Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Machine Learning and Pharmacogenomics at the Time of Precision Psychiatry

Author(s): Antonio Del Casale*, Giuseppe Sarli, Paride Bargagna, Lorenzo Polidori, Alessandro Alcibiade, Teodolinda Zoppi, Marina Borro, Giovanna Gentile, Clarissa Zocchi, Stefano Ferracuti, Robert Preissner, Maurizio Simmaco and Maurizio Pompili

Volume 21, Issue 12, 2023

Published on: 09 August, 2023

Page: [2395 - 2408] Pages: 14

DOI: 10.2174/1570159X21666230808170123

Price: $65

Abstract

Traditional medicine and biomedical sciences are reaching a turning point because of the constantly growing impact and volume of Big Data. Machine Learning (ML) techniques and related algorithms play a central role as diagnostic, prognostic, and decision-making tools in this field. Another promising area becoming part of everyday clinical practice is personalized therapy and pharmacogenomics. Applying ML to pharmacogenomics opens new frontiers to tailored therapeutical strategies to help clinicians choose drugs with the best response and fewer side effects, operating with genetic information and combining it with the clinical profile. This systematic review aims to draw up the state-of-the-art ML applied to pharmacogenomics in psychiatry. Our research yielded fourteen papers; most were published in the last three years. The sample comprises 9,180 patients diagnosed with mood disorders, psychoses, or autism spectrum disorders. Prediction of drug response and prediction of side effects are the most frequently considered domains with the supervised ML technique, which first requires training and then testing. The random forest is the most used algorithm; it comprises several decision trees, reduces the training set's overfitting, and makes precise predictions. ML proved effective and reliable, especially when genetic and biodemographic information were integrated into the algorithm. Even though ML and pharmacogenomics are not part of everyday clinical practice yet, they will gain a unique role in the next future in improving personalized treatments in psychiatry.

Graphical Abstract

[1]
Ranganathan, S.; Schönbach, C.; Kelso, J.; Rost, B.; Nathan, S.; Tan, T.W. Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinformatics, 2011, 12(S13), S1.
[http://dx.doi.org/10.1186/1471-2105-12-S13-S1] [PMID: 22372736]
[2]
Dhar, V. Data science and prediction. Commun. ACM, 2013, 56(12), 64-73.
[http://dx.doi.org/10.1145/2500499]
[3]
Holzinger, A.; Dehmer, M.; Jurisica, I. Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinformatics, 2014, 15(S6), I1.
[http://dx.doi.org/10.1186/1471-2105-15-S6-I1] [PMID: 25078282]
[4]
Chen, H.; Chiang, R.H.L.; Storey, V.C. Business intelligence and analytics: From big data to big impact. Manage. Inf. Syst. Q., 2012, 36(4), 1165-1188.
[http://dx.doi.org/10.2307/41703503]
[5]
Jee, K.; Kim, G.H. Potentiality of big data in the medical sector: Focus on how to reshape the healthcare system. Healthc. Inform. Res., 2013, 19(2), 79-85.
[http://dx.doi.org/10.4258/hir.2013.19.2.79] [PMID: 23882412]
[6]
Köhne, A.C.J.; van Os, J. Precision psychiatry: Promise for the future or rehash of a fossilised foundation? Psychol. Med., 2021, 51(9), 1409-1411.
[http://dx.doi.org/10.1017/S0033291721000271] [PMID: 33612128]
[7]
Khanra, S.; Khess, C.J.; Munda, S. “Precision psychiatry”: A promising direction so far. Indian J. Psychiatry, 2018, 60(3), 373-374.
[http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_203_18] [PMID: 30405272]
[8]
Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245), 255-260.
[http://dx.doi.org/10.1126/science.aaa8415] [PMID: 26185243]
[9]
Lei, T.; Barzilay, R.; Jaakkola, T. Rationalizing neural predictions arXiv preprint arXiv, 2016, 1606.04155.
[10]
Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol., 2019, 19(1), 64.
[http://dx.doi.org/10.1186/s12874-019-0681-4] [PMID: 30890124]
[11]
Hawkins, J.B.; Brownstein, J.S.; Tuli, G.; Runels, T.; Broecker, K.; Nsoesie, E.O.; McIver, D.J.; Rozenblum, R.; Wright, A.; Bourgeois, F.T.; Greaves, F. Measuring patient-perceived quality of care in US hospitals using Twitter. BMJ Qual. Saf., 2016, 25(6), 404-413.
[http://dx.doi.org/10.1136/bmjqs-2015-004309] [PMID: 26464518]
[12]
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[13]
Deo, R.C. Machine learning in medicine. Circulation, 2015, 132(20), 1920-1930.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593] [PMID: 26572668]
[14]
Kalinin, A.A.; Higgins, G.A.; Reamaroon, N.; Soroushmehr, S.; Allyn-Feuer, A.; Dinov, I.D.; Najarian, K.; Athey, B.D. Deep learning in pharmacogenomics: From gene regulation to patient stratification. Pharmacogenomics, 2018, 19(7), 629-650.
[http://dx.doi.org/10.2217/pgs-2018-0008] [PMID: 29697304]
[15]
Smith, R.M. Advancing psychiatric pharmacogenomics using drug development paradigms. Pharmacogenomics, 2017, 18(15), 1459-1467.
[http://dx.doi.org/10.2217/pgs-2017-0104] [PMID: 28975860]
[16]
Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; Ferrari, A.J.; Kasaeian, A.; Werdecker, A.; Carter, A.; Zipkin, B.; Sartorius, B.; Serdar, B.; Sykes, B.L.; Troeger, C.; Fitzmaurice, C.; Rehm, C.D.; Santomauro, D.; Kim, D.; Colombara, D.; Schwebel, D.C.; Tsoi, D.; Kolte, D.; Nsoesie, E.; Nichols, E.; Oren, E.; Charlson, F.J.; Patton, G.C.; Roth, G.A.; Hosgood, H.D.; Whiteford, H.A.; Kyu, H.; Erskine, H.E.; Huang, H.; Martopullo, I.; Singh, J.A.; Nachega, J.B.; Sanabria, J.R.; Abbas, K.; Ong, K.; Tabb, K.; Krohn, K.J.; Cornaby, L.; Degenhardt, L.; Moses, M.; Farvid, M.; Griswold, M.; Criqui, M.; Bell, M.; Nguyen, M.; Wallin, M.; Mirarefin, M.; Qorbani, M.; Younis, M.; Fullman, N.; Liu, P.; Briant, P.; Gona, P.; Havmoller, R.; Leung, R.; Kimokoti, R.; Bazargan-Hejazi, S.; Hay, S.I.; Yadgir, S.; Biryukov, S.; Vollset, S.E.; Alam, T.; Frank, T.; Farid, T.; Miller, T.; Vos, T.; Bärnighausen, T.; Gebrehiwot, T.T.; Yano, Y.; Al-Aly, Z.; Mehari, A.; Handal, A.; Kandel, A.; Anderson, B.; Biroscak, B.; Mozaffarian, D.; Dorsey, E.R.; Ding, E.L.; Park, E.K.; Wagner, G.; Hu, G.; Chen, H.; Sunshine, J.E.; Khubchandani, J.; Leasher, J.; Leung, J.; Salomon, J.; Unutzer, J.; Cahill, L.; Cooper, L.; Horino, M.; Brauer, M.; Breitborde, N.; Hotez, P.; Topor-Madry, R.; Soneji, S.; Stranges, S.; James, S.; Amrock, S.; Jayaraman, S.; Patel, T.; Akinyemiju, T.; Skirbekk, V.; Kinfu, Y.; Bhutta, Z.; Jonas, J.B.; Murray, C.J.L.; Murray, C.J.L. The State of US Health, 1990-2016. JAMA, 2018, 319(14), 1444-1472.
[http://dx.doi.org/10.1001/jama.2018.0158] [PMID: 29634829]
[17]
Sinyor, M.; Levitt, A.J.; Cheung, A.H.; Schaffer, A.; Kiss, A.; Dowlati, Y.; Lanctôt, K.L. Does inclusion of a placebo arm influence response to active antidepressant treatment in randomized controlled trials? Results from pooled and meta-analyses. J. Clin. Psychiatry, 2010, 71(3), 270-279.
[http://dx.doi.org/10.4088/JCP.08r04516blu] [PMID: 20122371]
[18]
Novick, D.; Haro, J.M.; Suarez, D.; Perez, V.; Dittmann, R.W.; Haddad, P.M. Predictors and clinical consequences of non-adherence with antipsychotic medication in the outpatient treatment of schizophrenia. Psychiatry Res., 2010, 176(2-3), 109-113.
[http://dx.doi.org/10.1016/j.psychres.2009.05.004] [PMID: 20185182]
[19]
Krivoy, A.; Malka, L.; Fischel, T.; Weizman, A.; Valevski, A. Predictors of clozapine discontinuation in patients with schizophrenia. Int. Clin. Psychopharmacol., 2011, 26(6), 311-315.
[http://dx.doi.org/10.1097/YIC.0b013e32834ab34c] [PMID: 21849905]
[20]
Tonelli, M.R.; Shirts, B.H. Knowledge for precision medicine. JAMA, 2017, 318(17), 1649-1650.
[http://dx.doi.org/10.1001/jama.2017.11914] [PMID: 29052713]
[21]
Lane, H.Y.; Tsai, G.E.; Lin, E. Assessing gene-gene interactions in pharmacogenomics. Mol. Diagn. Ther., 2012, 16(1), 15-27.
[http://dx.doi.org/10.1007/BF03256426] [PMID: 22352452]
[22]
Iniesta, R.; Stahl, D.; McGuffin, P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol. Med., 2016, 46(12), 2455-2465.
[http://dx.doi.org/10.1017/S0033291716001367] [PMID: 27406289]
[23]
Fernandes, B.S.; Williams, L.M.; Steiner, J.; Leboyer, M.; Carvalho, A.F.; Berk, M. The new field of ‘precision psychiatry’. BMC Med., 2017, 15(1), 80.
[http://dx.doi.org/10.1186/s12916-017-0849-x] [PMID: 28403846]
[24]
Lin, E.; Kuo, P.H.; Liu, Y.L.; Yu, Y.W.Y.; Yang, A.C.; Tsai, S.J. Prediction of antidepressant treatment response and remission using an ensemble machine learning framework. Pharmaceuticals, 2020, 13(10), 305.
[http://dx.doi.org/10.3390/ph13100305] [PMID: 33065962]
[25]
Lee, B.S.; McIntyre, R.S.; Gentle, J.E.; Park, N.S.; Chiriboga, D.A.; Lee, Y.; Singh, S.; McPherson, M.A. A computational algorithm for personalized medicine in schizophrenia. Schizophr. Res., 2018, 192, 131-136.
[http://dx.doi.org/10.1016/j.schres.2017.05.001] [PMID: 28495491]
[26]
Fabbri, C.; Corponi, F.; Albani, D.; Raimondi, I.; Forloni, G.; Schruers, K.; Kasper, S.; Kautzky, A.; Zohar, J.; Souery, D.; Montgomery, S.; Cristalli, C.P.; Mantovani, V.; Mendlewicz, J.; Serretti, A. Pleiotropic genes in psychiatry: Calcium channels and the stress-related FKBP5 gene in antidepressant resistance. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 81, 203-210.
[http://dx.doi.org/10.1016/j.pnpbp.2017.10.005] [PMID: 28989100]
[27]
Maciukiewicz, M.; Marshe, V.S.; Hauschild, A.C.; Foster, J.A.; Rotzinger, S.; Kennedy, J.L.; Kennedy, S.H.; Müller, D.J.; Geraci, J. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J. Psychiatr. Res., 2018, 99, 62-68.
[http://dx.doi.org/10.1016/j.jpsychires.2017.12.009] [PMID: 29407288]
[28]
Eugene, A.R.; Masiak, J.; Eugene, B. Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning. F1000 Res., 2018, 7, 474.
[http://dx.doi.org/10.12688/f1000research.14451.3] [PMID: 30828420]
[29]
Boloc, D.; Gortat, A.; Cheng-Zhang, J.Q.; García-Cerro, S.; Rodríguez, N.; Parellada, M.; Saiz-Ruiz, J.; Cuesta, M.J.; Gassó, P.; Lafuente, A.; Bernardo, M.; Mas, S. Improving pharmacogenetic prediction of extrapyramidal symptoms induced by antipsychotics. Transl. Psychiatry, 2018, 8(1), 276.
[http://dx.doi.org/10.1038/s41398-018-0330-4] [PMID: 30546092]
[30]
Athreya, A.P.; Neavin, D.; Carrillo-Roa, T.; Skime, M.; Biernacka, J.; Frye, M.A.; Rush, A.J.; Wang, L.; Binder, E.B.; Iyer, R.K.; Weinshilboum, R.M.; Bobo, W.V. Pharmacogenomics‐driven prediction of antidepressant treatment outcomes: A machine‐learning approach with multi‐trial replication. Clin. Pharmacol. Ther., 2019, 106(4), 855-865.
[http://dx.doi.org/10.1002/cpt.1482] [PMID: 31012492]
[31]
Borro, M.; Gentile, G.; Preissner, S.H.; Pomes, L.M.; Gohlke, B.O.; Del Casale, A.; Eckert, A.; Marchetti, P.; Preissner, S.; Preissner, R.; Simmaco, M. Individualized drugs’ selection by evaluation of drug properties, pharmacogenomics and clinical parameters: Performance of a bioinformatic tool compared to a clinically established counselling process. Pharm. Genomics Pers. Med., 2021, 14, 955-962.
[http://dx.doi.org/10.2147/PGPM.S316556] [PMID: 34385834]
[32]
Bi, Y.; Ren, D.; Guo, Z.; Ma, G.; Xu, F.; Chen, Z.; An, L.; Zhang, N.; Ji, L.; Yuan, F.; Liu, L.; Hou, B.; Yang, F.; Yu, S.; Yi, Z.; Xu, Y.; He, L.; Sun, X.; Dong, Z.; Wu, S.; Zhao, L.; Cai, C.; Li, X.; Yu, T.; Shi, Y.; He, G. Influence and interaction of genetic, cognitive, neuroendocrine and personalistic markers to antidepressant response in Chinese patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110036.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110036] [PMID: 32702381]
[33]
Taliaz, D.; Spinrad, A.; Barzilay, R.; Barnett-Itzhaki, Z.; Averbuch, D.; Teltsh, O.; Schurr, R.; Darki-Morag, S.; Lerer, B. Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data. Translational Psychiatry, 2021, 11(1), 381.
[http://dx.doi.org/10.1038/s41398-021-01488-3]
[34]
Joyce, J.B.; Grant, C.W.; Liu, D. MahmoudianDehkordi, S.; Kaddurah-Daouk, R.; Skime, M.; Biernacka, J.; Frye, M.A.; Mayes, T.; Carmody, T.; Croarkin, P.E.; Wang, L.; Weinshilboum, R.; Bobo, W.V.; Trivedi, M.H.; Athreya, A.P. Multi-omics driven predictions of response to acute phase combination antidepressant therapy: A machine learning approach with cross-trial replication. Transl. Psychiatry, 2021, 11(1), 513.
[http://dx.doi.org/10.1038/s41398-021-01632-z] [PMID: 34620827]
[35]
Kautzky, A.; Baldinger, P.; Souery, D.; Montgomery, S.; Mendlewicz, J.; Zohar, J.; Serretti, A.; Lanzenberger, R.; Kasper, S. The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur. Neuropsychopharmacol., 2015, 25(4), 441-453.
[http://dx.doi.org/10.1016/j.euroneuro.2015.01.001] [PMID: 25769916]
[36]
Son, W.Y.; Lee, H.J.; Yoon, H.K.; Kang, S.G.; Park, Y.M.; Yang, H.J.; Choi, J.E.; An, H.; Seo, H.K.; Kim, L. Gaba transporter SLC6A11 gene polymorphism associated with tardive dyskinesia. Nord. J. Psychiatry, 2014, 68(2), 123-128.
[http://dx.doi.org/10.3109/08039488.2013.780260] [PMID: 23795861]
[37]
Watanabe, T.; Otowa, T.; Abe, O.; Kuwabara, H.; Aoki, Y.; Natsubori, T.; Takao, H.; Kakiuchi, C.; Kondo, K.; Ikeda, M.; Iwata, N.; Kasai, K.; Sasaki, T.; Yamasue, H. Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism. Soc. Cogn. Affect. Neurosci., 2017, 12(3), 496-506.
[http://dx.doi.org/10.1093/scan/nsw150] [PMID: 27798253]
[38]
Cascorbi, I.; Schwab, M. Epigenetics in drug response. Clin. Pharmacol. Ther., 2016, 99(5), 468-470.
[http://dx.doi.org/10.1002/cpt.349] [PMID: 27061003]
[39]
Gupta, M.; Neavin, D.; Liu, D.; Biernacka, J.; Hall-Flavin, D.; Bobo, W.V.; Frye, M.A.; Skime, M.; Jenkins, G.D.; Batzler, A.; Kalari, K.; Matson, W.; Bhasin, S.S.; Zhu, H.; Mushiroda, T.; Nakamura, Y.; Kubo, M.; Wang, L.; Kaddurah-Daouk, R.; Weinshilboum, R.M. TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: Pharmacometabolomics-informed pharmacogenomics. Mol. Psychiatry, 2016, 21(12), 1717-1725.
[http://dx.doi.org/10.1038/mp.2016.6] [PMID: 26903268]
[40]
Liu, D.; Ray, B.; Neavin, D.R.; Zhang, J.; Athreya, A.P.; Biernacka, J.M.; Bobo, W.V.; Hall-Flavin, D.K.; Skime, M.K.; Zhu, H.; Jenkins, G.D.; Batzler, A.; Kalari, K.R.; Boakye-Agyeman, F.; Matson, W.R.; Bhasin, S.S.; Mushiroda, T.; Nakamura, Y.; Kubo, M.; Iyer, R.K.; Wang, L.; Frye, M.A.; Kaddurah-Daouk, R.; Weinshilboum, R.M. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: Metabolomics-informed genomics. Transl. Psychiatry, 2018, 8(1), 10.
[http://dx.doi.org/10.1038/s41398-017-0056-8] [PMID: 29317604]
[41]
Ho, M.F.; Zhang, C.; Zhang, L.; Wei, L.; Zhou, Y.; Moon, I.; Geske, J.R.; Choi, D.S.; Biernacka, J.; Frye, M.; Wen, Z.; Karpyak, V.M.; Li, H.; Weinshilboum, R. TSPAN5 influences serotonin and kynurenine: Pharmacogenomic mechanisms related to alcohol use disorder and acamprosate treatment response. Mol. Psychiatry, 2021, 26(7), 3122-3133.
[http://dx.doi.org/10.1038/s41380-020-0855-9] [PMID: 32753686]
[42]
Kinsella, R. J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; Kersey, P.; Flicek, P. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database : J Biol Databases and Curation, 2011, bar030.
[http://dx.doi.org/10.1093/database/bar030]
[43]
Lee, B.S.; Sen, P.K.; Park, N.S.; Boothroyd, R.A.; Peters, R.H.; Chiriboga, D.A. A clustering method to identify who benefits most from the treatment group in clinical trials. Health Psychol. Behav. Med., 2014, 2(1), 723-734.
[http://dx.doi.org/10.1080/21642850.2014.924857]
[44]
Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511(7510), 421-427.
[http://dx.doi.org/10.1038/nature13595] [PMID: 25056061]
[45]
Sullivan, P.F.; Lin, D.; Tzeng, J-Y.; van den Oord, E.; Perkins, D.; Stroup, T.S.; Wagner, M.; Lee, S.; Wright, F.A.; Zou, F.; Liu, W.; Downing, A.M.; Lieberman, J.; Close, S.L. Genomewide association for schizophrenia in the CATIE study: Results of stage 1. Mol. Psychiatry, 2008, 13(6), 570-584.
[http://dx.doi.org/10.1038/mp.2008.25] [PMID: 18347602]
[46]
Chung, D.T.; Ryan, C.J.; Hadzi-Pavlovic, D.; Singh, S.P.; Stanton, C.; Large, M.M. Suicide rates after discharge from psychiatric facilities. JAMA Psychiatry, 2017, 74(7), 694-702.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.1044] [PMID: 28564699]
[47]
Qi, Y.; Bar-Joseph, Z.; Klein-Seetharaman, J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins, 2006, 63(3), 490-500.
[http://dx.doi.org/10.1002/prot.20865] [PMID: 16450363]
[48]
Pflueger, M.O.; Franke, I.; Graf, M.; Hachtel, H. Predicting general criminal recidivism in mentally disordered offenders using a random forest approach. BMC Psychiatry, 2015, 15(1), 62.
[http://dx.doi.org/10.1186/s12888-015-0447-4] [PMID: 25885691]
[49]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[50]
U.S. Department of Health and Human Services, Food and Drug Administration In: Clinical pharmacogenomics: Premarket evaluation in early-phase clinical studies and recommendations for labeling; 2014. Available on https://www.fda.gov/media/84923/download
[51]
Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A survey of recent advances in deep learning techniques for Electronic Health Record (EHR) analysis. IEEE J. Biomed. Health Inform., 2018, 22(5), 1589-1604.
[http://dx.doi.org/10.1109/JBHI.2017.2767063] [PMID: 29989977]
[52]
Wei, W.Q.; Denny, J.C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med., 2015, 7(1), 41.
[http://dx.doi.org/10.1186/s13073-015-0166-y] [PMID: 25937834]
[53]
Kannry, J.L.; Williams, M.S. Integration of genomics into the electronic health record: Mapping terra incognita. Genetics in medicine, 2013, 15(10), 757-760.
[http://dx.doi.org/10.1038/gim.2013.102]
[54]
Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep., 2016, 6(1), 26094.
[http://dx.doi.org/10.1038/srep26094] [PMID: 27185194]
[55]
Beaulieu-Jones, B.K.; Greene, C.S. Semi-supervised learning of the electronic health record for phenotype stratification. J. Biomed. Inform., 2016, 64, 168-178.
[http://dx.doi.org/10.1016/j.jbi.2016.10.007] [PMID: 27744022]
[56]
Hwang, U.; Choi, S.; Lee, H.B.; Yoon, S. Adversarial training for disease prediction from electronic health records with missing data. arXiv preprint arXiv:1711.04126, 2017.
[57]
Che, Z.; Cheng, Y.; Zhai, S.; Sun, Z.; Liu, Y. Boosting deep learning risk prediction with generative adversarial networks for electronic health records. Proceedings - IEEE International Conference on Data Mining, ICDM, 2017, pp. 787-792.
[http://dx.doi.org/10.1109/ICDM.2017.93]
[58]
Chung, J.; Teo, J. Mental health prediction using machine learning: taxonomy, applications, and challenges. Appl. Comput. Intell. Soft Comput., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/9970363]
[59]
Dang, Y.; Lin, Q.; Huang, P. Aiops: real-world challenges and research innovations. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSECompanion); , 2019; pp. 4-5.
[60]
Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.C.; Jeste, D.V. Artificial intelligence for mental health and mental illnesses: An overview. Curr. Psychiatry Rep., 2019, 21(11), 116.
[http://dx.doi.org/10.1007/s11920-019-1094-0] [PMID: 31701320]
[61]
Fardouly, J.; Crosby, R.D.; Sukunesan, S. Potential benefits and limitations of machine learning in the field of eating disorders: Current research and future directions. J. Eat. Disord., 2022, 10(1), 66.
[http://dx.doi.org/10.1186/s40337-022-00581-2] [PMID: 35527306]
[62]
Chandler, C.; Foltz, P.W.; Elvevåg, B. Using machine learning in psychiatry: The need to establish a framework that nurtures trustworthiness. Schizophr. Bull., 2019, 46(1), sbz105.
[http://dx.doi.org/10.1093/schbul/sbz105] [PMID: 31901100]
[63]
Koppe, G.; Meyer-Lindenberg, A.; Durstewitz, D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology, 2021, 46(1), 176-190.
[http://dx.doi.org/10.1038/s41386-020-0767-z]
[64]
Su, C.; Xu, Z.; Pathak, J.; Wang, F. Deep learning in mental health outcome research: A scoping review. Transl. Psychiatry, 2020, 10(1), 116.
[http://dx.doi.org/10.1038/s41398-020-0780-3] [PMID: 32532967]
[65]
Grzenda, A.; Kraguljac, N.V.; McDonald, W.M.; Nemeroff, C.; Torous, J.; Alpert, J.E.; Rodriguez, C.I.; Widge, A.S. Evaluating the machine learning literature: A primer and user’s guide for psychiatrists. Am. J. Psychiatry, 2021, 178(8), 715-729.
[http://dx.doi.org/10.1176/appi.ajp.2020.20030250] [PMID: 34080891]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy