3), 343-352.
[http://dx.doi.org/10.1002/ddr.21506] [PMID: 30565722]
[4]
Siddiqui, M.M.; Nagargoje, A.A.; Akolkar, S.V.; Sangshetti, J.N.; Khedkar, V.M.; Pisal, P.M.; Shingate, B.B. [HDBU][HSO4]-catalyzed facile synthesis of new 1,2,3-triazole-tethered 2,3-dihydroquinazolin-4[1H]-one derivatives and their DPPH radical scavenging activity. Res. Chem. Intermed., 2022, 48(3), 1199-1225.
[http://dx.doi.org/10.1007/s11164-021-04639-9]
[5]
Veena, K.; Raghu, M.S.; Yogesh Kumar, K.; Dahlous, K.A.; Bahajjaj, A.A.A.; Mani, G.; Jeon, B.H.; Prashanth, M.K. Development of penipanoid C-inspired 2-benzoyl-1-methyl-2,3-dihydroquinazolin-4(1H)-one derivatives as potential EGFR inhibitors: Synthesis, anticancer evaluation and molecular docking study. J. Mol. Struct., 2022, 1258, 132674.
[http://dx.doi.org/10.1016/j.molstruc.2022.132674]
[6]
Zhang, J.; Zhao, J.; Wang, L.; Liu, J.; Ren, D.; Ma, Y. Design, synthesis and docking studies of some spiro-oxindole dihydroquinazolinones as antibacterial agents. Tetrahedron., 2016, 72(7), 936-943.
[http://dx.doi.org/10.1016/j.tet.2015.12.055]
[7]
Sarfraz, M.; Sultana, N.; Rashid, U.; Akram, M.S.; Sadiq, A.; Tariq, M.I. Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1 H)-one derivatives as inhibitors of cholinesterases. Bioorg. Chem., 2017, 70, 237-244.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.004] [PMID: 28126287]
[8]
Zhang, H.; Liu, H.; Luo, X.; Wang, Y.; Liu, Y.; Jin, H.; Liu, Z.; Yang, W.; Yu, P.; Zhang, L.; Zhang, L. Design, synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors. Eur. J. Med. Chem., 2018, 152, 235-252.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.045] [PMID: 29723786]
[9]
Yang, G.; Cheng, C.; Xu, G.B.; Tang, L.; Chua, K.L.; Yang, Y.Y. Synthesis and antibiofilm evaluation of 3-hydroxy-2,3-dihydroquinazolin-4(1H)-one derivatives against opportunistic pathogen Acinetobacter baumannii. Bioorg. Med. Chem., 2020, 28(16), 115606.
[http://dx.doi.org/10.1016/j.bmc.2020.115606] [PMID: 32690261]
[10]
Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A.A. Efficient synthesis of mono- and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol. Tetrahedron. Lett., 2005, 46(36), 6123-6126.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.157]
[11]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A novel method for the one-pot three-component synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Synlett., 2005, 2005, 1155-1157.
[http://dx.doi.org/10.1055/s-2005-865200]
[12]
Chen, J.; Su, W.; Wu, H.; Liu, M.; Jin, C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid–water without additional catalyst. Green. Chem., 2007, 9(9), 972-975.
[http://dx.doi.org/10.1039/b700957g]
[13]
Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Gallium(III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones. Tetrahedron. Lett., 2008, 49(23), 3814-3818.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.127]
[14]
Shaterian, H.R.; Fahimi, N.; Azizi, K. New applications of phosphoric acid supported on alumina (H3PO4–Al2O3) as a reusable heterogeneous catalyst for preparation of 2,3-dihydroquinazoline-4(1H)-ones, 2H-indazolo[2,1-b]phthalazinetriones, and benzo[4,5]imidazo[1,2-a]pyrimidines. Res. Chem. Intermed., 2014, 40(5), 1879-1898.
[http://dx.doi.org/10.1007/s11164-013-1087-2]
[15]
Zhang, J.; Cheng, P.; Ma, Y.; Liu, J.; Miao, Z.; Ren, D.; Fan, C.; Liang, M.; Liu, L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett., 2016, 57(47), 5271-5277.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.047]
[16]
Shiri, L.; Heidari, L.; Kazemi, M. Magnetic Fe3O4 nanoparticles supported imine/Thiophene-nickel (II) complex: A new and highly active heterogeneous catalyst for the synthesis of polyhydroquinolines and 2, 3-dihydroquinazoline-4(1H)-ones. Appl. Organomet. Chem., 2018, 32(1), e3943.
[http://dx.doi.org/10.1002/aoc.3943]
[17]
Chakraborty, A.; Chowdhury, T.; Menéndez, M.I.; Chattopadhyay, T. Iron complexes anchored onto magnetically separable graphene oxide sheets: An excellent catalyst for the synthesis of dihydroquinazoline-based compounds. ACS Appl. Mater. Interfaces, 2020, 12(34), 38530-38545.
[http://dx.doi.org/10.1021/acsami.0c08616] [PMID: 32805955]
[18]
Montes D’Oca, M.G.; Soares, R.M.; de Moura, R.R.; de Freitas Granjão, V. Sulfamic acid: An efficient acid catalyst for esterification of FFA. Fuel, 2012, 97, 884-886.
[http://dx.doi.org/10.1016/j.fuel.2012.02.038]
[19]
Govindaraju, S.; Daniel, N.K.; Tabassum, S. Sulfamic acid catalyzed grinding: A facile one-pot approach for the synthesis of polysubstituted pyrazoles under green conditions. Mater. Today Proc., 2022, 62, 5336-5340.
[http://dx.doi.org/10.1016/j.matpr.2022.03.416]
[20]
Brahmachari, G.; Mandal, M.; Karmakar, I.; Nurjamal, K.; Mandal, B. Ultrasound-promoted expedient and green synthesis of diversely functionalized 6-Amino-5-((4-hydroxy-2-oxo-2 H -chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1 H, 3 H)-diones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain. Chem. Eng., 2019, 7(6), 6369-6380.
[http://dx.doi.org/10.1021/acssuschemeng.9b00133]
[21]
Fard, M.A.B.; Mobinikhaledi, A.; Hamidinasab, M. An efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in green media. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 44(4), 567-571.
[http://dx.doi.org/10.1080/15533174.2013.776605]
[22]
Bodaghifard, M.A.; Faraki, Z.; Karimi, A.R. Mild synthesis of mono-, bis- and tris 1,2-Dihydrobenzo[4,5]imidazo[1,2- a]pyrimidine derivatives using alkyl disulfamic acid functionalized magnetic nanoparticles. Curr. Org. Chem., 2016, 20, 1648-1655.
[http://dx.doi.org/10.2174/1385272820666160218233729]
[23]
Aghajani, M.; Asghari, S.; Pasha, G.F.; Mohseni, M. Study of three-component reaction of α-ketoesters and active methylenes with OH-acids to synthesize new 2-amino-4H-pyran derivatives and evaluation of their antibacterial and antioxidant activities. Res. Chem. Intermed., 2020, 46(3), 1841-1855.
[http://dx.doi.org/10.1007/s11164-019-04066-x]
[24]
Hamidinasab, M.; Bodaghifard, M.A.; Mobinikhaledi, A. Green synthesis of 1 H -pyrazolo[1,2- b]phthalazine-2-carbonitrile derivatives using a new bifunctional base–ionic liquid hybrid magnetic nanocatalyst. Appl. Organomet. Chem., 2020, 34(2), e5386.
[http://dx.doi.org/10.1002/aoc.5386]
[25]
Foroughifar, N.; Mobinikhaledi, A.; Ebrahimi, S.; Moghanian, H.; Fard, M.A.B.; Kalhor, M. Synthesis of a new class of azathia crown macrocycles containing two 1,2,4-triazole or two 1,3,4-thiadiazole rings as subunits. Tetrahedron Lett., 2009, 50(7), 836-839.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.014]
[26]
Karimi-Jaberi, Z.; Arjmandi, R. Acetic acid-promoted, efficient, one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2011, 142(6), 631-635.
[http://dx.doi.org/10.1007/s00706-011-0494-6]
[27]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catal. Commun., 2014, 49, 52-57.
[http://dx.doi.org/10.1016/j.catcom.2014.01.032]
[28]
Rostamizadeh, S.; Amani, A.M.; Mahdavinia, G.H.; Sepehrian, H.; Ebrahimi, S. Synthesis of some novel 2-Aryl-Substituted2,3-Dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 2010, 2010, 1356-1360.
[http://dx.doi.org/10.1055/s-0029-1218676]
[29]
Rostamizadeh, S.; Amani, A.M.; Aryan, R.; Ghaieni, H.R.; Shadjou, N. Synthesis of new 2-aryl substituted 2,3-Dihydroquinazoline-4(1 H)-ones under solvent-free conditions, using molecular iodine as a mild and efficient catalyst. Synth. Commun., 2008, 38(20), 3567-3576.
[http://dx.doi.org/10.1080/00397910802178427]
[30]
Baghbanzadeh, M.; Salehi, P.; Dabiri, M.; Kozehgary, G. Water-accelerated synthesis of novel Bis-2,3-dihydroquinazolin-4(1H)-one derivatives. Synthesis, 2006, 2006(2), 344-348.
[http://dx.doi.org/10.1055/s-2005-924766]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy