Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Mini-Review Article

Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic

Author(s): Mark A. Schumacher*

Volume 22, Issue 1, 2024

Published on: 09 August, 2023

Page: [6 - 14] Pages: 9

DOI: 10.2174/1570159X21666230808111908

Price: $65

conference banner
Abstract

The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.

Graphical Abstract

[1]
Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press (US): Washington (DC), 2011.
[2]
Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet, 2006, 367(9522), 1618-1625.
[http://dx.doi.org/10.1016/S0140-6736(06)68700-X] [PMID: 16698416]
[3]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[4]
Reichling, D.B.; Green, P.G.; Levine, J.D. The fundamental unit of pain is the cell. Pain, 2013, 154(Suppl. 1), S2-S9.
[http://dx.doi.org/10.1016/j.pain.2013.05.037]
[5]
Guan, Z.; Hellman, J.; Schumacher, M. Contemporary views on inflammatory pain mechanisms: Trping over innate and microglial pathways. F1000 Res., 2016, 5, 2425.
[http://dx.doi.org/10.12688/f1000research.8710.1] [PMID: 27781082]
[6]
Apkarian, A.V.; Bushnell, M.C.; Treede, R.D.; Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain, 2005, 9(4), 463-484.
[http://dx.doi.org/10.1016/j.ejpain.2004.11.001] [PMID: 15979027]
[7]
Dworkin, R.H.; Turk, D.C.; Basch, E.; Berger, A.; Cleeland, C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Kerns, R.D.; Markman, J.; Porter, L.; Raja, S.N.; Ross, E.; Todd, K.; Wallace, M.; Woolf, C.J. Considerations for extrapolating evidence of acute and chronic pain analgesic efficacy. Pain, 2011, 152(8), 1705-1708.
[http://dx.doi.org/10.1016/j.pain.2011.02.026] [PMID: 21396781]
[8]
De Felice, M.; Sanoja, R.; Wang, R.; Vera-Portocarrero, L.; Oyarzo, J.; King, T.; Ossipov, M.H.; Vanderah, T.W.; Lai, J.; Dussor, G.O.; Fields, H.L.; Price, T.J.; Porreca, F. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain, 2011, 152(12), 2701-2709.
[http://dx.doi.org/10.1016/j.pain.2011.06.008] [PMID: 21745713]
[9]
Piomelli, D.; Sasso, O. Peripheral gating of pain signals by endogenous lipid mediators. Nat. Neurosci., 2014, 17(2), 164-174.
[http://dx.doi.org/10.1038/nn.3612] [PMID: 24473264]
[10]
Sexton, J.E.; Vernon, J.; Wood, J.N. TRPs and Pain. Handb. Exp. Pharmacol., 2014, 223, 873-897.
[http://dx.doi.org/10.1007/978-3-319-05161-1_6] [PMID: 24961972]
[11]
Amaya, F.; Oh-hashi, K.; Naruse, Y.; Iijima, N.; Ueda, M.; Shimosato, G.; Tominaga, M.; Tanaka, Y.; Tanaka, M. Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res., 2003, 963(1-2), 190-196.
[http://dx.doi.org/10.1016/S0006-8993(02)03972-0] [PMID: 12560124]
[12]
Amaya, F.; Shimosato, G.; Nagano, M.; Ueda, M.; Hashimoto, S.; Tanaka, Y.; Suzuki, H.; Tanaka, M. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur. J. Neurosci., 2004, 20(9), 2303-2310.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03701.x] [PMID: 15525272]
[13]
Petruska, J.C.; Mendell, L.M. The many functions of nerve growth factor: Multiple actions on nociceptors. Neurosci. Lett., 2004, 361(1-3), 168-171.
[http://dx.doi.org/10.1016/j.neulet.2003.12.012] [PMID: 15135920]
[14]
Anand, U.; Otto, W.R.; Facer, P.; Zebda, N.; Selmer, I.; Gunthorpe, M.J.; Chessell, I.P.; Sinisi, M.; Birch, R.; Anand, P. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci. Lett., 2008, 438(2), 221-227.
[http://dx.doi.org/10.1016/j.neulet.2008.04.007] [PMID: 18456404]
[15]
Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 2008, 28(10), 2485-2494.
[http://dx.doi.org/10.1523/JNEUROSCI.5369-07.2008] [PMID: 18322093]
[16]
Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience, 2015, 310, 206-215.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.042] [PMID: 26393428]
[17]
Bandell, M.; Story, G.M.; Hwang, S.W.; Viswanath, V.; Eid, S.R.; Petrus, M.J.; Earley, T.J.; Patapoutian, A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 2004, 41(6), 849-857.
[http://dx.doi.org/10.1016/S0896-6273(04)00150-3] [PMID: 15046718]
[18]
Bautista, D.M.; Jordt, S.E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 2006, 124(6), 1269-1282.
[http://dx.doi.org/10.1016/j.cell.2006.02.023] [PMID: 16564016]
[19]
Bautista, D.M.; Pellegrino, M.; Tsunozaki, M. TRPA1: A gatekeeper for inflammation. Annu. Rev. Physiol., 2013, 75(1), 181-200.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183811] [PMID: 23020579]
[20]
Bell, J.T.; Loomis, A.K.; Butcher, L.M.; Gao, F.; Zhang, B.; Hyde, C.L.; Sun, J.; Wu, H.; Ward, K.; Harris, J.; Scollen, S.; Davies, M.N.; Schalkwyk, L.C.; Mill, J.; Ahmadi, K.R.; Ainali, C.; Barrett, A.; Bataille, V.; Bell, J.T.; Buil, A.; Deloukas, P.; Dermitzakis, E.T.; Dimas, A.S.; Durbin, R.; Glass, D.; Grundberg, E.; Hassanali, N.; Hedman, A.K.; Ingle, C.; Knowles, D.; Krestyaninova, M.; Lindgren, C.M.; Lowe, C.E.; McCarthy, M.I.; Meduri, E.; di Meglio, P.; Min, J.L.; Montgomery, S.B.; Nestle, F.O.; Nica, A.C.; Nisbet, J.; O’Rahilly, S.; Parts, L.; Potter, S.; Sekowska, M.; Shin, S-Y.; Small, K.S.; Soranzo, N.; Spector, T.D.; Surdulescu, G.; Travers, M.E.; Tsaprouni, L.; Tsoka, S.; Wilk, A.; Yang, T-P.; Zondervan, K.T.; Williams, F.M.K.; Li, N.; Deloukas, P.; Beck, S.; McMahon, S.B.; Wang, J.; John, S.L.; Spector, T.D. Differential methylation of the TRPA1 promoter in pain sensitivity. Nat. Commun., 2014, 5(1), 2978.
[http://dx.doi.org/10.1038/ncomms3978] [PMID: 24496475]
[21]
Cattaruzza, F.; Johnson, C.; Leggit, A.; Grady, E.; Schenk, A.K.; Cevikbas, F.; Cedron, W.; Bondada, S.; Kirkwood, R.; Malone, B.; Steinhoff, M.; Bunnett, N.; Kirkwood, K.S. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 304(11), G1002-G1012.
[http://dx.doi.org/10.1152/ajpgi.00005.2013] [PMID: 23558009]
[22]
da Costa, D.S.M.; Meotti, F.C.; Andrade, E.L.; Leal, P.C.; Motta, E.M.; Calixto, J.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain, 2010, 148(3), 431-437.
[http://dx.doi.org/10.1016/j.pain.2009.12.002] [PMID: 20056530]
[23]
Diogenes, A.; Akopian, A.N.; Hargreaves, K.M. NGF up-regulates TRPA1: Implications for orofacial pain. J. Dent. Res., 2007, 86(6), 550-555.
[http://dx.doi.org/10.1177/154405910708600612] [PMID: 17525356]
[24]
Gregus, A.M.; Doolen, S.; Dumlao, D.S.; Buczynski, M.W.; Takasusuki, T.; Fitzsimmons, B.L.; Hua, X.Y.; Taylor, B.K.; Dennis, E.A.; Yaksh, T.L. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc. Natl. Acad. Sci., 2012, 109(17), 6721-6726.
[http://dx.doi.org/10.1073/pnas.1110460109] [PMID: 22493235]
[25]
Zappia, K.J.; O’Hara, C.L.; Moehring, F.; Kwan, K.Y.; Stucky, C.L. Sensory neuron-specific deletion of TRPA1 results in mechanical cutaneous sensory deficits. eNeuro, 2017, 4(1), ENEURO. 0069-16.2017.
[http://dx.doi.org/10.1523/ENEURO.0069-16.2017] [PMID: 28303259]
[26]
Bonnie, R.J. Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use; Phillips, J.K.; Ford, M.A.; Bonnie, R.J., Eds.; National Academies Press (US): Washington (DC), 2017.
[http://dx.doi.org/10.17226/24781]
[27]
Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain, 2011, 152(3), S2-S15.
[http://dx.doi.org/10.1016/j.pain.2010.09.030] [PMID: 20961685]
[28]
McGreevy, K.; Bottros, M.M.; Raja, S.N. Preventing chronic pain following acute pain: Risk factors, preventive strategies, and their efficacy. Eur. J. Pain Suppl., 2011, 5(S2), 365-376.
[http://dx.doi.org/10.1016/j.eujps.2011.08.013] [PMID: 22102847]
[29]
Lewin, G.R.; Mendell, L.M. Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. J. Neurophysiol., 1994, 71(3), 941-949.
[http://dx.doi.org/10.1152/jn.1994.71.3.941] [PMID: 8201434]
[30]
Andreev, N.Y.; Dimitrieva, N.; Koltzenburg, M.; McMahon, S.B. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain, 1995, 63(1), 109-115.
[http://dx.doi.org/10.1016/0304-3959(95)00024-M] [PMID: 8577480]
[31]
Koltzenburg, M. The changing sensitivity in the life of the nociceptor. Pain, 1999, 82(Suppl. 1), S93-S102.
[http://dx.doi.org/10.1016/S0304-3959(99)00142-6] [PMID: 10491977]
[32]
Michael, G.J.; Priestley, J.V. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J. Neurosci., 1999, 19(5), 1844-1854.
[http://dx.doi.org/10.1523/JNEUROSCI.19-05-01844.1999] [PMID: 10024368]
[33]
Woolf, C.J.; Costigan, M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl. Acad. Sci., 1999, 96(14), 7723-7730.
[http://dx.doi.org/10.1073/pnas.96.14.7723] [PMID: 10393888]
[34]
Lindsay, R.M.; Harmar, A.J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature, 1989, 337(6205), 362-364.
[http://dx.doi.org/10.1038/337362a0] [PMID: 2911387]
[35]
McMahon, S.B. NGF as a mediator of inflammatory pain. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1996, 351(1338), 431-440.
[http://dx.doi.org/10.1098/rstb.1996.0039] [PMID: 8730782]
[36]
Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002, 36(1), 57-68.
[http://dx.doi.org/10.1016/S0896-6273(02)00908-X] [PMID: 12367506]
[37]
Zhang, X.; Huang, J.; McNaughton, P.A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J., 2005, 24(24), 4211-4223.
[http://dx.doi.org/10.1038/sj.emboj.7600893] [PMID: 16319926]
[38]
Xue, Q.; Jong, B.; Chen, T.; Schumacher, M.A. Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor. J. Neurochem., 2007, 101(1), 212-222.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04363.x] [PMID: 17217411]
[39]
Chu, C.; Zavala, K.; Fahimi, A.; Lee, J.; Xue, Q.; Eilers, H.; Schumacher, M.A. Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons. Mol. Pain, 2011, 7, 1744-8069-7-44.
[http://dx.doi.org/10.1186/1744-8069-7-44] [PMID: 21645329]
[40]
Bonnington, J.K.; McNaughton, P.A. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol., 2003, 551(2), 433-446.
[http://dx.doi.org/10.1113/jphysiol.2003.039990] [PMID: 12815188]
[41]
Chuang, H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 2001, 411(6840), 957-962.
[http://dx.doi.org/10.1038/35082088] [PMID: 11418861]
[42]
Rukwied, R.; Mayer, A.; Kluschina, O.; Obreja, O.; Schley, M.; Schmelz, M. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain, 2010, 148(3), 407-413.
[http://dx.doi.org/10.1016/j.pain.2009.11.022] [PMID: 20022698]
[43]
Amann, R.; Schuligoi, R.; Herzeg, G.; Donnerer, J. Intraplantar injection of nerve growth factor into the rat hind paw: Local edema and effects on thermal nociceptive threshold. Pain, 1996, 64(2), 323-329.
[http://dx.doi.org/10.1016/0304-3959(95)00120-4] [PMID: 8740610]
[44]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[45]
Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 2000, 288(5464), 306-313.
[http://dx.doi.org/10.1126/science.288.5464.306] [PMID: 10764638]
[46]
Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; Hughes, S.A.; Rance, K.; Grau, E.; Harper, A.J.; Pugh, P.L.; Rogers, D.C.; Bingham, S.; Randall, A.; Sheardown, S.A. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 2000, 405(6783), 183-187.
[http://dx.doi.org/10.1038/35012076] [PMID: 10821274]
[47]
Schumacher, M.A. Transient receptor potential channels in pain and inflammation: Therapeutic opportunities. Pain Pract., 2010, 10(3), 185-200.
[http://dx.doi.org/10.1111/j.1533-2500.2010.00358.x] [PMID: 20230457]
[48]
Blackshaw, L.A. Transient receptor potential cation channels in visceral sensory pathways. Br. J. Pharmacol., 2014, 171(10), 2528-2536.
[http://dx.doi.org/10.1111/bph.12641] [PMID: 24641218]
[49]
Lawton, S.K.; Xu, F.; Tran, A.; Wong, E.; Prakash, A.; Schumacher, M.; Hellman, J.; Wilhelmsen, K. N -arachidonoyl dopamine modulates acute systemic inflammation via nonhematopoietic TRPV1. J. Immunol., 2017, 199(4), 1465-1475.
[http://dx.doi.org/10.4049/jimmunol.1602151] [PMID: 28701511]
[50]
Xue, Q.; Yu, Y.; Trilk, S.L.; Jong, B.E.; Schumacher, M.A. The genomic organization of the gene encoding the vanilloid receptor: Evidence for multiple splice variants. Genomics, 2001, 76(1-3), 14-20.
[http://dx.doi.org/10.1006/geno.2001.6582] [PMID: 11549313]
[51]
Supp, D.M.; Witte, D.P.; Branford, W.W.; Smith, E.P.; Potter, S.S. Sp4, a member of the Sp1-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev. Biol., 1996, 176(2), 284-299.
[http://dx.doi.org/10.1006/dbio.1996.0134] [PMID: 8660867]
[52]
Suske, G. The Sp-family of transcription factors. Gene, 1999, 238(2), 291-300.
[http://dx.doi.org/10.1016/S0378-1119(99)00357-1]
[53]
Bouwman, P.; Philipsen, S. Regulation of the activity of Sp1-related transcription factors. Mol. Cell. Endocrinol., 2002, 195(1-2), 27-38.
[http://dx.doi.org/10.1016/S0303-7207(02)00221-6] [PMID: 12354670]
[54]
Li, L.; He, S.; Sun, J.M.; Davie, J.R. Gene regulation by Sp1 and Sp3. Biochem. Cell Biol., 2004, 82(4), 460-471.
[http://dx.doi.org/10.1139/o04-045] [PMID: 15284899]
[55]
Saia, G.; Lalonde, J.; Sun, X.; Ramos, B.; Gill, G. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling. J. Neurochem., 2014, 129(4), 743-752.
[http://dx.doi.org/10.1111/jnc.12657] [PMID: 24475768]
[56]
Priya, A.; Johar, K.; Nair, B.; Wong-Riley, M.T.T. Specificity protein 4 (Sp4) regulates the transcription of AMPA receptor subunit GluA2 (Gria2). Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(6), 1196-1206.
[http://dx.doi.org/10.1016/j.bbamcr.2014.02.008] [PMID: 24576410]
[57]
Sun, X.; Pinacho, R.; Saia, G.; Punko, D.; Meana, J.J.; Ramos, B.; Gill, G. Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning. Dev. Neurobiol., 2015, 75(1), 93-108.
[http://dx.doi.org/10.1002/dneu.22212] [PMID: 25045015]
[58]
Nair, B.; Johar, K.; Priya, A.; Wong-Riley, M.T.T. Specificity protein 4 (Sp4) transcriptionally regulates inhibitory GABAergic receptors in neurons. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(1), 1-9.
[http://dx.doi.org/10.1016/j.bbamcr.2015.10.005] [PMID: 26469128]
[59]
Johar, K.; Priya, A.; Dhar, S.; Liu, Q.; Wong-Riley, M.T.T. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons. J. Neurochem., 2013, 127(4), 496-508.
[http://dx.doi.org/10.1111/jnc.12433] [PMID: 24032355]
[60]
Johar, K.; Priya, A.; Wong-Riley, M.T.T. Regulation of Na +/K + -ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons. Eur. J. Neurosci., 2014, 39(4), 566-578.
[http://dx.doi.org/10.1111/ejn.12415] [PMID: 24219545]
[61]
Zhou, X.; Tang, W.; Greenwood, T.A.; Guo, S.; He, L.; Geyer, M.A.; Kelsoe, J.R. Transcription factor SP4 is a susceptibility gene for bipolar disorder. PLoS One, 2009, 4(4), e5196.
[http://dx.doi.org/10.1371/journal.pone.0005196] [PMID: 19401786]
[62]
Shi, J.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Coryell, W.; Scheftner, W.A.; Lawson, W.B.; DePaulo, J.R., Jr; Gejman, P.V.; Sanders, A.R.; Johnson, J.K.; Adams, P.; Chaudhury, S.; Jancic, D.; Evgrafov, O.; Zvinyatskovskiy, A.; Ertman, N.; Gladis, M.; Neimanas, K.; Goodell, M.; Hale, N.; Ney, N.; Verma, R.; Mirel, D.; Holmans, P.; Levinson, D.F. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry, 2011, 16(2), 193-201.
[http://dx.doi.org/10.1038/mp.2009.124] [PMID: 20125088]
[63]
Pinacho, R.; Villalmanzo, N.; Lalonde, J.; Haro, J.M.; Meana, J.J.; Gill, G.; Ramos, B. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord., 2011, 13(5-6), 474-485.
[http://dx.doi.org/10.1111/j.1399-5618.2011.00941.x] [PMID: 22017217]
[64]
Chang, W.C.; Chen, B.K. Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase. Biochem. Biophys. Res. Commun., 2005, 338(1), 117-121.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.014] [PMID: 16122700]
[65]
Zhao, C.; He, X.; Tian, C.; Meng, A. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos. Biochem. Biophys. Res. Commun., 2006, 342(1), 214-220.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.134] [PMID: 16472769]
[66]
Zhou, X.; Qyang, Y.; Kelsoe, J.R.; Masliah, E.; Geyer, M.A. Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav., 2007, 6(3), 269-276.
[http://dx.doi.org/10.1111/j.1601-183X.2006.00256.x] [PMID: 16899055]
[67]
Ramos, B.; Gaudillière, B.; Bonni, A.; Gill, G. Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9882-9887.
[http://dx.doi.org/10.1073/pnas.0701946104] [PMID: 17535924]
[68]
Ramos, B.; Valín, A.; Sun, X.; Gill, G. Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol. Cell. Neurosci., 2009, 42(2), 152-159.
[http://dx.doi.org/10.1016/j.mcn.2009.06.008] [PMID: 19555762]
[69]
Lerner, L.E.; Gribanova, Y.E.; Whitaker, L.; Knox, B.E.; Farber, D.B. The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX. J. Biol. Chem., 2002, 277(29), 25877-25883.
[http://dx.doi.org/10.1074/jbc.M201407200] [PMID: 11943774]
[70]
Sheehan, K.; Lee, J.; Chong, J.; Zavala, K.; Sharma, M.; Philipsen, S.; Maruyama, T.; Xu, Z.; Guan, Z.; Eilers, H.; Kawamata, T.; Schumacher, M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One, 2019, 14(2), e0211349.
[http://dx.doi.org/10.1371/journal.pone.0211349] [PMID: 30811405]
[71]
Merchant, J.L.; Du, M.; Todisco, A. Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem. Biophys. Res. Commun., 1999, 254(2), 454-461.
[http://dx.doi.org/10.1006/bbrc.1998.9964] [PMID: 9918860]
[72]
Chu, S.; Ferro, T.J. Sp1: Regulation of gene expression by phosphorylation. Gene, 2005, 348, 1-11.
[http://dx.doi.org/10.1016/j.gene.2005.01.013] [PMID: 15777659]
[73]
Lennertz, R.C.; Kossyreva, E.A.; Smith, A.K.; Stucky, C.L. TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One, 2012, 7(8), e43597.
[http://dx.doi.org/10.1371/journal.pone.0043597] [PMID: 22927999]
[74]
Brierley, S.M.; Castro, J.; Harrington, A.M.; Hughes, P.A.; Page, A.J.; Rychkov, G.Y.; Blackshaw, L.A. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J. Physiol., 2011, 589(14), 3575-3593.
[http://dx.doi.org/10.1113/jphysiol.2011.206789] [PMID: 21558163]
[75]
Petrus, M.; Peier, A.M.; Bandell, M.; Hwang, S.W.; Huynh, T.; Olney, N.; Jegla, T.; Patapoutian, A. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain, 2007, 3, 1744-8069-3-40.
[http://dx.doi.org/10.1186/1744-8069-3-40] [PMID: 18086313]
[76]
Jerić M.; Vukojević K.; Vuica, A.; Filipović N. Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion. Neuropeptides, 2017, 62, 57-64.
[http://dx.doi.org/10.1016/j.npep.2016.11.001] [PMID: 27836326]
[77]
De Logu, F.; De Prá, S.D.T.; de David Antoniazzi, C.T.; Kudsi, S.Q.; Ferro, P.R.; Landini, L.; Rigo, F.K.; de Bem Silveira, G.; Silveira, P.C.L.; Oliveira, S.M.; Marini, M.; Mattei, G.; Ferreira, J.; Geppetti, P.; Nassini, R.; Trevisan, G. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav. Immun., 2020, 88, 535-546.
[http://dx.doi.org/10.1016/j.bbi.2020.04.037] [PMID: 32315759]
[78]
Liu, X.J.; Liu, T.; Chen, G.; Wang, B.; Yu, X.L.; Yin, C.; Ji, R.R. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Sci. Rep., 2016, 6(1), 28188.
[http://dx.doi.org/10.1038/srep28188] [PMID: 27312666]
[79]
Dansereau, M.A.; Midavaine, É.; Bégin-Lavallée, V.; Belkouch, M.; Beaudet, N.; Longpré, J.M.; Mélik-Parsadaniantz, S.; Sarret, P. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J. Neuroinflammation, 2021, 18(1), 79.
[http://dx.doi.org/10.1186/s12974-021-02125-y] [PMID: 33757529]
[80]
Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577.
[http://dx.doi.org/10.1126/science.aaf8924] [PMID: 27811267]
[81]
Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A. Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; Mortazavi, A. A survey of best practices for RNA-seq data analysis. Genome Biol., 2016, 17(1), 13.
[http://dx.doi.org/10.1186/s13059-016-0881-8] [PMID: 26813401]
[82]
Kukurba, K.R.; Montgomery, S.B. RNA sequencing and analysis. Cold Spring Harb. Protoc., 2015, 2015(11), pdb.top084970.
[http://dx.doi.org/10.1101/pdb.top084970] [PMID: 25870306]
[83]
Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med., 1990, 9(7), 811-818.
[http://dx.doi.org/10.1002/sim.4780090710] [PMID: 2218183]
[84]
Kober, K.M.; Schumacher, M.; Conley, Y.P.; Topp, K.; Mazor, M.; Hammer, M.J.; Paul, S.M.; Levine, J.D.; Miaskowski, C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol. Pain, 2019, 15.
[http://dx.doi.org/10.1177/1744806919878088] [PMID: 31486345]
[85]
Dowell, D.; Haegerich, T.M.; Chou, R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA, 2016, 315(15), 1624-1645.
[http://dx.doi.org/10.1001/jama.2016.1464] [PMID: 26977696]
[86]
Els, C.; Jackson, T.D.; Hagtvedt, R.; Kunyk, D.; Sonnenberg, B.; Lappi, V.G.; Straube, S. High-dose opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Libr., 2017, 2018(1), CD012299.
[http://dx.doi.org/10.1002/14651858.CD012299.pub2] [PMID: 29084358]
[87]
Zavala, K.; Lee, J.; Chong, J.; Sharma, M.; Eilers, H.; Schumacher, M.A. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons. Neurosci. Lett., 2014, 578, 211-216.
[http://dx.doi.org/10.1016/j.neulet.2014.01.021] [PMID: 24468003]
[88]
Gómez, K.; Sandoval, A.; Barragán-Iglesias, P.; Granados-Soto, V.; Delgado-Lezama, R.; Felix, R.; González-Ramírez, R. Transcription factor Sp1 regulates the expression of calcium channel α2δ-1 subunit in neuropathic pain. Neuroscience, 2019, 412, 207-215.
[http://dx.doi.org/10.1016/j.neuroscience.2019.06.011] [PMID: 31220545]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy