Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Comparative Analysis of Pharmacokinetics and Metabolites of Three Main Terpenoids before and after Compatibility of Frankincense and Myrrh in Rats by UHPLC-MS

Author(s): Ruo-ying Fan, Ru-meng Gao, Jia-shang Li, Shu-lan Su*, Er-xin Shang, Da-wei Qian and Jin-ao Duan*

Volume 24, Issue 6, 2023

Published on: 31 August, 2023

Page: [434 - 447] Pages: 14

DOI: 10.2174/1389200224666230808090614

Price: $65

conference banner
Abstract

Background: 3-acetyl-11-keto-beta-boswellic acid (AKBA) and 11-keto-boswellic acid (KBA) are the main active components of frankincense as pentacyclic triterpenoids, which are designated by the European Pharmacopoeia 8.0 as the quality standard for the evaluation of Indian frankincense, 2-methoxy-8,12-epoxygermacra- 1(10),7,11-trien-6-one (MCS134) is a non-volatile sesquiterpene compound in myrrh.

Objective: In this paper, the absorption pharmacokinetics and metabolites of AKBA, KBA and MCS134 after frankincense, myrrh and their compatibility were analyzed, elaborated their absorption and metabolism mechanism and provided the ideas for the research on the bioactive components of frankincense and myrrh compatibility in vivo.

Methods: The area under the blood concentration time curve (AUC), half-life (t1/2) and drug clearance (CL) of AKBA, KBA and MCS134 in rats were analyzed by LC-TQ / MS. The metabolites of AKBA, KBA and MCS134 in rats were analyzed by ultra-high pressure liquid chromatography with a linear ion trap-high resolution Orbitrap mass spectrometry system (UHPLC-LTQ-Orbitrap-MS).

Results: The results showed that AKBA, KBA and MCS134 reached the maximum plasma concentration at about 2 h, 2 h and 15 min, respectively. AUC0-t and t1/2 of the three components increased in varying degrees after compatibility, and the clearance/ bioavailability (CL/F) decreased. AKBA, KBA and MCS134 were metabolized in phase I and phase II in rats, and there represented differences before and after compatibility.

Conclusion: After the compatibility of frankincense and myrrh, the absorption of effective components was improved to some extent, and there were some differences in the metabolites in rats. The results provide ideas for elucidating the in vivo effect mechanism of frankincense and myrrh.

Graphical Abstract

[1]
Chinese Pharmacopoeia Commission Pharmacopoeia of People’s Republic of China: One Edition; China Medical Science Press: Beijing, 2020.
[2]
Nanjing University Of Chinese Medicine Great Diction-ary of Chinese Medicine; Shanghai Scientific & Technical Publishers: Shanghai, 2006, pp. 1991-1992.
[3]
Efferth, T.; Oesch, F. Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin. Cancer Biol., 2022, 80, 39-57.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.015] [PMID: 32027979]
[4]
Liu, T.; Liu, M.; Zhang, T.; Liu, W.; Xu, H.; Mu, F.; Ren, D.; Jia, N.; Li, Z.; Ding, Y.; Wen, A.; Li, Y. Z-Guggulsterone attenuates astrocytes-mediated neuroinflammation after ischemia by inhibiting toll-like receptor 4 pathway. J. Neurochem., 2018, 147(6), 803-815.
[http://dx.doi.org/10.1111/jnc.14583] [PMID: 30168601]
[5]
Bhat, A.A.; Prabhu, K.S.; Kuttikrishnan, S.; Krishnankutty, R.; Babu, J.; Mohammad, R.M.; Uddin, S. Potential therapeutic targets of Guggul-sterone in cancer. Nutr. Metab., 2017, 14(1), 23.
[http://dx.doi.org/10.1186/s12986-017-0180-8] [PMID: 28261317]
[6]
Forouzanfar, F.; Hosseinzadeh, H. Aqueous and ethanolic extrac-ts of boswellia serrata protect against focal cerebral I-schemia and reperfu-sion injury in rats: Boswellia serr-ata protects against focal cerebral ischemia. Phytother. Res., 2016, 30, 1954-1967.
[http://dx.doi.org/10.1002/ptr.5701] [PMID: 27515127]
[7]
Baram, S.M.; Karima, S.; Shateri, S.; Tafakhori, A.; Fot-ouhi, A.; Lima, B.S.; Rajaei, S.; Mahdavi, M.; Tehrani, H.S.; Aghamollaii, V.; Aghamiri, S.H.; Mansouri, B. Functional improvement and immune-inflammatory cytokines profile of ischaemic stroke pat-ients after treat-ment with boswellic acids: A randomi-zed, double-blind, placebo-controlled, pilot trial. Inflammopharmacology, 2019, 27, 1101-1112.
[http://dx.doi.org/10.1007/s10787-019-00627-z] [PMID: 31407195]
[8]
Faraji, A.; Aghdaki, M.; Hessami, K.; Hosseinkhani, A.; Roozmeh, S.; Asadi, N.; Vafaei, H.; Kasraeian, M.; Bagheri, R.; Bazrafshan, K.; Foroughinia, L. Episiotomy wound healing by Commiphora myrrha (Nees) Engl. and Boswellia carteri Birdw. in primiparous women: A ran-domized controlled trial. J. Ethnopharmacol., 2021, 264, 113396.
[http://dx.doi.org/10.1016/j.jep.2020.113396] [PMID: 32971163]
[9]
Miao, X.; Zheng, L.; Zhao, Z.; Su, S.; Zhu, Y.; Guo, J.; Shang, E.; Qian, D.; Duan, J. Protective effect and mechanism of boswellic acid and myrrha sesquiterpenes with different proportions of compatibility on neuroinflammation by LPS-induced BV2 cells combined with network pharmacology. Molecules, 2019, 24(21), 3946.
[http://dx.doi.org/10.3390/molecules24213946] [PMID: 31683684]
[10]
Sibona, M.; Destefanis, P.; Agnello, M.; Lillaz, B.; Giuliano, M.; Cai, T.; Gontero, P. The association of Boswellia resin extract and propolis derived polyphenols can improve quality of life in patients affected by prostatitis-like symptoms. Arch. Ital. Urol. Androl., 2020, 91(4), 251-255.
[http://dx.doi.org/10.4081/aiua.2019.4.251] [PMID: 31937091]
[11]
Gomaa, A.A.; Farghaly, H.A.; Abdel-Wadood, Y.A.; Gomaa, G.A. Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(11), 2167-2185.
[http://dx.doi.org/10.1007/s00210-021-02154-7] [PMID: 34542667]
[12]
Yamada, T.; Sugimoto, K. Guggulsterone and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 329-361.
[http://dx.doi.org/10.1007/978-3-319-41342-6_15] [PMID: 27771932]
[13]
Gutierrez, J.; Bakke, A.; Vatta, M.; Merrill, A.R. Plant natural products as antimicrobials for control of streptomyces scabies: A causative agent of the common scab disease. Front. Microbiol., 2022, 12, 833233.
[http://dx.doi.org/10.3389/fmicb.2021.833233] [PMID: 35154047]
[14]
Cao, B.; Wei, X.C.; Xu, X.R.; Zhang, H.Z.; Luo, C.H.; Feng, B.; Xu, R.C.; Zhao, S.Y.; Du, X.J.; Han, L.; Zhang, D.K. Seeing the unseen of the combination of two natural resins, frankincense and myrrh: Changes in chemical constituents and pharmacological activities. Molecules, 2019, 24(17), 3076.
[http://dx.doi.org/10.3390/molecules24173076]
[15]
European pharmacopoeia 8.0: Published in accordance with the Convention on the elaboration of a European Pharmacopoeia; European Directorate for the Quality of Medicines & Healthcare, Council of Europe, 2013.
[16]
Liang, Y.; Li, P.; Huang, Q.; Zhao, J.; Liu, X.; Dai, M. Acetyl-11-ketobeta-boswellic acid regulates the activit-ies of matrix metalloproteinases- 2009, 1(2), 2004-201.
[17]
Liang, Y.H.; Li, P.; Zhao, J.; Liu, X.; Huang, Q. Acetyl-11-keto-beta-boswellic acid and arsenic trioxide regulate the productions and activi-ties of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1. J. Chin. Integr. Med., 2010, 8(11), 1060-1069.
[http://dx.doi.org/10.3736/jcim20101110]
[18]
Pang, X.; Yi, Z.; Zhang, X.; Sung, B.; Qu, W.; Lian, X.; Aggarwal, B.B.; Liu, M. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res., 2009, 69(14), 5893-5900.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0755] [PMID: 19567671]
[19]
Chen, T.; Su, S.L.; Duan, J.A.; Shang, E.X.; Qian, D.W.; Tang, Y.P. Change in dissolution of chemical components of frankincense-myrrh before and after their compatibility and effect on no release of LPS-induced macrophage cells. Zhongguo Zhongyao Zazhi, 2013, 38(2), 179-185.
[PMID: 23672038]
[20]
Zheng, P.; Huang, Z.; Tong, D.C.; Zhou, Q.; Tian, S.; Chen, B.W.; Ning, D.M.; Guo, Y.M.; Zhu, W.H.; Long, Y.; Xiao, W.; Deng, Z.; Lei, Y.C.; Tian, X.F. Frankincense myrrh attenuates hepatocellular carcinoma by regulating tumor blood vessel development through multiple ep-idermal growth factor receptor-mediated signaling pathways. World J. Gastrointest. Oncol., 2022, 14(2), 450-477.
[http://dx.doi.org/10.4251/wjgo.v14.i2.450] [PMID: 35317323]
[21]
Wang, S.; Hu, Y.; Tan, W.; Wu, X.; Chen, R.; Cao, J.; Chen, M.; Wang, Y. Compatibility art of traditional Chinese medicine: From the per-spective of herb pairs. J. Ethnopharmacol., 2012, 143(2), 412-423.
[http://dx.doi.org/10.1016/j.jep.2012.07.033] [PMID: 22871585]
[22]
Chen, F.; Wang, Y. Modern research understanding of the compatibility of traditional chinese medicine. Guiyang Zhongyi Xueyuan Xuebao, 2010, 1-3.
[23]
Li, W.X.; Tang, Y.P.; Shi, X.Q.; Guo, J.M.; Liu, P.; Duan, J.A. Research on Chinese medicine pairs (IV)-Their compatibility effects. Zhongguo Zhongyao Zazhi, 2013, 38(24), 4203-4207.
[PMID: 24791517]
[24]
Xia, Y. Preclinical Pharmacokinetic Study of AKBA; Tianjin University, 2012.
[25]
Cai, Y.; Xia, Y.; Gu, Y.; Liu, C.; Si, D. Analysis on in vivo metabolic pathways of 3-acetyl-11-keto-β-boswell-ic acid in rats. Chin. Tradit. Herbal Drugs, 2013, 2427-2432.
[26]
Krüger, P.; Daneshfar, R.; Eckert, G.P.; Klein, J.; Volm-er, D.A.; Bahr, U.; Müller, W.E.; Karas, M. Metabolism of bosw-ellic acids in vitro and in vivo. Drug Metab. Dispos., 2008, 36, 1135-1142.
[http://dx.doi.org/10.1124/dmd.107.018424] [PMID: 18356270]
[27]
Gao, R.; Miao, X.; Sun, C.; Su, S.; Zhu, Y.; Qian, D.; Ouyang, Z.; Duan, J. Frankincense and myrrh and their bioactive compounds ameliorate the multiple myeloma through regulation of metabolome profiling and JAK/STAT signaling pathway based on U266 cells. BMC Complement. Med. Ther., 2020, 20(1), 96.
[http://dx.doi.org/10.1186/s12906-020-2874-0] [PMID: 32293402]
[28]
Wang, C.; Wang, L.; Qian, D.; Zhang, H.; Huang, W.; Wang, T.; Zhu, Z.; Su, S.; Guo, S.; Duan, J. Identificati-on of metabolites of Reduning injection in rat plasma, bile, urine and feces after intravenous administration. Yao Xue Xue Bao, 2018, 1148-1155.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy