Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Cool the Inflamed Brain: A Novel Anti-inflammatory Strategy for the Treatment of Major Depressive Disorder

Author(s): Wen-Jun Su, Ting Hu and Chun-Lei Jiang*

Volume 22, Issue 5, 2024

Published on: 09 August, 2023

Page: [810 - 842] Pages: 33

DOI: 10.2174/1570159X21666230809112028

Price: $65

Abstract

Background: Abundant evidence suggests that inflammatory cytokines contribute to the symptoms of major depressive disorder (MDD) by altering neurotransmission, neuroplasticity, and neuroendocrine processes. Given the unsatisfactory response and remission of monoaminergic antidepressants, anti-inflammatory therapy is proposed as a feasible way to augment the antidepressant effect. Recently, there have been emerging studies investigating the efficiency and efficacy of anti-inflammatory agents in the treatment of MDD and depressive symptoms comorbid with somatic diseases.

Methods: In this narrative review, prospective clinical trials focusing on anti-inflammatory treatment for depression have been comprehensively searched and screened. Based on the included studies, we summarize the rationale for the anti-inflammatory therapy of depression and discuss the utilities and confusions regarding the anti-inflammatory strategy for MDD.

Results: This review included over 45 eligible trials. For ease of discussion, we have grouped them into six categories based on their mechanism of action, and added some other anti-inflammatory modalities, including Chinese herbal medicine and non-drug therapy. Pooled results suggest that anti-inflammatory therapy is effective in improving depressive symptoms, whether used as monotherapy or add-on therapy. However, there remain confusions in the application of anti-inflammatory therapy for MDD.

Conclusion: Based on current clinical evidence, anti-inflammatory therapy is a promisingly effective treatment for depression. This study proposes a novel strategy for clinical diagnosis, disease classification, personalized treatment, and prognostic prediction of depression. Inflammatory biomarkers are recommended to be assessed at the first admission of MDD patients, and anti-inflammatory therapy are recommended to be included in the clinical practice guidelines for diagnosis and treatment. Those patients with high levels of baseline inflammation (e.g., CRP > 3 mg/L) may benefit from adjunctive anti-inflammatory therapy.

[1]
World Health Organization. Factsheets: Depression., Available from: www.who.int/news-room/fact-sheets/detail/depression (Accessed on: Aug 31 2022).
[2]
James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, Z.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Accrombessi, M.M.K.; Acharya, D.; Acharya, P.; Ackerman, I.N.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adetokunboh, O.O.; Adib, M.G.; Adsuar, J.C.; Afanvi, K.A.; Afarideh, M.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Aggarwal, R.; Aghayan, S.A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemiju, T.; Akseer, N.; Al-Aly, Z.; Al-Eyadhy, A.; Al-Mekhlafi, H.M.; Al-Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alashi, A.; Alavian, S.M.; Alene, K.A.; Alijanzadeh, M.; Alizadeh-Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alouani, M.M.L.; Altirkawi, K.; Alvis-Guzman, N.; Amare, A.T.; Aminde, L.N.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Arabloo, J.; Arauz, A.; Aremu, O.; Ariani, F.; Armoon, B.; Ärnlöv, J.; Arora, A.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asghar, R.J.; Ataro, Z.; Atre, S.R.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Ballew, S.H.; Banach, M.; Banoub, J.A.M.; Banstola, A.; Barac, A.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barrero, L.H.; Baune, B.T.; Bazargan-Hejazi, S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Belachew, A.B.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bensenor, I.M.; Bernabe, E.; Bernstein, R.S.; Beuran, M.; Beyranvand, T.; Bhala, N.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Blacker, B.F.; Blyth, F.M.; Bou-Orm, I.R.; Boufous, S.; Bourne, R.; Brady, O.J.; Brainin, M.; Brant, L.C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, A.N.; Britton, G.; Brugha, T.; Buchbinder, R.; Busse, R.; Butt, Z.A.; Cahuana-Hurtado, L.; Cano, J.; Cárdenas, R.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castillo Rivas, J.; Castro, F.; Catalá-López, F.; Cercy, K.M.; Cerin, E.; Chaiah, Y.; Chang, A.R.; Chang, H-Y.; Chang, J-C.; Charlson, F.J.; Chattopadhyay, A.; Chattu, V.K.; Chaturvedi, P.; Chiang, P.P-C.; Chin, K.L.; Chitheer, A.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Claro, R.M.; Collado-Mateo, D.; Cooper, C.; Coresh, J.; Cortesi, P.A.; Cortinovis, M.; Costa, M.; Cousin, E.; Criqui, M.H.; Cromwell, E.A.; Cross, M.; Crump, J.A.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dargan, P.I.; Daryani, A.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; De Courten, B.; De La Hoz, F.P.; De Leo, D.; De Neve, J-W.; Degefa, M.G.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Demoz, G.T.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dinberu, M.T.; Dirac, M.A.; Djalalinia, S.; Doan, L.; Dokova, K.; Doku, D.T.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Echko, M.M.; Edvardsson, D.; Effiong, A.; Ehrlich, J.R.; El Bcheraoui, C.; El Sayed Zaki, M.; El-Khatib, Z.; Elkout, H.; Elyazar, I.R.F.; Enayati, A.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Fakhim, H.; Fallah Omrani, V.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farid, T.A.; Farinha, C.S.E.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fentahun, N.; Fereshtehnejad, S-M.; Fernandes, E.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Foigt, N.A.; Foreman, K.J.; Fox, J.; Frank, T.D.; Fukumoto, T.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gall, S.; Ganji, M.; Gankpe, F.G.; Garcia-Basteiro, A.L.; Gardner, W.M.; Gebre, A.K.; Gebremedhin, A.T.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Genova-Maleras, R.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadiri, K.; Ghasemi Falavarjani, K.; Ghasemi-Kasman, M.; Ghimire, M.; Ghosh, R.; Ghoshal, A.G.; Giampaoli, S.; Gill, P.S.; Gill, T.K.; Ginawi, I.A.; Giussani, G.; Gnedovskaya, E.V.; Goldberg, E.M.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Gorman, T.M.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grams, M.E.; Grosso, G.; Gugnani, H.C.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gyawali, B.; Haagsma, J.A.; Hachinski, V.; Hafezi-Nejad, N.; Haghparast Bidgoli, H.; Hagos, T.B.; Hailu, G.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hasan, M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.N.; Hay, R.J.; Hay, S.I.; Hedayatizadeh-Omran, A.; Heibati, B.; Hendrie, D.; Henok, A.; Herteliu, C.; Heydarpour, S.; Hibstu, D.T.; Hoang, H.T.; Hoek, H.W.; Hoffman, H.J.; Hole, M.K.; Homaie Rad, E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Huynh, C.K.; Iburg, K.M.; Ikeda, C.T.; Ileanu, B.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Islam, S.M.S.; Islami, F.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; Javanbakht, M.; Jayatilleke, A.U.; Jeemon, P.; Jha, R.P.; Jha, V.; Ji, J.S.; Johnson, C.O.; Jonas, J.B.; Jozwiak, J.J.; Jungari, S.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kalani, R.; Kanchan, T.; Karami, M.; Karami Matin, B.; Karch, A.; Karema, C.; Karimi, N.; Karimi, S.M.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Karyani, A.K.; Keighobadi, M.M.; Keiyoro, P.N.; Kemmer, L.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalil, I.A.; Khan, E.A.; Khan, M.S.; Khan, M.A.; Khang, Y-H.; Khazaei, M.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, C-I.; Kim, D.; Kim, P.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Knudsen, A.K.S.; Kocarnik, J.M.; Kochhar, S.; Kokubo, Y.; Kolola, T.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kuate, Defo B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kyu, H.H.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lalloo, R.; Lallukka, T.; Lami, F.H.; Lansingh, V.C.; Latifi, A.; Lau, K.M-M.; Lazarus, J.V.; Leasher, J.L.; Ledesma, J.R.; Lee, P.H.; Leigh, J.; Leung, J.; Levi, M.; Lewycka, S.; Li, S.; Li, Y.; Liao, Y.; Liben, M.L.; Lim, L-L.; Lim, S.S.; Liu, S.; Lodha, R.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Low, N.; Lozano, R.; Lucas, T.C.D.; Lucchesi, L.R.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Macarayan, E.R.K.; Mackay, M.T.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Maghavani, D.P.; Mahotra, N.B.; Mai, H.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manda, A-L.; Manguerra, H.; Manhertz, T.; Mansournia, M.A.; Mantovani, L.G.; Mapoma, C.C.; Maravilla, J.C.; Marcenes, W.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Marzan, M.B.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mathur, M.R.; Matsushita, K.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Mejia-Rodriguez, F.; Mekonen, T.; Melese, A.; Melku, M.; Meltzer, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Mensah, G.A.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezerji, N.M.G.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miltz, B.; Mini, G.K.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitchell, P.B.; Mitiku, H.; Moazen, B.; Mohajer, B.; Mohammad, K.A.; Mohammadifard, N.; Mohammadnia-Afrouzi, M.; Mohammed, M.A.; Mohammed, S.; Mohebi, F.; Moitra, M.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mountjoy-Venning, W.C.; Mousavi, S.M.; Mruts, K.B.; Muche, A.A.; Muchie, K.F.; Mueller, U.O.; Muhammed, O.S.; Mukhopadhyay, S.; Muller, K.; Mumford, J.E.; Murhekar, M.; Musa, J.; Musa, K.I.; Mustafa, G.; Nabhan, A.F.; Nagata, C.; Naghavi, M.; Naheed, A.; Nahvijou, A.; Naik, G.; Naik, N.; Najafi, F.; Naldi, L.; Nam, H.S.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Natarajan, G.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, H.T.; Nguyen, H.L.T.; Nguyen, H.T.; Nguyen, L.H.; Nguyen, M.; Nguyen, N.B.; Nguyen, S.H.; Nichols, E.; Ningrum, D.N.A.; Nixon, M.R.; Nolutshungu, N.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nsoesie, E.O.; Nyasulu, P.S.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Ong, K.L.; Ong, S.K.; Oren, E.; Ortiz, A.; Ota, E.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Pacella, R.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Parisi, A.; Park, E-K.; Parry, C.D.H.; Patel, S.; Pati, S.; Patil, S.T.; Patle, A.; Patton, G.C.; Paturi, V.R.; Paulson, K.R.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pillay, J.D.; Piradov, M.A.; Pirsaheb, M.; Pishgar, F.; Plana-Ripoll, O.; Plass, D.; Polinder, S.; Popova, S.; Postma, M.J.; Pourshams, A.; Poustchi, H.; Prabhakaran, D.; Prakash, S.; Prakash, V.; Purcell, C.A.; Purwar, M.B.; Qorbani, M.; Quistberg, D.A.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.; Rahman, M.A.; Rahman, S.U.; Rai, R.K.; Rajati, F.; Ram, U.; Ranjan, P.; Ranta, A.; Rao, P.C.; Rawaf, D.L.; Rawaf, S.; Reddy, K.S.; Reiner, R.C.; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezai, M.S.; Ribeiro, A.L.P.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostami, A.; Roth, G.A.; Roy, A.; Rubagotti, E.; Sachdev, P.S.; Sadat, N.; Saddik, B.; Sadeghi, E.; Saeedi Moghaddam, S.; Safari, H.; Safari, Y.; Safari-Faramani, R.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, H.S.; Salam, N.; Salama, J.S.; Salamati, P.; Saleem, K.; Saleem, Z.; Salimi, Y.; Salomon, J.A.; Salvi, S.S.; Salz, I.; Samy, A.M.; Sanabria, J.; Sang, Y.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sao Jose, B.P.; Sardana, M.; Sarker, A.R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saxena, S.; Saylan, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Sekerija, M.; Sepanlou, S.G.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shams-Beyranvand, M.; Shamsi, M.; Shamsizadeh, M.; Sharafi, H.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharma, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shishani, K.; Shiue, I.; Shokraneh, F.; Shoman, H.; Shrime, M.G.; Si, S.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Silveira, D.G.A.; Singam, N.S.V.; Singh, J.A.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Slepak, E.L.N.; Sliwa, K.; Smith, D.L.; Smith, M.; Soares Filho, A.M.; Sobaih, B.H.; Sobhani, S.; Sobngwi, E.; Soneji, S.S.; Soofi, M.; Soosaraei, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stein, D.J.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Sutradhar, I.; Sykes, B.L.; Sylte, D.O.; Tabarés-Seisdedos, R.; Tadakamadla, S.K.; Tadesse, B.T.; Tandon, N.; Tassew, S.G.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekelemedhin, S.W.; Tekle, M.G.; Temesgen, H.; Temsah, M-H.; Temsah, O.; Terkawi, A.S.; Teweldemedhin, M.; Thankappan, K.R.; Thomas, N.; Tilahun, B.; To, Q.G.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Towbin, J.A.; Tran, B.X.; Tran, K.B.; Troeger, C.E.; Truelsen, T.C.; Tsilimbaris, M.K.; Tsoi, D.; Tudor Car, L.; Tuzcu, E.M.; Ukwaja, K.N.; Ullah, I.; Undurraga, E.A.; Unutzer, J.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Vaduganathan, M.; Vaezi, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vosoughi, K.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Waller, S.G.; Wang, Y.; Wang, Y-P.; Weiderpass, E.; Weintraub, R.G.; Weiss, D.J.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; West, T.E.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Winkler, A.S.; Wiyeh, A.B.; Wiysonge, C.S.; Wolfe, C.D.A.; Woolf, A.D.; Wu, S.; Wu, Y-C.; Wyper, G.M.A.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamada, T.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zadnik, V.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zare, Z.; Zeleke, A.J.; Zenebe, Z.M.; Zhang, K.; Zhao, Z.; Zhou, M.; Zodpey, S.; Zucker, I.; Vos, T.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[3]
GBD 2017: a fragile world. Lancet, 2018, 392(10159), 1683.
[http://dx.doi.org/10.1016/S0140-6736(18)32858-7] [PMID: 30415747]
[4]
Santomauro, D.F.; Mantilla, H.A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; Bang-Jensen, B.L.; Bertolacci, G.J.; Bloom, S.S.; Castellano, R.; Castro, E.; Chakrabarti, S.; Chattopadhyay, J.; Cogen, R.M.; Collins, J.K.; Dai, X.; Dangel, W.J.; Dapper, C.; Deen, A.; Erickson, M.; Ewald, S.B.; Flaxman, A.D.; Frostad, J.J.; Fullman, N.; Giles, J.R.; Giref, A.Z.; Guo, G.; He, J.; Helak, M.; Hulland, E.N.; Idrisov, B.; Lindstrom, A.; Linebarger, E.; Lotufo, P.A.; Lozano, R.; Magistro, B.; Malta, D.C.; Månsson, J.C.; Marinho, F.; Mokdad, A.H.; Monasta, L.; Naik, P.; Nomura, S.; O’Halloran, J.K.; Ostroff, S.M.; Pasovic, M.; Penberthy, L.; Reiner, R.C., Jr; Reinke, G.; Ribeiro, A.L.P.; Sholokhov, A.; Sorensen, R.J.D.; Varavikova, E.; Vo, A.T.; Walcott, R.; Watson, S.; Wiysonge, C.S.; Zigler, B.; Hay, S.I.; Vos, T.; Murray, C.J.L.; Whiteford, H.A.; Ferrari, A.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 2021, 398(10312), 1700-1712.
[http://dx.doi.org/10.1016/S0140-6736(21)02143-7] [PMID: 34634250]
[5]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[6]
Beurel, E.; Toups, M.; Nemeroff, C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 2020, 107(2), 234-256.
[http://dx.doi.org/10.1016/j.neuron.2020.06.002] [PMID: 32553197]
[7]
Gartlehner, G.; Wagner, G.; Matyas, N.; Titscher, V.; Greimel, J.; Lux, L.; Gaynes, B.N.; Viswanathan, M.; Patel, S.; Lohr, K.N. Pharmacological and non-pharmacological treatments for major depressive disorder: review of systematic reviews. BMJ Open, 2017, 7(6), e014912.
[http://dx.doi.org/10.1136/bmjopen-2016-014912] [PMID: 28615268]
[8]
Schildkraut, J.J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry, 1965, 122(5), 509-522.
[http://dx.doi.org/10.1176/ajp.122.5.509] [PMID: 5319766]
[9]
Dale, E.; Bang-Andersen, B.; Sánchez, C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem. Pharmacol., 2015, 95(2), 81-97.
[http://dx.doi.org/10.1016/j.bcp.2015.03.011] [PMID: 25813654]
[10]
Stahl, S.M. Mood Disorders and Antidepressants: Stahl’s Essential Psychopharmacology; Cambridge university press, 2013.
[11]
Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; McGrath, P.J.; Rosenbaum, J.F.; Sackeim, H.A.; Kupfer, D.J.; Luther, J.; Fava, M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry, 2006, 163(11), 1905-1917.
[http://dx.doi.org/10.1176/ajp.2006.163.11.1905] [PMID: 17074942]
[12]
Su, W.J.; Cao, Z.Y.; Jiang, C.L. Blocking the trigger: An integrative view on the anti-inflammatory therapy of depression. Brain Behav. Immun., 2019, 82, 10-12.
[http://dx.doi.org/10.1016/j.bbi.2019.09.002] [PMID: 31493446]
[13]
Gartlehner, G.; Thieda, P.; Hansen, R.A.; Gaynes, B.N.; DeVeaugh-Geiss, A.; Krebs, E.E.; Lohr, K.N. Comparative risk for harms of second-generation antidepressants: A systematic review and meta-analysis. Drug Saf., 2008, 31(10), 851-865.
[http://dx.doi.org/10.2165/00002018-200831100-00004] [PMID: 18759509]
[14]
Ogłodek, E.; Szota, A.; Just, M.; Moś D.; Araszkiewicz, A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol. Rep., 2014, 66(5), 776-781.
[http://dx.doi.org/10.1016/j.pharep.2014.04.009] [PMID: 25149980]
[15]
Numakawa, T.; Richards, M.; Nakajima, S.; Adachi, N.; Furuta, M.; Odaka, H.; Kunugi, H. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front. Psychiatry, 2014, 5, 136.
[http://dx.doi.org/10.3389/fpsyt.2014.00136] [PMID: 25309465]
[16]
Verduijn, J.; Milaneschi, Y.; Schoevers, R.A.; van Hemert, A.M.; Beekman, A.T.F.; Penninx, B.W.J.H. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression. Transl. Psychiatry, 2015, 5(9), e649.
[http://dx.doi.org/10.1038/tp.2015.137] [PMID: 26418277]
[17]
Koo, J.W.; Wohleb, E.S. How stress shapes neuroimmune function: Implications for the neurobiology of psychiatric disorders. Biol. Psychiatry, 2021, 90(2), 74-84.
[http://dx.doi.org/10.1016/j.biopsych.2020.11.007] [PMID: 33485589]
[18]
Ishikawa, Y.; Furuyashiki, T. The impact of stress on immune systems and its relevance to mental illness. Neurosci. Res., 2022, 175, 16-24.
[http://dx.doi.org/10.1016/j.neures.2021.09.005] [PMID: 34606943]
[19]
Tafet, G.E.; Nemeroff, C.B. The links between stress and depression: Psychoneuroendocrinological, genetic, and environmental interactions. J. Neuropsychiatry Clin. Neurosci., 2016, 28(2), 77-88.
[http://dx.doi.org/10.1176/appi.neuropsych.15030053] [PMID: 26548654]
[20]
Smith, R.S. The macrophage theory of depression. Med. Hypotheses, 1991, 35(4), 298-306.
[http://dx.doi.org/10.1016/0306-9877(91)90272-Z] [PMID: 1943879]
[21]
Pape, K.; Tamouza, R.; Leboyer, M.; Zipp, F. Immunoneuropsychiatry — novel perspectives on brain disorders. Nat. Rev. Neurol., 2019, 15(6), 317-328.
[http://dx.doi.org/10.1038/s41582-019-0174-4] [PMID: 30988501]
[22]
Carlsson, A.; Corrodi, H.; Fuxe, K.; Hökfelt, T. Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine. Eur. J. Pharmacol., 1969, 5(4), 357-366.
[http://dx.doi.org/10.1016/0014-2999(69)90113-7] [PMID: 5786359]
[23]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; Egger, M.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Tajika, A.; Ioannidis, J.P.A.; Geddes, J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet, 2018, 391(10128), 1357-1366.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[24]
Wetsman, N. Inflammatory illness: Why the next wave of antidepressants may target the immune system. Nat. Med., 2017, 23(9), 1009-1011.
[http://dx.doi.org/10.1038/nm0917-1009] [PMID: 28886000]
[25]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Frankincense (rǔ xiāng; boswellia species): from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J. Tradit. Complement. Med., 2013, 3(4), 221-226.
[http://dx.doi.org/10.4103/2225-4110.119723] [PMID: 24716181]
[26]
Yao, G.; Li, J.; Wang, J.; Liu, S.; Li, X.; Cao, X.; Chen, H.; Xu, Y. Improved resting-state functional dynamics in post-stroke depressive patients after shugan jieyu capsule treatment. Front. Neurosci., 2020, 14, 297.
[http://dx.doi.org/10.3389/fnins.2020.00297] [PMID: 32372901]
[27]
Tan, J.; Li, X.; Zhu, Y.; Sullivan, M.A.; Deng, B.; Zhai, X.; Lu, Y. Antidepressant shugan jieyu capsule alters gut microbiota and intestinal microbiome function in rats with chronic unpredictable mild stress -induced depression. Front. Pharmacol., 2022, 13, 828595.
[http://dx.doi.org/10.3389/fphar.2022.828595] [PMID: 35770090]
[28]
Miller, J. Antidepressants, part 1: 100 years and counting. Psychiatr. Times, 2017, 34(10), 23-26.
[29]
Shitiz, K.; Gupta, S.P. Rauwolfia serpentina; Himalayan Medicinal Plants, 2021.
[http://dx.doi.org/10.1016/B978-0-12-823151-7.00009-X]
[30]
Vakil, R.J. Rauwolfia serpentina in the treatment of high blood pressure; a review of the literature. Circulation, 1955, 12(2), 220-229.
[http://dx.doi.org/10.1161/01.CIR.12.2.220] [PMID: 13240803]
[31]
Quetsch, R.M.; Achor, R.W.P.; Litin, E.M.; Faucett, R.L. Depressive reactions in hypertensive patients; a comparison of those treated with Rauwolfia and those receiving no specific antihypertensive treatment. Circulation, 1959, 19(3), 366-375.
[http://dx.doi.org/10.1161/01.CIR.19.3.366] [PMID: 13629798]
[32]
Robitzek, E.H.; Selikoff, I.J. Hydrazine derivatives of isonicotinic acid (rimifon marsilid) in the treatment of active progressive caseous-pneumonic tuberculosis; a preliminary report. Am. Rev. Tuberc., 1952, 65(4), 402-428.
[PMID: 14903507]
[33]
Brown, W.A.; Rosdolsky, M. The clinical discovery of imipramine. Am. J. Psychiatry, 2015, 172(5), 426-429.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101336] [PMID: 25930134]
[34]
Axelrod, J.; Whitby, L.G.; Hertting, G. Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science, 1961, 133(3450), 383-384.
[http://dx.doi.org/10.1126/science.133.3450.383] [PMID: 13685337]
[35]
Fleming, A.; Eisendrath, S. Depression. In: Encyclopedia of the Neurological Sciences; Aminoff, M.J.; Daroff, R.B., Eds.; Academic Press: New York, 2003; pp. 853-860.
[http://dx.doi.org/10.1016/B0-12-226870-9/01067-4]
[36]
Harmer, C.J.; Duman, R.S.; Cowen, P.J. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry, 2017, 4(5), 409-418.
[http://dx.doi.org/10.1016/S2215-0366(17)30015-9] [PMID: 28153641]
[37]
Bauer, M.; Bschor, T.; Pfennig, A.; Whybrow, P.C.; Angst, J.; Versiani, M.; Möller, H.J.; Bauer, M.; Bschor, T.; Pfennig, A.; Whybrow, P.C.; Angst, J.; Versiani, M.; Möller, H-J. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders in primary care. World J. Biol. Psychiatry, 2007, 8(2), 67-104.
[http://dx.doi.org/10.1080/15622970701227829] [PMID: 17455102]
[38]
Cleare, A.; Pariante, C.M.; Young, A.H.; Anderson, I.M.; Christmas, D.; Cowen, P.J.; Dickens, C.; Ferrier, I.N.; Geddes, J.; Gilbody, S.; Haddad, P.M.; Katona, C.; Lewis, G.; Malizia, A.; McAllister-Williams, R.H.; Ramchandani, P.; Scott, J.; Taylor, D.; Uher, R. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J. Psychopharmacol., 2015, 29(5), 459-525.
[http://dx.doi.org/10.1177/0269881115581093] [PMID: 25969470]
[39]
Deardorff, W.J.; Grossberg, G.T. A review of the clinical efficacy, safety and tolerability of the antidepressants vilazodone, levomilnacipran and vortioxetine. Expert Opin. Pharmacother., 2014, 15(17), 2525-2542.
[http://dx.doi.org/10.1517/14656566.2014.960842] [PMID: 25224953]
[40]
Kent, J.M. SNaRIs, NaSSAs, and NaRIs: New agents for the treatment of depression. Lancet, 2000, 355(9207), 911-918.
[http://dx.doi.org/10.1016/S0140-6736(99)11381-3] [PMID: 10752718]
[41]
Guaiana, G.; Gupta, S.; Chiodo, D.; Davies, S.J.C.; Haederle, K.; Koesters, M. Agomelatine versus other antidepressive agents for major depression. Cochrane Libr., 2013, (12), CD008851.
[http://dx.doi.org/10.1002/14651858.CD008851.pub2] [PMID: 24343836]
[42]
Taylor, D.; Sparshatt, A.; Varma, S.; Olofinjana, O. Antidepressant efficacy of agomelatine: Meta-analysis of published and unpublished studies. BMJ, 2014, 348, g1888.
[http://dx.doi.org/10.1136/bmj.g1888]
[43]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[44]
Ramadan, A.M.; Mansour, I.A. Could ketamine be the answer to treating treatment-resistant major depressive disorder? Gen. Psychiatr., 2020, 33(5), e100227.
[http://dx.doi.org/10.1136/gpsych-2020-100227] [PMID: 32875273]
[45]
Mcdonald, E.M.; Mann, A.H.; Thomas, H.C. Interferons as mediators of psychiatric morbidity. An investigation in a trial of recombinant alpha-interferon in hepatitis-B carriers. Lancet, 1987, 330(8569), 1175-1178.
[http://dx.doi.org/10.1016/S0140-6736(87)91319-5] [PMID: 2890808]
[46]
Niiranen, A.; Laaksonen, R. livanainen, M.; Mattson, K.; Färkkilä, M.; Cantell, K. Behavioral assessment of patients treated with alpha-interferon. Acta Psychiatr. Scand., 1988, 78(5), 622-626.
[http://dx.doi.org/10.1111/j.1600-0447.1988.tb06395.x] [PMID: 3232542]
[47]
Maes, M.; Smith, R.; Simon, S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 1995, 20(2), 111-116.
[http://dx.doi.org/10.1016/0306-4530(94)00066-J] [PMID: 7899532]
[48]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[49]
Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 277-284.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.008] [PMID: 26111720]
[50]
Petralia, M.C.; Mazzon, E.; Fagone, P.; Basile, M.S.; Lenzo, V.; Quattropani, M.C.; Di Nuovo, S.; Bendtzen, K.; Nicoletti, F. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun. Rev., 2020, 19(5), 102504.
[http://dx.doi.org/10.1016/j.autrev.2020.102504] [PMID: 32173514]
[51]
Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol., 2006, 27(1), 24-31.
[http://dx.doi.org/10.1016/j.it.2005.11.006] [PMID: 16316783]
[52]
Su, W.J.; Cao, Z.Y.; Jiang, C.L. Inflammatory mechanism of depression and its new strategy for diagnosis and treatment. Sheng Li Xue Bao, 2017, 69(5), 715-722.
[PMID: 29063119]
[53]
Young, J.J.; Bruno, D.; Pomara, N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord., 2014, 169, 15-20.
[http://dx.doi.org/10.1016/j.jad.2014.07.032] [PMID: 25128861]
[54]
Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med., 2009, 71(2), 171-186.
[http://dx.doi.org/10.1097/PSY.0b013e3181907c1b] [PMID: 19188531]
[55]
Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67(5), 446-457.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.033] [PMID: 20015486]
[56]
Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; Raison, C.L.; Miller, B.J.; Lanctôt, K.L.; Carvalho, A.F. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand., 2017, 135(5), 373-387.
[http://dx.doi.org/10.1111/acps.12698] [PMID: 28122130]
[57]
Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun., 2019, 81, 24-40.
[http://dx.doi.org/10.1016/j.bbi.2019.06.015] [PMID: 31195092]
[58]
Matcham, F.; Rayner, L.; Steer, S.; Hotopf, M. The prevalence of depression in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatology, 2013, 52(12), 2136-2148.
[http://dx.doi.org/10.1093/rheumatology/ket169] [PMID: 24003249]
[59]
Barberio, B.; Zamani, M.; Black, C.J.; Savarino, E.V.; Ford, A.C. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 2021, 6(5), 359-370.
[http://dx.doi.org/10.1016/S2468-1253(21)00014-5] [PMID: 33721557]
[60]
Dowlatshahi, E.A.; Wakkee, M.; Arends, L.R.; Nijsten, T. The prevalence and odds of depressive symptoms and clinical depression in psoriasis patients: A systematic review and meta-analysis. J. Invest. Dermatol., 2014, 134(6), 1542-1551.
[http://dx.doi.org/10.1038/jid.2013.508] [PMID: 24284419]
[61]
Moustafa, A.T.; Moazzami, M.; Engel, L.; Bangert, E.; Hassanein, M.; Marzouk, S.; Kravtsenyuk, M.; Fung, W.; Eder, L.; Su, J.; Wither, J.E.; Touma, Z. Prevalence and metric of depression and anxiety in systemic lupus erythematosus: A systematic review and meta-analysis. Semin. Arthritis Rheum., 2020, 50(1), 84-94.
[http://dx.doi.org/10.1016/j.semarthrit.2019.06.017] [PMID: 31303437]
[62]
Fotopoulos, A.; Petrikis, P.; Sioka, C. Depression and coronary artery disease. Psychiatr. Danub., 2021, 33(1), 73.
[PMID: 33857047]
[63]
McFarland, D.C.; Doherty, M.; Atkinson, T.M.; O’Hanlon, R.; Breitbart, W.; Nelson, C.J.; Miller, A.H. Cancer‐related inflammation and depressive symptoms: Systematic review and meta‐analysis. Cancer, 2022, 128(13), 2504-2519.
[http://dx.doi.org/10.1002/cncr.34193] [PMID: 35417925]
[64]
Gold, S.M.; Köhler-Forsberg, O.; Moss-Morris, R.; Mehnert, A.; Miranda, J.J.; Bullinger, M.; Steptoe, A.; Whooley, M.A.; Otte, C. Comorbid depression in medical diseases. Nat. Rev. Dis. Primers, 2020, 6(1), 69.
[http://dx.doi.org/10.1038/s41572-020-0200-2] [PMID: 32820163]
[65]
Schaefer, M.; Engelbrechta, M.A.; Gut, O.; Fiebich, B.L.; Bauer, J.; Schmidt, F.; Grunze, H.; Lieb, K. Interferon alpha (IFNα) and psychiatric syndromes. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(4), 731-746.
[http://dx.doi.org/10.1016/S0278-5846(01)00324-4] [PMID: 12188106]
[66]
Benson, S.; Engler, H.; Wegner, A.; Rebernik, L.; Spreitzer, I.; Schedlowski, M.; Elsenbruch, S. What makes you feel sick after inflammation? predictors of acute and persisting physical sickness symptoms induced by experimental endotoxemia. Clin. Pharmacol. Ther., 2017, 102(1), 141-151.
[http://dx.doi.org/10.1002/cpt.618] [PMID: 28074475]
[67]
Kim, Y.K.; Na, K.S.; Shin, K.H.; Jung, H.Y.; Choi, S.H.; Kim, J.B. Cytokine imbalance in the pathophysiology of major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(5), 1044-1053.
[http://dx.doi.org/10.1016/j.pnpbp.2007.03.004] [PMID: 17433516]
[68]
Wu, H.; Denna, T.H.; Storkersen, J.N.; Gerriets, V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res., 2019, 140, 100-114.
[http://dx.doi.org/10.1016/j.phrs.2018.06.015] [PMID: 29953943]
[69]
Wang, L.; Wang, R.; Liu, L.; Qiao, D.; Baldwin, D.S.; Hou, R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav. Immun., 2019, 79, 24-38.
[http://dx.doi.org/10.1016/j.bbi.2019.02.021] [PMID: 30797959]
[70]
Dionisie, V.; Filip, G.A.; Manea, M.C.; Manea, M.; Riga, S. The anti-inflammatory role of SSRI and SNRI in the treatment of depression: a review of human and rodent research studies. Inflammopharmacology, 2021, 29(1), 75-90.
[http://dx.doi.org/10.1007/s10787-020-00777-5] [PMID: 33164143]
[71]
O’Brien, S.M.; Scully, P.; Fitzgerald, P.; Scott, L.V.; Dinan, T.G. Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J. Psychiatr. Res., 2007, 41(3-4), 326-331.
[http://dx.doi.org/10.1016/j.jpsychires.2006.05.013] [PMID: 16870211]
[72]
Strawbridge, R.; Marwood, L.; King, S.; Young, A.H.; Pariante, C.M.; Colasanti, A.; Cleare, A.J. Inflammatory proteins and clinical response to psychological therapy in patients with depression: An exploratory study. J. Clin. Med., 2020, 9(12), 3918.
[http://dx.doi.org/10.3390/jcm9123918] [PMID: 33276697]
[73]
Suarez, E.C.; Krishnan, R.R.; Lewis, J.G. The relation of severity of depressive symptoms to monocyte-associated proinflammatory cytokines and chemokines in apparently healthy men. Psychosom. Med., 2003, 65(3), 362-368.
[http://dx.doi.org/10.1097/01.PSY.0000035719.79068.2B] [PMID: 12764208]
[74]
Kappelmann, N.; Lewis, G.; Dantzer, R.; Jones, P.B.; Khandaker, G.M. Antidepressant activity of anti-cytokine treatment: A systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol. Psychiatry, 2018, 23(2), 335-343.
[http://dx.doi.org/10.1038/mp.2016.167] [PMID: 27752078]
[75]
Rethorst, C.D.; Toups, M.S.; Greer, T.L.; Nakonezny, P.A.; Carmody, T.J.; Grannemann, B.D.; Huebinger, R.M.; Barber, R.C.; Trivedi, M.H. Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Mol. Psychiatry, 2013, 18(10), 1119-1124.
[http://dx.doi.org/10.1038/mp.2012.125] [PMID: 22925832]
[76]
O’Donovan, A.; Rush, G.; Hoatam, G.; Hughes, B.M.; McCrohan, A.; Kelleher, C.; O’Farrelly, C.; Malone, K.M. Suicidal ideation is associated with elevated inflammation in patients with major depressive disorder. Depress. Anxiety, 2013, 30(4), 307-314.
[http://dx.doi.org/10.1002/da.22087] [PMID: 23504697]
[77]
Black, C.; Miller, B.J. Meta-analysis of cytokines and chemokines in suicidality: Distinguishing suicidal versus nonsuicidal patients. Biol. Psychiatry, 2015, 78(1), 28-37.
[http://dx.doi.org/10.1016/j.biopsych.2014.10.014] [PMID: 25541493]
[78]
Fazel, S.; Runeson, B. Suicide. N. Engl. J. Med., 2020, 382(3), 266-274.
[http://dx.doi.org/10.1056/NEJMra1902944] [PMID: 31940700]
[79]
Yan, W.J.; Jiang, C.L.; Su, W.J. Life in the flame: Inflammation sounds the alarm for suicide risk. Brain, Behavior, & Immunity - Health, 2021, 14, 100250.
[http://dx.doi.org/10.1016/j.bbih.2021.100250] [PMID: 34589761]
[80]
Franklin, T.C.; Xu, C.; Duman, R.S. Depression and sterile inflammation: Essential role of danger associated molecular patterns. Brain Behav. Immun., 2018, 72, 2-13.
[http://dx.doi.org/10.1016/j.bbi.2017.10.025] [PMID: 29102801]
[81]
Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol., 2010, 10(12), 826-837.
[http://dx.doi.org/10.1038/nri2873] [PMID: 21088683]
[82]
Perrin, A.J.; Horowitz, M.A.; Roelofs, J.; Zunszain, P.A.; Pariante, C.M. Glucocorticoid resistance: Is it a requisite for increased cytokine production in depression? a systematic review and meta-analysis. Front. Psychiatry, 2019, 10, 423.
[http://dx.doi.org/10.3389/fpsyt.2019.00423] [PMID: 31316402]
[83]
Chen, S.; Zhang, Y.; Yuan, Y. The combination of serum BDNF, cortisol and IFN-gamma can assist the diagnosis of major depressive disorder. Neuropsychiatr. Dis. Treat., 2021, 17, 2819-2829.
[http://dx.doi.org/10.2147/NDT.S322078] [PMID: 34471356]
[84]
Amasi-Hartoonian, N.; Sforzini, L.; Cattaneo, A.; Pariante, C.M. Cause or consequence? Understanding the role of cortisol in the increased inflammation observed in depression. Curr. Opin. Endocr. Metab. Res., 2022, 24, 100356.
[http://dx.doi.org/10.1016/j.coemr.2022.100356] [PMID: 35634363]
[85]
Pace, T.W.W.; Miller, A.H. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann. N. Y. Acad. Sci., 2009, 1179(1), 86-105.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04984.x] [PMID: 19906234]
[86]
Lauer, C.J.; Schreiber, W.; Modell, S.; Holsboer, F.; Krieg, J.C. The Munich vulnerability study on affective disorders: overview of the cross-sectional observations at index investigation. J. Psychiatr. Res., 1998, 32(6), 393-401.
[http://dx.doi.org/10.1016/S0022-3956(98)00026-0] [PMID: 9844956]
[87]
Kim, Y.K.; Won, E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav. Brain Res., 2017, 329, 6-11.
[http://dx.doi.org/10.1016/j.bbr.2017.04.020] [PMID: 28442354]
[88]
Maes, M.; Song, C.; Lin, A.; De Jongh, R.; Van Gastel, A.; Kenis, G.; Bosmans, E.; De Meester, I.; Benoy, I.; Neels, H.; Demedts, P.; Janca, A.; Scharpé, S.; Smith, R.S. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine, 1998, 10(4), 313-318.
[http://dx.doi.org/10.1006/cyto.1997.0290] [PMID: 9617578]
[89]
Mittwoch-Jaffe, T.; Shalit, F.; Srendi, B.; Yehuda, S. Modification of cytokine secretion following mild emotional stimuli. Neuroreport, 1995, 6(5), 789-792.
[http://dx.doi.org/10.1097/00001756-199503270-00021] [PMID: 7605950]
[90]
Dobbin, J.P.; Harth, M.; McCain, G.A.; Martin, R.A.; Cousin, K. Cytokine production and lymphocyte transformation during stress. Brain Behav. Immun., 1991, 5(4), 339-348.
[http://dx.doi.org/10.1016/0889-1591(91)90029-A] [PMID: 1777728]
[91]
Su, W.J.; Zhang, T.; Jiang, C.L.; Wang, W. Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus. Front. Cell. Neurosci., 2018, 12, 412.
[http://dx.doi.org/10.3389/fncel.2018.00412] [PMID: 30483062]
[92]
Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; Maes, M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med., 2013, 11(1), 200.
[http://dx.doi.org/10.1186/1741-7015-11-200] [PMID: 24228900]
[93]
Rider, P.; Voronov, E.; Dinarello, C.A.; Apte, R.N.; Cohen, I. Alarmins: Feel the stress. J. Immunol., 2017, 198(4), 1395-1402.
[http://dx.doi.org/10.4049/jimmunol.1601342] [PMID: 28167650]
[94]
Samir, P.; Kesavardhana, S.; Patmore, D.M.; Gingras, S.; Malireddi, R.K.S.; Karki, R.; Guy, C.S.; Briard, B.; Place, D.E.; Bhattacharya, A.; Sharma, B.R.; Nourse, A.; King, S.V.; Pitre, A.; Burton, A.R.; Pelletier, S.; Gilbertson, R.J.; Kanneganti, T.D. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature, 2019, 573(7775), 590-594.
[http://dx.doi.org/10.1038/s41586-019-1551-2] [PMID: 31511697]
[95]
Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; Camus, V. Neuroinflammation and depression: A review. Eur. J. Neurosci., 2021, 53(1), 151-171.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[96]
Blatteis, C.M.; Bealer, S.L.; Hunter, W.S.; Llanos, J-Q.; Ahokas, R.A.; Mashburn, T.A., Jr Suppression of fever after lesions of the anteroventral third ventricle in guinea pigs. Brain Res. Bull., 1983, 11(5), 519-526.
[http://dx.doi.org/10.1016/0361-9230(83)90124-7] [PMID: 6365250]
[97]
Hsuchou, H.; Kastin, A.J.; Mishra, P.K.; Pan, W. C-reactive protein increases BBB permeability: Implications for obesity and neuroinflammation. Cell. Physiol. Biochem., 2012, 30(5), 1109-1119.
[http://dx.doi.org/10.1159/000343302] [PMID: 23018453]
[98]
Banks, W.A.; Kastin, A.J.; Durham, D.A. Bidirectional transport of interleukin-1 alpha across the blood-brain barrier. Brain Res. Bull., 1989, 23(6), 433-437.
[http://dx.doi.org/10.1016/0361-9230(89)90185-8] [PMID: 2611685]
[99]
Pan, W.; Kastin, A.J. TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp. Neurol., 2002, 174(2), 193-200.
[http://dx.doi.org/10.1006/exnr.2002.7871] [PMID: 11922661]
[100]
Watkins, L.R.; Goehler, L.E.; Relton, J.K.; Tartaglia, N.; Silbert, L.; Martin, D.; Maier, S.F. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: Evidence for vagal mediation of immune-brain communication. Neurosci. Lett., 1995, 183(1-2), 27-31.
[http://dx.doi.org/10.1016/0304-3940(94)11105-R] [PMID: 7746479]
[101]
Verma, S.; Nakaoke, R.; Dohgu, S.; Banks, W.A. Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav. Immun., 2006, 20(5), 449-455.
[http://dx.doi.org/10.1016/j.bbi.2005.10.005] [PMID: 16309883]
[102]
Harry, G.J.; Kraft, A.D. Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol., 2008, 4(10), 1265-1277.
[http://dx.doi.org/10.1517/17425255.4.10.1265] [PMID: 18798697]
[103]
D’Mello, C.; Le, T.; Swain, M.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci., 2009, 29(7), 2089-2102.
[http://dx.doi.org/10.1523/JNEUROSCI.3567-08.2009] [PMID: 19228962]
[104]
Peraçoli, M.; Kurokawa, C.S.; Calvi, S.A.; Mendes, R.P.; Pereira, P.C.; Marques, S.A.; Soares, A.M. Production of pro- and anti-inflammatory cytokines by monocytes from patients with paracoccidioidomycosis. Microbes Infect., 2003, 5(5), 413-418.
[http://dx.doi.org/10.1016/S1286-4579(03)00040-6] [PMID: 12737997]
[105]
Gritti, D.; Delvecchio, G.; Ferro, A.; Bressi, C.; Brambilla, P. Neuroinflammation in major depressive disorder: A review of pet imaging studies examining the 18-kDa translocator protein. J. Affect. Disord., 2021, 292, 642-651.
[http://dx.doi.org/10.1016/j.jad.2021.06.001] [PMID: 34153835]
[106]
Köhler-Forsberg, O.N.; Lydholm, C.; Hjorthøj, C.; Nordentoft, M.; Mors, O.; Benros, M.E. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials. Acta Psychiatr. Scand., 2019, 139(5), 404-419.
[http://dx.doi.org/10.1111/acps.13016] [PMID: 30834514]
[107]
Shim, H. One target, different effects: A comparison of distinct therapeutic antibodies against the same targets. Exp. Mol. Med., 2011, 43(10), 539-549.
[http://dx.doi.org/10.3858/emm.2011.43.10.063] [PMID: 21811090]
[108]
Zhao, S.; Chadwick, L.; Mysler, E.; Moots, R.J. Review of biosimilar trials and data on adalimumab in rheumatoid arthritis. Curr. Rheumatol. Rep., 2018, 20(10), 57.
[http://dx.doi.org/10.1007/s11926-018-0769-6] [PMID: 30094742]
[109]
Cvetković R.S.; Scott, L.J. Adalimumab: A review of its use in adult patients with rheumatoid arthritis. BioDrugs, 2006, 20(5), 293-311.
[http://dx.doi.org/10.2165/00063030-200620050-00005] [PMID: 17025376]
[110]
Loftus, E.V.; Feagan, B.G.; Colombel, J.F.; Rubin, D.T.; Wu, E.Q.; Yu, A.P.; Pollack, P.F.; Chao, J.; Mulani, P. Effects of adalimumab maintenance therapy on health-related quality of life of patients with Crohn’s disease: Patient-reported outcomes of the CHARM trial. Am. J. Gastroenterol., 2008, 103(12), 3132-3141.
[http://dx.doi.org/10.1111/j.1572-0241.2008.02175.x] [PMID: 18853973]
[111]
Menter, A.; Augustin, M.; Signorovitch, J.; Yu, A.P.; Wu, E.Q.; Gupta, S.R.; Bao, Y.; Mulani, P. The effect of adalimumab on reducing depression symptoms in patients with moderate to severe psoriasis: A randomized clinical trial. J. Am. Acad. Dermatol., 2010, 62(5), 812-818.
[http://dx.doi.org/10.1016/j.jaad.2009.07.022] [PMID: 20219265]
[112]
Lim, S.H.; Kim, K.; Choi, C.I. Pharmacogenomics of monoclonal antibodies for the treatment of rheumatoid arthritis. J. Pers. Med., 2022, 12(8), 1265.
[http://dx.doi.org/10.3390/jpm12081265] [PMID: 36013214]
[113]
Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70(1), 31-41.
[http://dx.doi.org/10.1001/2013.jamapsychiatry.4] [PMID: 22945416]
[114]
Weinberger, J.F.; Raison, C.L.; Rye, D.B.; Montague, A.R.; Woolwine, B.J.; Felger, J.C.; Haroon, E.; Miller, A.H. Inhibition of tumor necrosis factor improves sleep continuity in patients with treatment resistant depression and high inflammation. Brain Behav. Immun., 2015, 47, 193-200.
[http://dx.doi.org/10.1016/j.bbi.2014.12.016] [PMID: 25529904]
[115]
Webers, C.; Stolwijk, C.; Schiepers, O.; Schoonbrood, T.; van Tubergen, A.; Landewé, R.; van der Heijde, D.; Boonen, A. Infliximab treatment reduces depressive symptoms in patients with ankylosing spondylitis: An ancillary study to a randomized controlled trial (ASSERT). Arthritis Res. Ther., 2020, 22(1), 225.
[http://dx.doi.org/10.1186/s13075-020-02305-w] [PMID: 32993799]
[116]
Goffe, B.; Cather, J.C. Etanercept: An overview. J. Am. Acad. Dermatol., 2003, 49(S2), 105-111.
[http://dx.doi.org/10.1016/mjd.2003.554] [PMID: 12894133]
[117]
Kekow, J.; Moots, R.J.; Emery, P.; Durez, P.; Koenig, A.; Singh, A.; Pedersen, R.; Robertson, D.; Freundlich, B.; Sato, R. Patient-reported outcomes improve with etanercept plus methotrexate in active early rheumatoid arthritis and the improvement is strongly associated with remission: The COMET trial. Ann. Rheum. Dis., 2010, 69(1), 222-225.
[http://dx.doi.org/10.1136/ard.2008.102509] [PMID: 19293160]
[118]
Tyring, S.; Bagel, J.; Lynde, C.; Klekotka, P.; Thompson, E.H.Z.; Gandra, S.R.; Shi, Y.; Kricorian, G. Patient-reported outcomes in moderate-to-severe plaque psoriasis with scalp involvement: Results from a randomized, double-blind, placebo-controlled study of etanercept. J. Eur. Acad. Dermatol. Venereol., 2013, 27(1), 125-128.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04394.x] [PMID: 22188302]
[119]
Sun, Y.; Wang, D.; Salvadore, G.; Hsu, B.; Curran, M.; Casper, C.; Vermeulen, J.; Kent, J.M.; Singh, J.; Drevets, W.C.; Wittenberg, G.M.; Chen, G. The effects of interleukin-6 neutralizing antibodies on symptoms of depressed mood and anhedonia in patients with rheumatoid arthritis and multicentric Castleman’s disease. Brain Behav. Immun., 2017, 66, 156-164.
[http://dx.doi.org/10.1016/j.bbi.2017.06.014] [PMID: 28676350]
[120]
Narazaki, M.; Tanaka, T.; Kishimoto, T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev. Clin. Immunol., 2017, 13(6), 535-551.
[http://dx.doi.org/10.1080/1744666X.2017.1295850] [PMID: 28494214]
[121]
Griffiths, C.E.M.; Fava, M.; Miller, A.H.; Russell, J.; Ball, S.G.; Xu, W.; Acharya, N.; Rapaport, M.H. Impact of ixekizumab treatment on depressive symptoms and systemic inflammation in patients with moderate-to-severe psoriasis: An integrated analysis of three phase 3 clinical studies. Psychother. Psychosom., 2017, 86(5), 260-267.
[http://dx.doi.org/10.1159/000479163] [PMID: 28903122]
[122]
Wang, R.; Maksymowych, W.P. Targeting the interleukin-23/interleukin-17 inflammatory pathway: Successes and failures in the treatment of axial spondyloarthritis. Front. Immunol., 2021, 12, 715510.
[http://dx.doi.org/10.3389/fimmu.2021.715510] [PMID: 34539646]
[123]
Kim, S.J.; Park, M.Y.; Pak, K.; Han, J.; Kim, G.W.; Kim, H.S.; Ko, H.C.; Kim, M.B.; Kim, B.S. Improvement of depressive symptoms in patients with moderate-to-severe psoriasis treated with ustekinumab: An open label trial validated using beck depression inventory, Hamilton depression rating scale measures and 18 fluorodeoxyglucose (FDG) positron emission tomography (PET). J. Dermatolog. Treat., 2018, 29(8), 761-768.
[http://dx.doi.org/10.1080/09546634.2018.1466021] [PMID: 29658378]
[124]
Simpson, E.L.; Gadkari, A.; Worm, M.; Soong, W.; Blauvelt, A.; Eckert, L.; Wu, R.; Ardeleanu, M.; Graham, N.M.H.; Pirozzi, G.; Sutherland, E.R.; Mastey, V. Dupilumab therapy provides clinically meaningful improvement in patient-reported outcomes (PROs): A phase IIb, randomized, placebo-controlled, clinical trial in adult patients with moderate to severe atopic dermatitis (AD). J. Am. Acad. Dermatol., 2016, 75(3), 506-515.
[http://dx.doi.org/10.1016/j.jaad.2016.04.054] [PMID: 27268421]
[125]
Cork, M.J.; Eckert, L.; Simpson, E.L.; Armstrong, A.; Barbarot, S.; Puig, L.; Girolomoni, G.; de Bruin-Weller, M.; Wollenberg, A.; Kataoka, Y.; Remitz, A.; Beissert, S.; Mastey, V.; Ardeleanu, M.; Chen, Z.; Gadkari, A.; Chao, J. Dupilumab improves patient-reported symptoms of atopic dermatitis, symptoms of anxiety and depression, and health-related quality of life in moderate-to-severe atopic dermatitis: Analysis of pooled data from the randomized trials SOLO 1 and SOLO 2. J. Dermatolog. Treat., 2020, 31(6), 606-614.
[http://dx.doi.org/10.1080/09546634.2019.1612836] [PMID: 31179791]
[126]
Zobdeh, F.; Eremenko, I.I.; Akan, M.A.; Tarasov, V.V.; Chubarev, V.N.; Schiöth, H.B.; Mwinyi, J. Pharmacogenetics and pain treatment with a focus on non-steroidal Anti-Inflammatory Drugs (NSAIDs) and antidepressants: A systematic review. Pharmaceutics, 2022, 14(6), 1190.
[http://dx.doi.org/10.3390/pharmaceutics14061190] [PMID: 35745763]
[127]
Ozleyen, A.; Yilmaz, Y.B.; Donmez, S.; Atalay, H.N.; Antika, G.; Tumer, T.B. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J. Cancer Res. Clin. Oncol., 2022, 1-19.
[http://dx.doi.org/10.1007/s00432-022-04187-8] [PMID: 35876951]
[128]
Sinniah, A.; Yazid, S.; Flower, R.J. From NSAIDs to Glucocorticoids and Beyond. Cells, 2021, 10(12), 3524.
[http://dx.doi.org/10.3390/cells10123524] [PMID: 34944032]
[129]
Flower, R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov., 2003, 2(3), 179-191.
[http://dx.doi.org/10.1038/nrd1034] [PMID: 12612644]
[130]
Müller, N.; Schwarz, M.J.; Dehning, S.; Douhe, A.; Cerovecki, A.; Goldstein-Müller, B.; Spellmann, I.; Hetzel, G.; Maino, K.; Kleindienst, N.; Möller, H-J.; Arolt, V.; Riedel, M. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry, 2006, 11(7), 680-684.
[http://dx.doi.org/10.1038/sj.mp.4001805] [PMID: 16491133]
[131]
Akhondzadeh, S.; Jafari, S.; Raisi, F.; Nasehi, A.A.; Ghoreishi, A.; Salehi, B.; Mohebbi-Rasa, S.; Raznahan, M.; Kamalipour, A. Clinical trial of adjunctive celecoxib treatment in patients with major depression: A double blind and placebo controlled trial. Depress. Anxiety, 2009, 26(7), 607-611.
[http://dx.doi.org/10.1002/da.20589] [PMID: 19496103]
[132]
Abbasi, S.H.; Hosseini, F.; Modabbernia, A.; Ashrafi, M.; Akhondzadeh, S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J. Affect. Disord., 2012, 141(2-3), 308-314.
[http://dx.doi.org/10.1016/j.jad.2012.03.033] [PMID: 22516310]
[133]
Jafari, S.; Ashrafizadeh, S.G.; Zeinoddini, A.; Rasoulinejad, M.; Entezari, P.; Seddighi, S.; Akhondzadeh, S. Celecoxib for the treatment of mild-to-moderate depression due to acute brucellosis: A double-blind, placebo-controlled, randomized trial. J. Clin. Pharm. Ther., 2015, 40(4), 441-446.
[http://dx.doi.org/10.1111/jcpt.12287] [PMID: 26009929]
[134]
Majd, M.; Hashemian, F.; Hosseini, S.M.; Vahdat Shariatpanahi, M.; Sharifi, A. A randomized, double-blind, placebo-controlled trial of celecoxib augmentation of sertraline in treatment of drug-naive depressed women: A pilot study. Iran. J. Pharm. Res., 2015, 14(3), 891-899.
[PMID: 26330878]
[135]
Alamdarsaravi, M.; Ghajar, A.; Noorbala, A.A.; Arbabi, M.; Emami, A.; Shahei, F.; Mirzania, M.; Jafarinia, M.; Afarideh, M.; Akhondzadeh, S. Efficacy and safety of celecoxib monotherapy for mild to moderate depression in patients with colorectal cancer: A randomized double-blind, placebo controlled trial. Psychiatry Res., 2017, 255, 59-65.
[http://dx.doi.org/10.1016/j.psychres.2017.05.029] [PMID: 28528242]
[136]
Baune, B.T.; Sampson, E.; Louise, J.; Hori, H.; Schubert, K.O.; Clark, S.R.; Mills, N.T.; Fourrier, C. No evidence for clinical efficacy of adjunctive celecoxib with vortioxetine in the treatment of depression: A 6-week double-blind placebo controlled randomized trial. Eur. Neuropsychopharmacol., 2021, 53, 34-46.
[http://dx.doi.org/10.1016/j.euroneuro.2021.07.092] [PMID: 34375789]
[137]
Berk, M.; Woods, R.L.; Nelson, M.R.; Shah, R.C.; Reid, C.M.; Storey, E.; Fitzgerald, S.; Lockery, J.E.; Wolfe, R.; Mohebbi, M.; Dodd, S.; Murray, A.M.; Stocks, N.; Fitzgerald, P.B.; Mazza, C.; Agustini, B.; McNeil, J.J. Effect of aspirin vs placebo on the prevention of depression in older people. JAMA Psychiatry, 2020, 77(10), 1012-1020.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.1214] [PMID: 32492080]
[138]
Berk, M.; Mohebbi, M.; Dean, O.M.; Cotton, S.M.; Chanen, A.M.; Dodd, S.; Ratheesh, A.; Amminger, G.P.; Phelan, M.; Weller, A.; Mackinnon, A.; Giorlando, F.; Baird, S.; Incerti, L.; Brodie, R.E.; Ferguson, N.O.; Rice, S.; Schäfer, M.R.; Mullen, E.; Hetrick, S.; Kerr, M.; Harrigan, S.M.; Quinn, A.L.; Mazza, C.; McGorry, P.; Davey, C.G. Youth depression alleviation with anti-inflammatory agents (YoDA-A): A randomised clinical trial of rosuvastatin and aspirin. BMC Med., 2020, 18(1), 16.
[http://dx.doi.org/10.1186/s12916-019-1475-6] [PMID: 31948461]
[139]
Mahagna, H.; Amital, D.; Amital, H. A randomised, double‐blinded study comparing giving etoricoxib vs. placebo to female patients with fibromyalgia. Int. J. Clin. Pract., 2016, 70(2), 163-170.
[http://dx.doi.org/10.1111/ijcp.12760] [PMID: 26763773]
[140]
Fields, C.; Drye, L.; Vaidya, V.; Lyketsos, C.; Group, A.R. Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. Am. J. Geriatr. Psychiatry, 2012, 20(6), 505-513.
[http://dx.doi.org/10.1097/JGP.0b013e318227f4da] [PMID: 21775876]
[141]
Iyengar, R.L.; Gandhi, S.; Aneja, A.; Thorpe, K.; Razzouk, L.; Greenberg, J.; Mosovich, S.; Farkouh, M.E. NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am. J. Med., 2013, 126(11), e1011-e1018.
[http://dx.doi.org/10.1016/j.amjmed.2013.02.037]
[142]
Mohammadinejad, P.; Arya, P.; Esfandbod, M.; Kaviani, A.; Najafi, M.; Kashani, L.; Zeinoddini, A.; Emami, S.A.; Akhondzadeh, S. Celecoxib versus diclofenac in mild to moderate depression management among breast cancer patients. Ann. Pharmacother., 2015, 49(9), 953-961.
[http://dx.doi.org/10.1177/1060028015592215] [PMID: 26139640]
[143]
Plane, J.M.; Shen, Y.; Pleasure, D.E.; Deng, W. Prospects for minocycline neuroprotection. Arch. Neurol., 2010, 67(12), 1442-1448.
[http://dx.doi.org/10.1001/archneurol.2010.191] [PMID: 20697034]
[144]
Bové, J.; Martínez-Vicente, M.; Vila, M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci., 2011, 12(8), 437-452.
[http://dx.doi.org/10.1038/nrn3068] [PMID: 21772323]
[145]
Stock, M.L.; Fiedler, K.J.; Acharya, S.; Lange, J.K.; Mlynarczyk, G.S.A.; Anderson, S.J.; McCormack, G.R.; Kanuri, S.H.; Kondru, N.C.; Brewer, M.T.; Carlson, S.A. Antibiotics acting as neuroprotectants via mechanisms independent of their anti-infective activities. Neuropharmacology, 2013, 73, 174-182.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.059] [PMID: 23748053]
[146]
Colovic, M.; Caccia, S. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 791(1-2), 337-343.
[http://dx.doi.org/10.1016/S1570-0232(03)00247-2] [PMID: 12798193]
[147]
Emadi-Kouchak, H.; Mohammadinejad, P.; Asadollahi-Amin, A.; Rasoulinejad, M.; Zeinoddini, A.; Yalda, A.; Akhondzadeh, S. Therapeutic effects of minocycline on mild-to-moderate depression in HIV patients. Int. Clin. Psychopharmacol., 2016, 31(1), 20-26.
[http://dx.doi.org/10.1097/YIC.0000000000000098] [PMID: 26465919]
[148]
Dean, O.M.; Kanchanatawan, B.; Ashton, M.; Mohebbi, M.; Ng, C.H.; Maes, M.; Berk, L.; Sughondhabirom, A.; Tangwongchai, S.; Singh, A.B.; McKenzie, H.; Smith, D.J.; Malhi, G.S.; Dowling, N.; Berk, M. Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial. Aust. N. Z. J. Psychiatry, 2017, 51(8), 829-840.
[http://dx.doi.org/10.1177/0004867417709357] [PMID: 28578592]
[149]
Husain, M.I.; Chaudhry, I.B.; Husain, N.; Khoso, A.B.; Rahman, R.R.; Hamirani, M.M.; Hodsoll, J.; Qurashi, I.; Deakin, J.F.W.; Young, A.H. Minocycline as an adjunct for treatment-resistant depressive symptoms: A pilot randomised placebo-controlled trial. J. Psychopharmacol., 2017, 31(9), 1166-1175.
[http://dx.doi.org/10.1177/0269881117724352] [PMID: 28857658]
[150]
Nettis, M.A.; Lombardo, G.; Hastings, C.; Zajkowska, Z.; Mariani, N.; Nikkheslat, N.; Worrell, C.; Enache, D.; McLaughlin, A.; Kose, M.; Sforzini, L.; Bogdanova, A.; Cleare, A.; Young, A.H.; Pariante, C.M.; Mondelli, V. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: Results from a double-blind randomised clinical trial. Neuropsychopharmacology, 2021, 46(5), 939-948.
[http://dx.doi.org/10.1038/s41386-020-00948-6] [PMID: 33504955]
[151]
Attwells, S.; Setiawan, E.; Rusjan, P.M.; Xu, C.; Kish, S.J.; Vasdev, N.; Houle, S.; Santhirakumar, A.; Meyer, J.H. A double-blind placebo-controlled trial of minocycline on translocator protein distribution volume in treatment-resistant major depressive disorder. Transl. Psychiatry, 2021, 11(1), 334.
[http://dx.doi.org/10.1038/s41398-021-01450-3] [PMID: 34052828]
[152]
Vézina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot., 1975, 28(10), 721-726.
[http://dx.doi.org/10.7164/antibiotics.28.721] [PMID: 1102508]
[153]
Ignácio, Z.M.; Réus, G.Z.; Arent, C.O.; Abelaira, H.M.; Pitcher, M.R.; Quevedo, J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br. J. Clin. Pharmacol., 2016, 82(5), 1280-1290.
[http://dx.doi.org/10.1111/bcp.12845] [PMID: 26613210]
[154]
Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov., 2017, 16(7), 472-486.
[http://dx.doi.org/10.1038/nrd.2017.16] [PMID: 28303025]
[155]
Gould, T.D.; Zarate, C.A., Jr; Thompson, S.M. Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu. Rev. Pharmacol. Toxicol., 2019, 59(1), 213-236.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052811] [PMID: 30296896]
[156]
Abdallah, C.G.; Sanacora, G.; Duman, R.S.; Krystal, J.H. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol. Ther., 2018, 190, 148-158.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.010] [PMID: 29803629]
[157]
Abdallah, C.G.; Averill, L.A.; Gueorguieva, R.; Goktas, S.; Purohit, P.; Ranganathan, M.; Sherif, M.; Ahn, K.H.; D’Souza, D.C.; Formica, R.; Southwick, S.M.; Duman, R.S.; Sanacora, G.; Krystal, J.H. Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology, 2020, 45(6), 990-997.
[http://dx.doi.org/10.1038/s41386-020-0644-9] [PMID: 32092760]
[158]
Yaribeygi, H.; Ashrafizadeh, M.; Henney, N.C.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol. Res., 2020, 152, 104611.
[http://dx.doi.org/10.1016/j.phrs.2019.104611] [PMID: 31863868]
[159]
García-Bueno, B.; Pérez-Nievas, B.G.; Leza, J.C. Is there a role for the nuclear receptor PPARγ in neuropsychiatric diseases? Int. J. Neuropsychopharmacol., 2010, 13(10), 1411-1429.
[http://dx.doi.org/10.1017/S1461145710000970] [PMID: 20800014]
[160]
Sepanjnia, K.; Modabbernia, A.; Ashrafi, M.; Modabbernia, M.J.; Akhondzadeh, S. Pioglitazone adjunctive therapy for moderate-to-severe major depressive disorder: randomized double-blind placebo-controlled trial. Neuropsychopharmacology, 2012, 37(9), 2093-2100.
[http://dx.doi.org/10.1038/npp.2012.58] [PMID: 22549115]
[161]
Lin, K.W.; Wroolie, T.E.; Robakis, T.; Rasgon, N.L. Adjuvant pioglitazone for unremitted depression: Clinical correlates of treatment response. Psychiatry Res., 2015, 230(3), 846-852.
[http://dx.doi.org/10.1016/j.psychres.2015.10.013] [PMID: 26602230]
[162]
Rasgon, N.; Lin, K.W.; Lin, J.; Epel, E.; Blackburn, E. Telomere length as a predictor of response to Pioglitazone in patients with unremitted depression: A preliminary study. Transl. Psychiatry, 2016, 6(1), e709.
[http://dx.doi.org/10.1038/tp.2015.187] [PMID: 26731446]
[163]
Miller, R.A.; Chu, Q.; Xie, J.; Foretz, M.; Viollet, B.; Birnbaum, M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013, 494(7436), 256-260.
[http://dx.doi.org/10.1038/nature11808] [PMID: 23292513]
[164]
Abdallah, M.S.; Mosalam, E.M.; Zidan, A.A.A.; Elattar, K.S.; Zaki, S.A.; Ramadan, A.N.; Ebeid, A.M. RETRACTED ARTICLE: The antidiabetic metformin as an adjunct to antidepressants in patients with major depressive disorder: A proof-of-concept, randomized, double-blind, placebo-controlled trial. Neurotherapeutics, 2020, 17(4), 1897-1906.
[http://dx.doi.org/10.1007/s13311-020-00878-7] [PMID: 32500486]
[165]
Walker, A.J.; Kim, Y.; Borissiouk, I.; Rehder, R.; Dodd, S.; Morris, G.; Nierenberg, A.A.; Maes, M.; Fernandes, B.S.; Dean, O.M.; Williams, L.J.; Eyre, H.A.; Kim, S.W.; Zoungas, S.; Carvalho, A.F.; Berk, M. Statins: Neurobiological underpinnings and mechanisms in mood disorders. Neurosci. Biobehav. Rev., 2021, 128, 693-708.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.012] [PMID: 34265321]
[166]
Köhler-Forsberg, O.; Otte, C.; Gold, S.M.; Østergaard, S.D. Statins in the treatment of depression: Hype or hope? Pharmacol. Ther., 2020, 215, 107625.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107625] [PMID: 32652185]
[167]
Zeiser, R. Immune modulatory effects of statins. Immunology, 2018, 154(1), 69-75.
[http://dx.doi.org/10.1111/imm.12902] [PMID: 29392731]
[168]
Santanello, N.C.; Barber, B.L.; Applegate, W.B.; Elam, J.; Curtis, C.; Hunninghake, D.B.; Gordon, D.J. Effect of pharmacologic lipid lowering on health-related quality of life in older persons: Results from the Cholesterol Reduction in Seniors Program (CRISP) Pilot Study. J. Am. Geriatr. Soc., 1997, 45(1), 8-14.
[http://dx.doi.org/10.1111/j.1532-5415.1997.tb00971.x] [PMID: 8994481]
[169]
Ghanizadeh, A.; Hedayati, A. Augmentation of fluoxetine with lovastatin for treating major depressive disorder, a randomized double-blind placebo controlled-clinical trial. Depress. Anxiety, 2013, 30(11), 1084-1088.
[http://dx.doi.org/10.1002/da.22195] [PMID: 24115188]
[170]
Stewart, R.A.; Sharples, K.J.; North, F.M.; Menkes, D.B.; Baker, J.; Simes, J. Long-term assessment of psychological well-being in a randomized placebo-controlled trial of cholesterol reduction with pravastatin. Arch. Intern. Med., 2000, 160(20), 3144-3152.
[http://dx.doi.org/10.1001/archinte.160.20.3144] [PMID: 11074745]
[171]
Carlsson, C.M.; Papcke-Benson, K.; Carnes, M.; McBride, P.E.; Stein, J.H. Health-related quality of life and long-term therapy with pravastatin and tocopherol (vitamin E) in older adults. Drugs Aging, 2002, 19(10), 793-805.
[http://dx.doi.org/10.2165/00002512-200219100-00008] [PMID: 12390056]
[172]
Gougol, A.; Zareh-Mohammadi, N.; Raheb, S.; Farokhnia, M.; Salimi, S.; Iranpour, N.; Yekehtaz, H.; Akhondzadeh, S. Simvastatin as an adjuvant therapy to fluoxetine in patients with moderate to severe major depression: A double-blind placebo-controlled trial. J. Psychopharmacol., 2015, 29(5), 575-581.
[http://dx.doi.org/10.1177/0269881115578160] [PMID: 25827645]
[173]
Chan, D.; Binks, S.; Nicholas, J.M.; Frost, C.; Cardoso, M.J.; Ourselin, S.; Wilkie, D.; Nicholas, R.; Chataway, J. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: Secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol., 2017, 16(8), 591-600.
[http://dx.doi.org/10.1016/S1474-4422(17)30113-8] [PMID: 28600189]
[174]
Haghighi, M.; Khodakarami, S.; Jahangard, L.; Ahmadpanah, M.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. In a randomized, double-blind clinical trial, adjuvant atorvastatin improved symptoms of depression and blood lipid values in patients suffering from severe major depressive disorder. J. Psychiatr. Res., 2014, 58, 109-114.
[http://dx.doi.org/10.1016/j.jpsychires.2014.07.018] [PMID: 25130678]
[175]
Abbasi, S.H.; Mohammadinejad, P.; Shahmansouri, N.; Salehiomran, A.; Beglar, A.A.; Zeinoddini, A.; Forghani, S.; Akhondzadeh, S. Simvastatin versus atorvastatin for improving mild to moderate depression in post-coronary artery bypass graft patients: A double-blind, placebo-controlled, randomized trial. J. Affect. Disord., 2015, 183, 149-155.
[http://dx.doi.org/10.1016/j.jad.2015.04.049] [PMID: 26005776]
[176]
Arana, G.W.; Santos, A.B.; Laraia, M.T.; McLeod-Bryant, S.; Beale, M.D.; Rames, L.J.; Roberts, J.M.; Dias, J.K.; Molloy, M. Dexamethasone for the treatment of depression: A randomized, placebo- controlled, double-blind trial. Am. J. Psychiatry, 1995, 152(2), 265-267.
[http://dx.doi.org/10.1176/ajp.152.2.265] [PMID: 7840362]
[177]
DeBattista, C.; Posener, J.A.; Kalehzan, B.M.; Schatzberg, A.F. Acute antidepressant effects of intravenous hydrocortisone and CRH in depressed patients: A double-blind, placebo-controlled study. Am. J. Psychiatry, 2000, 157(8), 1334-1337.
[http://dx.doi.org/10.1176/appi.ajp.157.8.1334] [PMID: 10910802]
[178]
Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A natural compound for health management. Int. J. Mol. Sci., 2021, 22(10), 5305.
[http://dx.doi.org/10.3390/ijms22105305] [PMID: 34069940]
[179]
Ghazizadeh-Hashemi, M.; Ghajar, A.; Shalbafan, M.R.; Ghazizadeh-Hashemi, F.; Afarideh, M.; Malekpour, F.; Ghaleiha, A.; Ardebili, M.E.; Akhondzadeh, S. Palmitoylethanolamide as adjunctive therapy in major depressive disorder: A double-blind, randomized and placebo-controlled trial. J. Affect. Disord., 2018, 232, 127-133.
[http://dx.doi.org/10.1016/j.jad.2018.02.057] [PMID: 29486338]
[180]
Liu, L.; Liu, C.; Wang, Y.; Wang, P.; Li, Y.; Li, B. Herbal medicine for anxiety, depression and insomnia. Curr. Neuropharmacol., 2015, 13(4), 481-493.
[http://dx.doi.org/10.2174/1570159X1304150831122734] [PMID: 26412068]
[181]
Yeung, W.F.; Chung, K.F.; Ng, K.Y.; Yu, Y.M.; Ziea, E.T.C.; Ng, B.F.L. A systematic review on the efficacy, safety and types of Chinese herbal medicine for depression. J. Psychiatr. Res., 2014, 57, 165-175.
[http://dx.doi.org/10.1016/j.jpsychires.2014.05.016] [PMID: 24974002]
[182]
Matias, J.N.; Achete, G.; Campanari, G.S.S.; Guiguer, É.L.; Araújo, A.C.; Buglio, D.S.; Barbalho, S.M. A systematic review of the antidepressant effects of curcumin: Beyond monoamines theory. Aust. N. Z. J. Psychiatry, 2021, 55(5), 451-462.
[http://dx.doi.org/10.1177/0004867421998795] [PMID: 33673739]
[183]
Panahi, Y.; Badeli, R.; Karami, G.R.; Sahebkar, A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother. Res., 2015, 29(1), 17-21.
[http://dx.doi.org/10.1002/ptr.5211] [PMID: 25091591]
[184]
Lopresti, A.L.; Maes, M.; Meddens, M.J.M.; Maker, G.L.; Arnoldussen, E.; Drummond, P.D. Curcumin and major depression: A randomised, double-blind, placebo-controlled trial investigating the potential of peripheral biomarkers to predict treatment response and antidepressant mechanisms of change. Eur. Neuropsychopharmacol., 2015, 25(1), 38-50.
[http://dx.doi.org/10.1016/j.euroneuro.2014.11.015] [PMID: 25523883]
[185]
Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study. J. Affect. Disord., 2014, 167, 368-375.
[http://dx.doi.org/10.1016/j.jad.2014.06.001] [PMID: 25046624]
[186]
Sanmukhani, J.; Satodia, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; Goel, A.; Tripathi, C.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytother. Res., 2014, 28(4), 579-585.
[http://dx.doi.org/10.1002/ptr.5025] [PMID: 23832433]
[187]
Esmaily, H.; Sahebkar, A.; Iranshahi, M.; Ganjali, S.; Mohammadi, A.; Ferns, G.; Ghayour-Mobarhan, M. An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial. Chin. J. Integr. Med., 2015, 21(5), 332-338.
[http://dx.doi.org/10.1007/s11655-015-2160-z] [PMID: 25776839]
[188]
Yu, J.J.; Pei, L.B.; Zhang, Y.; Wen, Z.Y.; Yang, J.L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder. J. Clin. Psychopharmacol., 2015, 35(4), 406-410.
[http://dx.doi.org/10.1097/JCP.0000000000000352] [PMID: 26066335]
[189]
Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord., 2017, 207, 188-196.
[http://dx.doi.org/10.1016/j.jad.2016.09.047] [PMID: 27723543]
[190]
Kanchanatawan, B.; Tangwongchai, S.; Sughondhabhirom, A.; Suppapitiporn, S.; Hemrunrojn, S.; Carvalho, A.F.; Maes, M. Add-on treatment with curcumin has antidepressive effects in thai patients with major depression: Results of a randomized double-blind placebo-controlled study. Neurotox. Res., 2018, 33(3), 621-633.
[http://dx.doi.org/10.1007/s12640-017-9860-4] [PMID: 29327213]
[191]
Bergman, J.; Miodownik, C.; Bersudsky, Y.; Sokolik, S.; Lerner, P.P.; Kreinin, A.; Polakiewicz, J.; Lerner, V. Curcumin as an add-on to antidepressive treatment: A randomized, double-blind, placebo-controlled, pilot clinical study. Clin. Neuropharmacol., 2013, 36(3), 73-77.
[http://dx.doi.org/10.1097/WNF.0b013e31828ef969] [PMID: 23673908]
[192]
Cao, Z.Y.; Liu, Y.Z.; Li, J.M.; Ruan, Y.M.; Yan, W.J.; Zhong, S.Y.; Zhang, T.; Liu, L.L.; Wu, R.; Wang, B.; Wang, W.; Bi, X.Y.; Wang, Y.X.; Su, W.J.; Jiang, C.L. Glycyrrhizic acid as an adjunctive treatment for depression through anti-inflammation: A randomized placebo-controlled clinical trial. J. Affect. Disord., 2020, 265, 247-254.
[http://dx.doi.org/10.1016/j.jad.2020.01.048] [PMID: 32090748]
[193]
Molendijk, M.; Molero, P.; Sánchez-Pedreño, O.F.; Van der Does, W.; Martínez-González, A.M. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord., 2018, 226, 346-354.
[http://dx.doi.org/10.1016/j.jad.2017.09.022] [PMID: 29031185]
[194]
Yang, Y.; Kim, Y.; Je, Y. Fish consumption and risk of depression: Epidemiological evidence from prospective studies. Asia-Pac. Psychiatry, 2018, 10(4), e12335.
[http://dx.doi.org/10.1111/appy.12335] [PMID: 30238628]
[195]
Su, K.P.; Lai, H.C.; Yang, H.T.; Su, W.P.; Peng, C.Y.; Chang, J.P.C.; Chang, H.C.; Pariante, C.M. Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: results from a randomized, controlled trial. Biol. Psychiatry, 2014, 76(7), 559-566.
[http://dx.doi.org/10.1016/j.biopsych.2014.01.008] [PMID: 24602409]
[196]
Martins, J.G. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J. Am. Coll. Nutr., 2009, 28(5), 525-542.
[http://dx.doi.org/10.1080/07315724.2009.10719785] [PMID: 20439549]
[197]
Ortega, M.A.; Fraile-Martínez, Ó.; García-Montero, C.; Alvarez-Mon, M.A.; Lahera, G.; Monserrat, J.; Llavero-Valero, M.; Gutiérrez-Rojas, L.; Molina, R.; Rodríguez-Jimenez, R.; Quintero, J.; De Mon, M.A. Biological role of nutrients, food and dietary patterns in the prevention and clinical management of major depressive disorder. Nutrients, 2022, 14(15), 3099.
[http://dx.doi.org/10.3390/nu14153099] [PMID: 35956276]
[198]
Mee-inta, O.; Zhao, Z.W.; Kuo, Y.M. Physical exercise inhibits inflammation and microglial activation. Cells, 2019, 8(7), 691.
[http://dx.doi.org/10.3390/cells8070691] [PMID: 31324021]
[199]
Ding, Y.; Xu, X. Anti-inflammatory effect of exercise training through reducing inflammasome activation-related inflammatory cytokine levels in overweight/obese populations: A systematic review and meta-analysis. Complement. Ther. Clin. Pract., 2022, 49, 101656.
[http://dx.doi.org/10.1016/j.ctcp.2022.101656] [PMID: 36055106]
[200]
Lee, J.; Gierc, M.; Vila-Rodriguez, F.; Puterman, E.; Faulkner, G. Efficacy of exercise combined with standard treatment for depression compared to standard treatment alone: A systematic review and meta-analysis of randomized controlled trials. J. Affect. Disord., 2021, 295, 1494-1511.
[http://dx.doi.org/10.1016/j.jad.2021.09.043] [PMID: 34565591]
[201]
Bigarella, L.G.; Ballotin, V.R.; Mazurkiewicz, L.F.; Ballardin, A.C.; Rech, D.L.; Bigarella, R.L.; Selistre, L.S. Exercise for depression and depressive symptoms in older adults: An umbrella review of systematic reviews and Meta-analyses. Aging Ment. Health, 2022, 26(8), 1503-1513.
[http://dx.doi.org/10.1080/13607863.2021.1951660] [PMID: 34328049]
[202]
Xie, Y.; Wu, Z.; Sun, L.; Zhou, L.; Wang, G.; Xiao, L.; Wang, H. The effects and mechanisms of exercise on the treatment of depression. Front. Psychiatry, 2021, 12, 705559.
[http://dx.doi.org/10.3389/fpsyt.2021.705559] [PMID: 34803752]
[203]
Marinovic, D.A.; Hunter, R.L. Examining the interrelationships between mindfulness‐based interventions, depression, inflammation, and cancer survival. CA Cancer J. Clin., 2022, 72(5), 490-502.
[http://dx.doi.org/10.3322/caac.21733] [PMID: 35709081]
[204]
Sanada, K.; Montero-Marin, J.; Barceló-Soler, A.; Ikuse, D.; Ota, M.; Hirata, A.; Yoshizawa, A.; Hatanaka, R.; Valero, M.S.; Demarzo, M.; Campayo, J.G.; Iwanami, A. Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: A meta-analytic review. Int. J. Mol. Sci., 2020, 21(7), 2484.
[http://dx.doi.org/10.3390/ijms21072484] [PMID: 32260096]
[205]
Reangsing, C.; Punsuwun, S.; Schneider, J.K. Effects of mindfulness interventions on depressive symptoms in adolescents: A meta-analysis. Int. J. Nurs. Stud., 2021, 115, 103848.
[http://dx.doi.org/10.1016/j.ijnurstu.2020.103848] [PMID: 33383273]
[206]
Haller, H.; Anheyer, D.; Cramer, H.; Dobos, G. Complementary therapies for clinical depression: An overview of systematic reviews. BMJ Open, 2019, 9(8), e028527.
[http://dx.doi.org/10.1136/bmjopen-2018-028527] [PMID: 31383703]
[207]
Johannsen, M.; Nissen, E.R.; Lundorff, M.; O’Toole, M.S. Mediators of acceptance and mindfulness-based therapies for anxiety and depression: A systematic review and meta-analysis. Clin. Psychol. Rev., 2022, 94, 102156.
[http://dx.doi.org/10.1016/j.cpr.2022.102156] [PMID: 35483275]
[208]
Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 2014, 71(12), 1381-1391.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1611] [PMID: 25322082]
[209]
Adzic, M.; Brkic, Z.; Mitic, M.; Francija, E.; Jovicic, M.J.; Radulovic, J.; Maric, N.P. Therapeutic strategies for treatment of inflammation-related depression. Curr. Neuropharmacol., 2018, 16(2), 176-209.
[PMID: 28847294]
[210]
Kopschina Feltes, P.; Doorduin, J.; Klein, H.C.; Juárez-Orozco, L.E.; Dierckx, R.A.J.O.; Moriguchi-Jeckel, C.M.; de Vries, E.F.J. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J. Psychopharmacol., 2017, 31(9), 1149-1165.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[211]
Shariq, A.S.; Brietzke, E.; Rosenblat, J.D.; Barendra, V.; Pan, Z.; McIntyre, R.S. Targeting cytokines in reduction of depressive symptoms: A comprehensive review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 83, 86-91.
[http://dx.doi.org/10.1016/j.pnpbp.2018.01.003] [PMID: 29309829]
[212]
Malhi, G.S.; Outhred, T.; Hamilton, A.; Boyce, P.M.; Bryant, R.; Fitzgerald, P.B.; Lyndon, B.; Mulder, R.; Murray, G.; Porter, R.J.; Singh, A.B.; Fritz, K. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders: Major depression summary. Med. J. Aust., 2018, 208(4), 175-180.
[http://dx.doi.org/10.5694/mja17.00659] [PMID: 29490210]
[213]
Undurraga, J.; Baldessarini, R.J. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review. Neuropsychopharmacology, 2012, 37(4), 851-864.
[http://dx.doi.org/10.1038/npp.2011.306] [PMID: 22169941]
[214]
Matveychuk, D.; Thomas, R.K.; Swainson, J.; Khullar, A.; MacKay, M.A.; Baker, G.B.; Dursun, S.M. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther. Adv. Psychopharmacol., 2020, 10.
[http://dx.doi.org/10.1177/2045125320916657] [PMID: 32440333]
[215]
Nikkheslat, N. Targeting inflammation in depression: Ketamine as an anti-inflammatory antidepressant in psychiatric emergency. Brain Behav. Immun.-. Health, 2021, 18, 100383.
[http://dx.doi.org/10.1016/j.bbih.2021.100383] [PMID: 34849492]
[216]
Li, J.M.; Liu, L.L.; Su, W.J.; Wang, B.; Zhang, T.; Zhang, Y.; Jiang, C.L. Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors. Neuropharmacology, 2019, 146, 149-153.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.022] [PMID: 30496753]
[217]
Carvalho, A.F.; Sharma, M.S.; Brunoni, A.R.; Vieta, E.; Fava, G.A. The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: A critical review of the literature. Psychother. Psychosom., 2016, 85(5), 270-288.
[http://dx.doi.org/10.1159/000447034] [PMID: 27508501]
[218]
Ahrnsbrak, R.; Stagnitti, M.N. Average expenditures per prescription antidepressant fill in the U.S. civilian noninstitutionalized population by select sociodemographic characteristics. In: Statistical Brief (Medical Expenditure Panel Survey (US); Rockville (MD), 2001.
[219]
Shah, D.; Allen, L.; Zheng, W.; Madhavan, S.S.; Wei, W.; LeMasters, T.J.; Sambamoorthi, U. Economic burden of treatment-resistant depression among adults with chronic non-cancer pain conditions and major depressive disorder in the US. PharmacoEconomics, 2021, 39(6), 639-651.
[http://dx.doi.org/10.1007/s40273-021-01029-2] [PMID: 33904144]
[220]
Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry, 2017, 4(2), 146-158.
[http://dx.doi.org/10.1016/S2215-0366(16)30263-2] [PMID: 27856392]
[221]
Maslej, M.M.; Furukawa, T.A.; Cipriani, A.; Andrews, P.W.; Sanches, M.; Tomlinson, A.; Volkmann, C.; McCutcheon, R.A.; Howes, O.; Guo, X.; Mulsant, B.H. Individual differences in response to antidepressants. JAMA Psychiatry, 2021, 78(5), 490-497.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.4564] [PMID: 33595620]
[222]
Su, M.; Ouyang, X.; Song, Y. Neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and monocyte to lymphocyte ratio in depression: A meta-analysis. J. Affect. Disord., 2022, 308, 375-383.
[http://dx.doi.org/10.1016/j.jad.2022.04.038] [PMID: 35439466]
[223]
Cheng, Y.; Wang, Y.; Wang, X.; Jiang, Z.; Zhu, L.; Fang, S. Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio in depression: An updated systematic review and meta-analysis. Front. Psychiatry, 2022, 13, 893097.
[http://dx.doi.org/10.3389/fpsyt.2022.893097] [PMID: 35782448]
[224]
Meng, F.; Yan, X.; Qi, J.; He, F. Association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and monocyte to lymphocyte ratio with depression: A cross-sectional analysis of the NHANES data. J. Affect. Disord., 2022, 315, 168-173.
[http://dx.doi.org/10.1016/j.jad.2022.08.004] [PMID: 35932936]
[225]
Schatzberg, A.F. Scientific issues relevant to improving the diagnosis, risk assessment, and treatment of major depression. Am. J. Psychiatry, 2019, 176(5), 342-347.
[http://dx.doi.org/10.1176/appi.ajp.2019.19030273] [PMID: 31039643]
[226]
Li, J.M.; Jiang, C.L. Biological diagnosis of depression: A biomarker panel from several nonspecial indicators instead of the specific biomarker(s). Neuropsychiatr. Dis. Treat., 2022, 18, 3067-3071.
[http://dx.doi.org/10.2147/NDT.S393553] [PMID: 36606185]
[227]
Franco, R.; Fernández-Suárez, D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol., 2015, 131, 65-86.
[http://dx.doi.org/10.1016/j.pneurobio.2015.05.003] [PMID: 26067058]
[228]
Almolda, B.; de Labra, C.; Barrera, I.; Gruart, A.; Delgado-Garcia, J.M.; Villacampa, N.; Vilella, A.; Hofer, M.J.; Hidalgo, J.; Campbell, I.L.; González, B.; Castellano, B. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav. Immun., 2015, 45, 80-97.
[http://dx.doi.org/10.1016/j.bbi.2014.10.015] [PMID: 25449577]
[229]
Li, Z.; Ma, L.; Kulesskaya, N.; Võikar, V.; Tian, L. Microglia are polarized to M1 type in high-anxiety inbred mice in response to lipopolysaccharide challenge. Brain Behav. Immun., 2014, 38, 237-248.
[http://dx.doi.org/10.1016/j.bbi.2014.02.008] [PMID: 24561490]
[230]
Zhang, L.; Zhang, J.; You, Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front. Cell. Neurosci., 2018, 12, 306.
[http://dx.doi.org/10.3389/fncel.2018.00306] [PMID: 30459555]
[231]
Chhor, V.; Le Charpentier, T.; Lebon, S.; Oré, M.V.; Celador, I.L.; Josserand, J.; Degos, V.; Jacotot, E.; Hagberg, H.; Sävman, K.; Mallard, C.; Gressens, P.; Fleiss, B. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav. Immun., 2013, 32, 70-85.
[http://dx.doi.org/10.1016/j.bbi.2013.02.005] [PMID: 23454862]
[232]
Miki, A.; Honda, S.; Inoue, Y.; Yamada, Y.; Nakamura, M. Foveal depression and related factors in patients with a history of retinopathy of prematurity. Ophthalmologica, 2018, 240(2), 106-110.
[http://dx.doi.org/10.1159/000488368] [PMID: 29742514]
[233]
Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflammation, 2014, 11(1), 98.
[http://dx.doi.org/10.1186/1742-2094-11-98] [PMID: 24889886]
[234]
Kobayashi, K.; Imagama, S.; Ohgomori, T.; Hirano, K.; Uchimura, K.; Sakamoto, K.; Hirakawa, A.; Takeuchi, H.; Suzumura, A.; Ishiguro, N.; Kadomatsu, K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis., 2013, 4(3), e525.
[http://dx.doi.org/10.1038/cddis.2013.54] [PMID: 23470532]
[235]
Cheng, Y.; Pardo, M.; Armini, R.S.; Martinez, A.; Mouhsine, H.; Zagury, J.F.; Jope, R.S.; Beurel, E. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior. Brain Behav. Immun., 2016, 53, 207-222.
[http://dx.doi.org/10.1016/j.bbi.2015.12.012] [PMID: 26772151]
[236]
Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol., 2005, 6(8), 777-784.
[http://dx.doi.org/10.1038/ni1221] [PMID: 16007092]
[237]
Wu, T.Y.; Liu, L.; Zhang, W.; Zhang, Y.; Liu, Y.Z.; Shen, X.L.; Gong, H.; Yang, Y.Y.; Bi, X.Y.; Jiang, C.L.; Wang, Y.X. High-mobility group box-1 was released actively and involved in LPS induced depressive-like behavior. J. Psychiatr. Res., 2015, 64, 99-106.
[http://dx.doi.org/10.1016/j.jpsychires.2015.02.016] [PMID: 25795092]
[238]
Gong, H.; Su, W.J.; Cao, Z.Y.; Lian, Y.J.; Peng, W.; Liu, Y.Z.; Zhang, Y.; Liu, L.L.; Wu, R.; Wang, B.; Zhang, T.; Wang, Y.X.; Jiang, C.L. Hippocampal Mrp8/14 signaling plays a critical role in the manifestation of depressive-like behaviors in mice. J. Neuroinflammation, 2018, 15(1), 252.
[http://dx.doi.org/10.1186/s12974-018-1296-0] [PMID: 30180864]
[239]
Cao, X.; Li, L.P.; Wang, Q.; Wu, Q.; Hu, H.H.; Zhang, M.; Fang, Y.Y.; Zhang, J.; Li, S.J.; Xiong, W.C.; Yan, H.C.; Gao, Y.B.; Liu, J.H.; Li, X.W.; Sun, L.R.; Zeng, Y.N.; Zhu, X.H.; Gao, T.M. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med., 2013, 19(6), 773-777.
[http://dx.doi.org/10.1038/nm.3162] [PMID: 23644515]
[240]
Rana, T.; Behl, T.; Mehta, V.; Uddin, M.S.; Bungau, S. Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol. Rep., 2021, 73(1), 31-42.
[http://dx.doi.org/10.1007/s43440-020-00163-6] [PMID: 33015736]
[241]
Wang, B.; Huang, X.; Pan, X.; Zhang, T.; Hou, C.; Su, W.J.; Liu, L.L.; Li, J.M.; Wang, Y.X. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behav. Immun., 2020, 88, 132-143.
[http://dx.doi.org/10.1016/j.bbi.2020.06.019] [PMID: 32553784]
[242]
Wang, B.; Lian, Y.J.; Su, W.J.; Peng, W.; Dong, X.; Liu, L.L.; Gong, H.; Zhang, T.; Jiang, C.L.; Wang, Y.X. HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway. Brain Behav. Immun., 2018, 72, 51-60.
[http://dx.doi.org/10.1016/j.bbi.2017.11.017] [PMID: 29195782]
[243]
Wang, B.; Lian, Y.J.; Dong, X.; Peng, W.; Liu, L.L.; Su, W.J.; Gong, H.; Zhang, T.; Jiang, C.L.; Li, J.S.; Wang, Y.X. Glycyrrhizic acid ameliorates the kynurenine pathway in association with its antidepressant effect. Behav. Brain Res., 2018, 353, 250-257.
[http://dx.doi.org/10.1016/j.bbr.2018.01.024] [PMID: 29366745]
[244]
Lian, Y.J.; Gong, H.; Wu, T.Y.; Su, W.J.; Zhang, Y.; Yang, Y.Y.; Peng, W.; Zhang, T.; Zhou, J.R.; Jiang, C.L.; Wang, Y.X. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1. Brain Behav. Immun., 2017, 59, 322-332.
[http://dx.doi.org/10.1016/j.bbi.2016.09.017] [PMID: 27647532]
[245]
Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol., 2021, 18(5), 1141-1160.
[http://dx.doi.org/10.1038/s41423-021-00670-3] [PMID: 33850310]
[246]
Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun., 2017, 64, 367-383.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[247]
Zhang, Y.; Liu, L.; Peng, Y.L.; Liu, Y.Z.; Wu, T.Y.; Shen, X.L.; Zhou, J.R.; Sun, D.Y.; Huang, A.J.; Wang, X.; Wang, Y.X.; Jiang, C.L. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther., 2014, 20(2), 119-124.
[http://dx.doi.org/10.1111/cns.12170] [PMID: 24279434]
[248]
Su, W.J.; Zhang, Y.; Chen, Y.; Gong, H.; Lian, Y.J.; Peng, W.; Liu, Y.Z.; Wang, Y.X.; You, Z.L.; Feng, S.J.; Zong, Y.; Lu, G.C.; Jiang, C.L. NLRP3 gene knockout blocks NF-kappaB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res, 2017, 322(Pt A), 1-8.
[249]
Zhang, Y.; Liu, L.; Liu, Y.Z.; Shen, X.L.; Wu, T.Y.; Zhang, T.; Wang, W.; Wang, Y.X.; Jiang, C.L. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int. J. Neuropsychopharmacol., 2015, 18(8), pyv006-pyv006.
[http://dx.doi.org/10.1093/ijnp/pyv006] [PMID: 25603858]
[250]
Su, W.J.; Peng, W.; Gong, H.; Liu, Y.Z.; Zhang, Y.; Lian, Y.J.; Cao, Z.Y.; Wu, R.; Liu, L.L.; Wang, B.; Wang, Y.X.; Jiang, C.L. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J. Neuroinflammation, 2017, 14(1), 210.
[http://dx.doi.org/10.1186/s12974-017-0985-4] [PMID: 29084550]
[251]
Xia, C.Y.; Guo, Y.X.; Lian, W.W.; Yan, Y.; Ma, B.Z.; Cheng, Y.C.; Xu, J.K.; He, J.; Zhang, W.K. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol. Res., 2023, 187, 106625.
[http://dx.doi.org/10.1016/j.phrs.2022.106625] [PMID: 36563870]
[252]
Li, W.; Niu, L.; Liu, Z.; Xu, X.; Shi, M.; Zhang, Y.; Deng, Y.; He, J.; Xu, Y.; Wan, W.; Sun, Q.; Zhong, X.; Cao, W. Inhibition of the NLRP3 inflammasome with MCC950 prevents chronic social isolation-induced depression-like behavior in male mice. Neurosci. Lett., 2021, 765, 136290.
[http://dx.doi.org/10.1016/j.neulet.2021.136290] [PMID: 34644625]
[253]
Wang, D.; Wang, H.; Gao, H.; Zhang, H.; Zhang, H.; Wang, Q.; Sun, Z. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci., 2020, 10(1), 28.
[http://dx.doi.org/10.1186/s13578-020-00388-1] [PMID: 32166013]
[254]
Yue, N.; Huang, H.; Zhu, X.; Han, Q.; Wang, Y.; Li, B.; Liu, Q.; Wu, G.; Zhang, Y.; Yu, J. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J. Neuroinflammation, 2017, 14(1), 102.
[http://dx.doi.org/10.1186/s12974-017-0865-y] [PMID: 28486969]
[255]
Bhattacharya, A.; Lord, B.; Grigoleit, J.S.; He, Y.; Fraser, I.; Campbell, S.N.; Taylor, N.; Aluisio, L.; O’Connor, J.C.; Papp, M.; Chrovian, C.; Carruthers, N.; Lovenberg, T.W.; Letavic, M.A. Neuropsychopharmacology of JNJ-55308942: Evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology, 2018, 43(13), 2586-2596.
[http://dx.doi.org/10.1038/s41386-018-0141-6] [PMID: 30026598]
[256]
Farooq, R.K.; Tanti, A.; Ainouche, S.; Roger, S.; Belzung, C.; Camus, V.A. P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology, 2018, 97, 120-130.
[http://dx.doi.org/10.1016/j.psyneuen.2018.07.016] [PMID: 30015007]
[257]
Liu, L.L.; Li, J.M.; Su, W.J.; Wang, B.; Jiang, C.L. Sex differences in depressive-like behaviour may relate to imbalance of microglia activation in the hippocampus. Brain Behav. Immun., 2019, 81, 188-197.
[http://dx.doi.org/10.1016/j.bbi.2019.06.012] [PMID: 31181346]
[258]
Drevets, W.C.; Wittenberg, G.M.; Bullmore, E.T.; Manji, H.K. Immune targets for therapeutic development in depression: towards precision medicine. Nat. Rev. Drug Discov., 2022, 21(3), 224-244.
[http://dx.doi.org/10.1038/s41573-021-00368-1] [PMID: 35039676]
[259]
Cattaneo, A.; Ferrari, C.; Turner, L.; Mariani, N.; Enache, D.; Hastings, C.; Kose, M.; Lombardo, G.; McLaughlin, A.P.; Nettis, M.A.; Nikkheslat, N.; Sforzini, L.; Worrell, C.; Zajkowska, Z.; Cattane, N.; Lopizzo, N.; Mazzelli, M.; Pointon, L.; Cowen, P.J.; Cavanagh, J.; Harrison, N.A.; de Boer, P.; Jones, D.; Drevets, W.C.; Mondelli, V.; Bullmore, E.T.; Pariante, C.M. Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study. Transl. Psychiatry, 2020, 10(1), 232.
[http://dx.doi.org/10.1038/s41398-020-00874-7] [PMID: 32699209]
[260]
Leday, G.G.R.; Vértes, P.E.; Richardson, S.; Greene, J.R.; Regan, T.; Khan, S.; Henderson, R.; Freeman, T.C.; Pariante, C.M.; Harrison, N.A.; Perry, V.H.; Drevets, W.C.; Wittenberg, G.M.; Bullmore, E.T.; Bullmore, E.; Vertes, P.; Cardinal, R.; Richardson, S.; Leday, G.; Freeman, T.; Regan, T.; Hume, D.; Wu, Z.; Pariante, C.; Cattaneo, A.; Zunszain, P.; Borsini, A.; Stewart, R.; Chandran, D.; Carvalho, L.; Bell, J.; Souza-Teodoro, L.; Perry, H.; Harrison, N.; Drevets, W.; Wittenberg, G.; Jones, D.; Bullmore, E.; Khan, S.; Stylianou, A.; Henderson, R. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol. Psychiatry, 2018, 83(1), 70-80.
[http://dx.doi.org/10.1016/j.biopsych.2017.01.021] [PMID: 28688579]
[261]
van Eeden, W.A.; van Hemert, A.M.; Carlier, I.V.E.; Penninx, B.W.J.H.; Lamers, F.; Fried, E.I.; Schoevers, R.; Giltay, E.J. Basal and LPS-stimulated inflammatory markers and the course of individual symptoms of depression. Transl. Psychiatry, 2020, 10(1), 235.
[http://dx.doi.org/10.1038/s41398-020-00920-4] [PMID: 32669537]
[262]
Spijker, S.; Van Zanten, J.S.; De Jong, S.; Penninx, B.W.J.H.; van Dyck, R.; Zitman, F.G.; Smit, J.H.; Ylstra, B.; Smit, A.B.; Hoogendijk, W.J.G. Stimulated gene expression profiles as a blood marker of major depressive disorder. Biol. Psychiatry, 2010, 68(2), 179-186.
[http://dx.doi.org/10.1016/j.biopsych.2010.03.017] [PMID: 20471630]
[263]
Lucido, M.J.; Bekhbat, M.; Goldsmith, D.R.; Treadway, M.T.; Haroon, E.; Felger, J.C.; Miller, A.H. Aiding and abetting anhedonia: Impact of inflammation on the brain and pharmacological implications. Pharmacol. Rev., 2021, 73(3), 1084-1117.
[http://dx.doi.org/10.1124/pharmrev.120.000043] [PMID: 34285088]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy