[1]
Fierro, S.; Seishima, R.; Nagano, O.; Saya, H.; Einaga, Y. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis. Sci. Rep., 2013, 3(1), 3257.
[http://dx.doi.org/10.1038/srep03257] [PMID: 24247214]
[http://dx.doi.org/10.1038/srep03257] [PMID: 24247214]
[2]
Sochr, J. Švorc, Ľ.; Rievaj, M.; Bustin, D. Electrochemical determination of adrenaline in human urine using a boron-doped diamond film electrode. Diamond Related Materials, 2014, 43, 5-11.
[http://dx.doi.org/10.1016/j.diamond.2014.01.005]
[http://dx.doi.org/10.1016/j.diamond.2014.01.005]
[3]
Hall, D.G. Boronic acid catalysis. Chem. Soc. Rev., 2019, 48(13), 3475-3496.
[http://dx.doi.org/10.1039/C9CS00191C] [PMID: 31089632]
[http://dx.doi.org/10.1039/C9CS00191C] [PMID: 31089632]
[4]
Lozano, A. Pamplona, B.; Kilich, T.; Łabuda, M.; Mendes, M.; Pereira-da-Silva, J.; García, G.; Gois, P.; Ferreira da Silva, F.; Limão-Vieira, P. The role of electron transfer in the fragmentation of phenyl and cyclohexyl boronic acids. Int. J. Mol. Sci., 2019, 20(22), 5578.
[http://dx.doi.org/10.3390/ijms20225578] [PMID: 31717298]
[http://dx.doi.org/10.3390/ijms20225578] [PMID: 31717298]
[5]
İpek, H.; Hacaloğlu, J. Synthesis and analysis of thermal characteristics of polybenzoxazine based on phenol and 3 Amino phenyl boronic acid. J. Polym. Sci. A Polym. Chem., 2019, 57(15), 1711-1716.
[http://dx.doi.org/10.1002/pola.29437]
[http://dx.doi.org/10.1002/pola.29437]
[6]
Kilic, A.; Beyazsakal, L.; Findik, B.T.; Incebay, H. Synthesis and electrochemical investigation of chiral amine bis(phenolate)-boron complexes: In vitro antibacterial activity screening of boron compounds. Inorg. Chim. Acta, 2020, 510, 119777.
[http://dx.doi.org/10.1016/j.ica.2020.119777]
[http://dx.doi.org/10.1016/j.ica.2020.119777]
[7]
Estevez-Fregoso, E.; Kilic, A.; Rodríguez-Vera, D.; Nicanor-Juárez, L.E.; Romero-Rizo, C.E.M.; Farfán-García, E.D.; Soriano-Ursúa, M.A. Effects of Boron-Containing Compounds on Liposoluble Hormone Functions. Inorganics (Basel), 2023, 11(2), 84.
[http://dx.doi.org/10.3390/inorganics11020084]
[http://dx.doi.org/10.3390/inorganics11020084]
[8]
Saravanan, K.R.; Sathyamoorthi, S.; Velayutham, D.; Suryanarayanan, V. Electrodeposition of nickel on boron-doped diamond from an air-stable methyl sulphate anion based ionic liquid. Electrochim. Acta, 2013, 98, 88-93.
[http://dx.doi.org/10.1016/j.electacta.2013.03.033]
[http://dx.doi.org/10.1016/j.electacta.2013.03.033]
[9]
Dai, W.; Li, M.; Li, H.; Yang, B. Amperometric biosensor based on nanoporous nickel/boron-doped diamond film for electroanalysis of l-alanine. Sens. Actuators B Chem., 2014, 201, 31-36.
[http://dx.doi.org/10.1016/j.snb.2014.05.005]
[http://dx.doi.org/10.1016/j.snb.2014.05.005]
[10]
Tyszczuk-Rotko, K. Bęczkowska, I.; Wójciak-Kosior, M.; Sowa, I. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films. Talanta, 2014, 129, 384-391.
[http://dx.doi.org/10.1016/j.talanta.2014.06.023] [PMID: 25127609]
[http://dx.doi.org/10.1016/j.talanta.2014.06.023] [PMID: 25127609]
[11]
Farfán-García, E.D.; Kilic, A.; García-Machorro, J.; Cuevas-Galindo, M.E.; Rubio-Velazquez, B.A.; García-Coronel, I.H.; Estevez-Fregoso, E.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds, Viral, Parasitic, Bacterial, and Fungal Infections; Elsevier, 2023, pp. 733-754.
[http://dx.doi.org/10.1016/B978-0-323-85730-7.00026-6]
[http://dx.doi.org/10.1016/B978-0-323-85730-7.00026-6]
[12]
Bouamrane, F.; Tadjeddine, A.; Tenne, R.; Butler, J.E.; Kalish, R.; Lévy-Clément, C. Underpotential deposition of Cu on boron-doped diamond thin films. J. Phys. Chem. B, 1998, 102(1), 134-140.
[http://dx.doi.org/10.1021/jp971516g]
[http://dx.doi.org/10.1021/jp971516g]
[13]
Xu, J.; Swain, G.M. Oxidation of azide anion at boron-doped diamond thin-film electrodes. Anal. Chem., 1998, 70(8), 1502-1510.
[http://dx.doi.org/10.1021/ac970959d]
[http://dx.doi.org/10.1021/ac970959d]
[14]
Panizza, M.; Duo, I.; Michaud, P.; Cerisola, G.; Comninellis, C. Electrochemical Detection of 2-Naphthol on Boron-Doped Diamond Influence of Anodic Treatment. Electrochem. Solid-State Lett., 1999, 3(9), 429.
[http://dx.doi.org/10.1149/1.1391168]
[http://dx.doi.org/10.1149/1.1391168]
[15]
Michaud, P.A.; Mahe, E.; Haenni, W.; Perret, A.; Comninellis, Ch. Preparation of Peroxodisulfuric Acid Using Boron-Doped Diamond Thin Film Electrodes. Electrochem. Solid-State Lett., 1999, 3(2), 77.
[http://dx.doi.org/10.1149/1.1390963]
[http://dx.doi.org/10.1149/1.1390963]
[16]
Panizza, M.; Michaud, P.A.; Cerisola, G.; Comninellis, C. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. (Lausanne), 2001, 507(1-2), 206-214.
[http://dx.doi.org/10.1016/S0022-0728(01)00398-9]
[http://dx.doi.org/10.1016/S0022-0728(01)00398-9]
[17]
Cobb, S.J.; Ayres, Z.J.; Macpherson, J.V. Boron doped diamond: A designer electrode material for the twenty-first century. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2018, 11(1), 463-484.
[http://dx.doi.org/10.1146/annurev-anchem-061417-010107] [PMID: 29579405]
[http://dx.doi.org/10.1146/annurev-anchem-061417-010107] [PMID: 29579405]
[18]
Stanković D.M.; Kalcher, K. The immunosuppressive drug-rapamycin-electroanalytical sensing using a boron-doped diamond electrode. Electrochim. Acta, 2015, 168, 76-81.
[http://dx.doi.org/10.1016/j.electacta.2015.03.200]
[http://dx.doi.org/10.1016/j.electacta.2015.03.200]
[19]
Švorc, Ľ.; Borovská, K.; Cinková, K.; Stanković, D.M.; Planková, A. Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. Electrochim. Acta, 2017, 251, 621-630.
[http://dx.doi.org/10.1016/j.electacta.2017.08.077]
[http://dx.doi.org/10.1016/j.electacta.2017.08.077]
[20]
Feng, Z.; Gao, N.; Liu, J.; Li, H. Boron-doped diamond electrochemical aptasensors for trace aflatoxin B1 detection. Anal. Chim. Acta, 2020, 1122, 70-75.
[http://dx.doi.org/10.1016/j.aca.2020.04.062] [PMID: 32503745]
[http://dx.doi.org/10.1016/j.aca.2020.04.062] [PMID: 32503745]
[21]
Yu, Y.; Zhou, Y.; Wu, L.; Zhi, J. Electrochemical biosensor based on boron-doped diamond electrodes with modified surfaces. Int. J. Electrochem., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/567171]
[http://dx.doi.org/10.1155/2012/567171]
[22]
Kilic, A.; Soylemez, R. Akdemİr, M.; Kivrak, H.D.İ.; Kaya, M.; Horoz, S. A study on supercapacitor electrode material from trigonal planar and (N→B) dative bond stabilized tetrahedral boron-containing compounds. J. Mater. Sci. Mater. Electron., 2023, 34(7), 609.
[http://dx.doi.org/10.1007/s10854-023-09979-3]
[http://dx.doi.org/10.1007/s10854-023-09979-3]
[23]
Stanković D.M.; Samphao, A.; Kalcher, K. Anti-cancer Herbal Drug Berberine - Sensitive Determination Using Boron-doped Diamond Electrode. Electroanalysis, 2015, 27(12), 2753-2759.
[http://dx.doi.org/10.1002/elan.201500356]
[http://dx.doi.org/10.1002/elan.201500356]
[24]
Trouillon, R.; O’Hare, D. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling. Electrochim. Acta, 2010, 55(22), 6586-6595.
[http://dx.doi.org/10.1016/j.electacta.2010.06.016]
[http://dx.doi.org/10.1016/j.electacta.2010.06.016]
[25]
Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. Int., 2014, 21(14), 8336-8367.
[http://dx.doi.org/10.1007/s11356-014-2783-1] [PMID: 24687788]
[http://dx.doi.org/10.1007/s11356-014-2783-1] [PMID: 24687788]
[26]
Notsu, H.; Fukazawa, T.; Tatsuma, T.; Tryk, D.A.; Fujishima, A. Hydroxyl groups on boron-doped diamond electrodes and their modification with a silane coupling agent. Electrochem. Solid-State Lett., 2001, 4(3), H1.
[http://dx.doi.org/10.1149/1.1346556]
[http://dx.doi.org/10.1149/1.1346556]
[27]
Kong, J.; Shi, S.; Kong, L.; Zhu, X.; Ni, J. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim. Acta, 2007, 53(4), 2048-2054.
[http://dx.doi.org/10.1016/j.electacta.2007.09.003]
[http://dx.doi.org/10.1016/j.electacta.2007.09.003]
[28]
Rusinek, C.A.; Becker, M.F.; Rechenberg, R.; Kaval, N.; Ojo, K.; Heineman, W.R. Polymer-coated Boron Doped Diamond Optically Transparent Electrodes for Spectroelectrochemical Sensors. Electroanalysis, 2016, 28(9), 2228-2236.
[http://dx.doi.org/10.1002/elan.201600212]
[http://dx.doi.org/10.1002/elan.201600212]
[29]
Dai, Y.; Proshlyakov, D.A.; Zak, J.K.; Swain, G.M. Optically transparent diamond electrode for use in ir transmission spectroelectrochemical measurements. Anal. Chem., 2007, 79(19), 7526-7533.
[http://dx.doi.org/10.1021/ac071161p] [PMID: 17784734]
[http://dx.doi.org/10.1021/ac071161p] [PMID: 17784734]
[30]
Li, H.; Qin, J.; Li, M.; Li, C.; Xu, S.; Qian, L.; Yang, B. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor. Sens. Actuators B Chem., 2020, 302, 127209.
[http://dx.doi.org/10.1016/j.snb.2019.127209]
[http://dx.doi.org/10.1016/j.snb.2019.127209]
[31]
Kilic, A. Emin KARATAS, M.; Beyazsakal, L.; Okumus, V. Preparation and spectral studies of boronate ester modified magnetite iron nanoparticles (Fe3O4@APTES-B) as a new type of biological agents. J. Mol. Liq., 2022, 361, 119602.
[http://dx.doi.org/10.1016/j.molliq.2022.119602]
[http://dx.doi.org/10.1016/j.molliq.2022.119602]
[32]
Švorc, Ľ.; Strežová, I.; Kianičková, K.; Stanković, D.M.; Otřísal, P.; Samphao, A. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J. Electroanal. Chem. (Lausanne), 2018, 822, 144-152.
[http://dx.doi.org/10.1016/j.jelechem.2018.05.026]
[http://dx.doi.org/10.1016/j.jelechem.2018.05.026]
[33]
Rus, I.; Pusta, A. Tertiș M.; Barbălată C.; Tomuță I.; Săndulescu, R.; Cristea, C. Gemcitabine direct electrochemical detection from pharmaceutical formulations using a boron-doped diamond electrode. Pharmaceuticals (Basel), 2021, 14(9), 912.
[http://dx.doi.org/10.3390/ph14090912] [PMID: 34577618]
[http://dx.doi.org/10.3390/ph14090912] [PMID: 34577618]
[34]
Chomisteková, Z.; Culková, E.; Bellová, R. Melicherčíková, D.; Durdiak, J.; Timko, J.; Rievaj, M.; Tomčík, P. Oxidation and reduction of omeprazole on boron-doped diamond electrode: Mechanistic, kinetic and sensing performance studies. Sens. Actuators B Chem., 2017, 241, 1194-1202.
[http://dx.doi.org/10.1016/j.snb.2016.10.014]
[http://dx.doi.org/10.1016/j.snb.2016.10.014]
[35]
Peterson, A.W.; Heaton, R.J.; Georgiadis, R.M. The effect of surface probe density on DNA hybridization. Nucleic Acids Res., 2001, 29(24), 5163-5168.
[http://dx.doi.org/10.1093/nar/29.24.5163] [PMID: 11812850]
[http://dx.doi.org/10.1093/nar/29.24.5163] [PMID: 11812850]
[36]
Švorc, Ĺ.; Jambrec, D.; Vojs, M.; Barwe, S.; Clausmeyer, J.; Michniak, P.; Marton, M.; Schuhmann, W. Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays. ACS Appl. Mater. Interfaces, 2015, 7(34), 18949-18956.
[http://dx.doi.org/10.1021/acsami.5b06394]
[http://dx.doi.org/10.1021/acsami.5b06394]
[37]
Sanjuán, I.; Brotons, A.; Hernández-Ibáñez, N.; Foster, C.W.; Banks, C.E.; Iniesta, J. Boron-doped diamond electrodes explored for the electroanalytical detection of 7-methylguanine and applied for its sensing within urine samples. Electrochim. Acta, 2016, 197, 167-178.
[http://dx.doi.org/10.1016/j.electacta.2015.11.026]
[http://dx.doi.org/10.1016/j.electacta.2015.11.026]
[39]
Loft, S.; Svoboda, P.; Kasai, H.; Tjønneland, A.; Møller, P.; Sørensen, M.; Overvad, K.; Autrup, H.; Raaschou-Nielsen, O. Prospective study of urinary excretion of 7-methylguanine and the risk of lung cancer: Effect modification bymu class glutathione-S-transferases. Int. J. Cancer, 2007, 121(7), 1579-1584.
[http://dx.doi.org/10.1002/ijc.22863] [PMID: 17565746]
[http://dx.doi.org/10.1002/ijc.22863] [PMID: 17565746]
[40]
Svoboda, P.; Kasai, H. Simultaneous HPLC analysis of 8-hydroxydeoxyguanosine and 7-methylguanine in urine from humans and rodents. Anal. Biochem., 2004, 334(2), 239-250.
[http://dx.doi.org/10.1016/j.ab.2004.08.021] [PMID: 15494130]
[http://dx.doi.org/10.1016/j.ab.2004.08.021] [PMID: 15494130]
[41]
Shrivastav, N.; Li, D.; Essigmann, J.M. Chemical biology of mutagenesis and DNA repair: Cellular responses to DNA alkylation. Carcinogenesis, 2010, 31(1), 59-70.
[http://dx.doi.org/10.1093/carcin/bgp262] [PMID: 19875697]
[http://dx.doi.org/10.1093/carcin/bgp262] [PMID: 19875697]
[42]
Nidheesh, P.V.; Divyapriya, G.; Oturan, N.; Trellu, C.; Oturan, M.A. Environmental applications of boron‐doped diamond electrodes: 1. Applications in water and wastewater treatment. ChemElectroChem, 2019, 6(8), 2124-2142.
[http://dx.doi.org/10.1002/celc.201801876]
[http://dx.doi.org/10.1002/celc.201801876]