Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Inflammation in Posttraumatic Stress Disorder: Dysregulation or Recalibration?

Author(s): Kostas Patas, Dewleen G. Baker, George P. Chrousos and Agorastos Agorastos*

Volume 22, Issue 4, 2024

Published on: 07 August, 2023

Page: [524 - 542] Pages: 19

DOI: 10.2174/1570159X21666230807152051

Price: $65

conference banner
Abstract

Despite ample experimental data indicating a role of inflammatory mediators in the behavioral and neurobiological manifestations elicited by exposure to physical and psychologic stressors, causative associations between systemic low-grade inflammation and central nervous system inflammatory processes in posttraumatic stress disorder (PTSD) patients remain largely conceptual. As in other stress-related disorders, pro-inflammatory activity may play an equivocal role in PTSD pathophysiology, one that renders indiscriminate employment of anti-inflammatory agents of questionable relevance. In fact, as several pieces of preclinical and clinical research convergingly suggest, timely and targeted potentiation rather than inhibition of inflammatory responses may actually be beneficial in patients who are characterized by suppressed microglia function in the face of systemic low-grade inflammation. The deleterious impact of chronic stress-associated inflammation on the systemic level may, thus, need to be held in context with the - often not readily apparent - adaptive payoffs of low-grade inflammation at the tissue level.

Graphical Abstract

[1]
Benjet, C.; Bromet, E.; Karam, E.G.; Kessler, R.C.; McLaughlin, K.A.; Ruscio, A.M.; Shahly, V.; Stein, D.J.; Petukhova, M.; Hill, E.; Alonso, J.; Atwoli, L.; Bunting, B.; Bruffaerts, R.; Caldas-de-Almeida, J.M.; de Girolamo, G.; Florescu, S.; Gureje, O.; Huang, Y.; Lepine, J.P.; Kawakami, N.; Kovess-Masfety, V.; Medina-Mora, M.E.; Navarro-Mateu, F.; Piazza, M.; Posada-Villa, J.; Scott, K.M.; Shalev, A.; Slade, T.; ten Have, M.; Torres, Y.; Viana, M.C.; Zarkov, Z.; Koenen, K.C. The epidemiology of traumatic event exposure worldwide: Results from the World Mental Health Survey Consortium. Psychol. Med., 2016, 46(2), 327-343.
[http://dx.doi.org/10.1017/S0033291715001981] [PMID: 26511595]
[2]
Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; Atwoli, L.; Petukhova, M.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Bunting, B.; Ciutan, M.; de Girolamo, G.; Degenhardt, L.; Gureje, O.; Haro, J.M.; Huang, Y.; Kawakami, N.; Lee, S.; Navarro-Mateu, F.; Pennell, B.E.; Piazza, M.; Sampson, N.; ten Have, M.; Torres, Y.; Viana, M.C.; Williams, D.; Xavier, M.; Kessler, R.C. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med., 2017, 47(13), 2260-2274.
[http://dx.doi.org/10.1017/S0033291717000708] [PMID: 28385165]
[3]
Murrough, J.W.; Russo, S.J. The neurobiology of resilience: Complexity and hope. Biol. Psychiatry, 2019, 86(6), 406-409.
[http://dx.doi.org/10.1016/j.biopsych.2019.07.016] [PMID: 31466560]
[4]
Hodes, G.E.; Epperson, C.N. Sex differences in vulnerability and resilience to stress across the life span. Biol. Psychiatry, 2019, 86(6), 421-432.
[http://dx.doi.org/10.1016/j.biopsych.2019.04.028] [PMID: 31221426]
[5]
Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Front. Psychiatry, 2019, 10, 118.
[http://dx.doi.org/10.3389/fpsyt.2019.00118] [PMID: 30914979]
[6]
Peruzzolo, T.L.; Pinto, J.V.; Roza, T.H.; Shintani, A.O.; Anzolin, A.P.; Gnielka, V.; Kohmann, A.M.; Marin, A.S.; Lorenzon, V.R.; Brunoni, A.R.; Kapczinski, F.; Passos, I.C. Inflammatory and oxidative stress markers in post-traumatic stress disorder: A systematic review and meta-analysis. Mol. Psychiatry, 2022, 27(8), 3150-3163.
[http://dx.doi.org/10.1038/s41380-022-01564-0] [PMID: 35477973]
[7]
Katrinli, S.; Oliveira, N.C.S.; Felger, J.C.; Michopoulos, V.; Smith, A.K. The role of the immune system in posttraumatic stress disorder. Transl. Psychiatry, 2022, 12(1), 313.
[http://dx.doi.org/10.1038/s41398-022-02094-7] [PMID: 35927237]
[8]
Sun, Y.; Qu, Y.; Zhu, J. The relationship between inflammation and post-traumatic stress disorder. Front. Psychiatry, 2021, 12, 707543.
[http://dx.doi.org/10.3389/fpsyt.2021.707543] [PMID: 34456764]
[9]
Núñez-Rios, D.L.; Martínez-Magaña, J.J.; Nagamatsu, S.T.; Andrade-Brito, D.E.; Forero, D.A.; Orozco-Castaño, C.A.; Montalvo-Ortiz, J.L. Central and peripheral immune dysregulation in posttraumatic stress disorder: Convergent multi-omics evidence. Biomedicines, 2022, 10(5), 1107.
[http://dx.doi.org/10.3390/biomedicines10051107] [PMID: 35625844]
[10]
O’Donnell, C.J.; Schwartz Longacre, L.; Cohen, B.E.; Fayad, Z.A.; Gillespie, C.F.; Liberzon, I.; Pathak, G.A.; Polimanti, R.; Risbrough, V.; Ursano, R.J.; Vander Heide, R.S.; Yancy, C.W.; Vaccarino, V.; Sopko, G.; Stein, M.B. Posttraumatic stress disorder and cardiovascular disease. JAMA Cardiol., 2021, 6(10), 1207-1216.
[http://dx.doi.org/10.1001/jamacardio.2021.2530] [PMID: 34259831]
[11]
Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry, 2018, 83(10), 866-875.
[http://dx.doi.org/10.1016/j.biopsych.2018.02.007] [PMID: 29628193]
[12]
Wolf, E.J.; Maniates, H.; Nugent, N.; Maihofer, A.X.; Armstrong, D.; Ratanatharathorn, A.; Ashley-Koch, A.E.; Garrett, M.; Kimbrel, N.A.; Lori, A.; Aiello, A.E.; Baker, D.G.; Beckham, J.C.; Boks, M.P.; Galea, S.; Geuze, E.; Hauser, M.A.; Kessler, R.C.; Koenen, K.C.; Miller, M.W.; Ressler, K.J.; Risbrough, V.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Uddin, M.; Smith, A.K.; Nievergelt, C.M.; Logue, M.W. Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology, 2018, 92, 123-134.
[http://dx.doi.org/10.1016/j.psyneuen.2017.12.007] [PMID: 29452766]
[13]
Yang, R.; Wu, G.W.Y.; Verhoeven, J.E.; Gautam, A.; Reus, V.I.; Kang, J.I.; Flory, J.D.; Abu-Amara, D.; Hood, L.; Doyle, F.J., III; Yehuda, R.; Marmar, C.R.; Jett, M.; Hammamieh, R.; Mellon, S.H.; Wolkowitz, O.M. A DNA methylation clock associated with age-related illnesses and mortality is accelerated in men with combat PTSD. Mol. Psychiatry, 2021, 26(9), 4999-5009.
[http://dx.doi.org/10.1038/s41380-020-0755-z] [PMID: 32382136]
[14]
Salvador, A.F.; de Lima, K.A.; Kipnis, J. Neuromodulation by the immune system: A focus on cytokines. Nat. Rev. Immunol., 2021, 21(8), 526-541.
[http://dx.doi.org/10.1038/s41577-021-00508-z] [PMID: 33649606]
[15]
Ménard, C.; Pfau, M.L.; Hodes, G.E.; Russo, S.J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology, 2017, 42(1), 62-80.
[http://dx.doi.org/10.1038/npp.2016.90] [PMID: 27291462]
[16]
Dantzer, R.; Cohen, S.; Russo, S.J.; Dinan, T.G. Resilience and immunity. Brain Behav. Immun., 2018, 74, 28-42.
[http://dx.doi.org/10.1016/j.bbi.2018.08.010] [PMID: 30102966]
[17]
Cathomas, F.; Murrough, J.W.; Nestler, E.J.; Han, M.H.; Russo, S.J. Neurobiology of resilience: Interface between mind and body. Biol. Psychiatry, 2019, 86(6), 410-420.
[http://dx.doi.org/10.1016/j.biopsych.2019.04.011] [PMID: 31178098]
[18]
Rankin, L.C.; Artis, D. Beyond Host Defense: Emerging functions of the immune system in regulating complex tissue physiology. Cell, 2018, 173(3), 554-567.
[http://dx.doi.org/10.1016/j.cell.2018.03.013] [PMID: 29677509]
[19]
Meizlish, M.L.; Franklin, R.A.; Zhou, X.; Medzhitov, R. Tissue homeostasis and inflammation. Annu. Rev. Immunol., 2021, 39(1), 557-581.
[http://dx.doi.org/10.1146/annurev-immunol-061020-053734] [PMID: 33651964]
[20]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[21]
Chovatiya, R.; Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell, 2014, 54(2), 281-288.
[http://dx.doi.org/10.1016/j.molcel.2014.03.030] [PMID: 24766892]
[22]
Agorastos, A.; Chrousos, G.P. The neuroendocrinology of stress: The stress-related continuum of chronic disease development. Mol. Psychiatry, 2022, 27(1), 502-513.
[http://dx.doi.org/10.1038/s41380-021-01224-9] [PMID: 34290370]
[23]
Haykin, H.; Rolls, A. The neuroimmune response during stress: A physiological perspective. Immunity, 2021, 54(9), 1933-1947.
[http://dx.doi.org/10.1016/j.immuni.2021.08.023] [PMID: 34525336]
[24]
Webster, J.I.; Tonelli, L.; Sternberg, E.M. Neuroendocrine regulation of immunity. Annu. Rev. Immunol., 2002, 20(1), 125-163.
[http://dx.doi.org/10.1146/annurev.immunol.20.082401.104914] [PMID: 11861600]
[25]
Padro, C.J.; Sanders, V.M. Neuroendocrine regulation of inflammation. Semin. Immunol., 2014, 26(5), 357-368.
[http://dx.doi.org/10.1016/j.smim.2014.01.003] [PMID: 24486056]
[26]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[27]
Rohleder, N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med., 2014, 76(3), 181-189.
[http://dx.doi.org/10.1097/PSY.0000000000000049] [PMID: 24608036]
[28]
Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun., 2017, 64, 208-219.
[http://dx.doi.org/10.1016/j.bbi.2017.01.011] [PMID: 28089638]
[29]
Gold, P.W.; Licinio, J.; Pavlatou, M.G. Pathological parainflammation and endoplasmic reticulum stress in depression: Potential translational targets through the CNS insulin, klotho and PPAR-γ systems. Mol. Psychiatry, 2013, 18(2), 154-165.
[http://dx.doi.org/10.1038/mp.2012.167] [PMID: 23183489]
[30]
Speer, K.; Upton, D.; Semple, S.; McKune, A. Systemic low-grade inflammation in post-traumatic stress disorder: A systematic review. J. Inflamm. Res., 2018, 11, 111-121.
[http://dx.doi.org/10.2147/JIR.S155903] [PMID: 29606885]
[31]
Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med., 2019, 49(12), 1958-1970.
[http://dx.doi.org/10.1017/S0033291719001454] [PMID: 31258105]
[32]
Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun., 2018, 70, 61-75.
[http://dx.doi.org/10.1016/j.bbi.2018.02.013] [PMID: 29499302]
[33]
Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol., 2005, 5(3), 243-251.
[http://dx.doi.org/10.1038/nri1571] [PMID: 15738954]
[34]
Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation, 2009, 16(5), 300-317.
[http://dx.doi.org/10.1159/000216188] [PMID: 19571591]
[35]
Rubinow, K.B.; Rubinow, D.R. In immune defense: Redefining the role of the immune system in chronic disease. Dialogues Clin. Neurosci., 2017, 19(1), 19-26.
[http://dx.doi.org/10.31887/DCNS.2017.19.1/drubinow] [PMID: 28566944]
[36]
Estes, M.L.; McAllister, A.K. Alterations in immune cells and mediators in the brain: It’s not always neuroinflammation! Brain Pathol., 2014, 24(6), 623-630.
[http://dx.doi.org/10.1111/bpa.12198] [PMID: 25345893]
[37]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[38]
Wohleb, E.S. Neuron–microglia interactions in mental health disorders: “For better, and for worse”. Front. Immunol., 2016, 7, 544.
[http://dx.doi.org/10.3389/fimmu.2016.00544] [PMID: 27965671]
[39]
Woodburn, S.C.; Bollinger, J.L.; Wohleb, E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflammation, 2021, 18(1), 258.
[http://dx.doi.org/10.1186/s12974-021-02309-6] [PMID: 34742308]
[40]
Shulman, L.M. Emotional traumatic brain injury. Cogn. Behav. Neurol., 2020, 33(4), 301-303.
[http://dx.doi.org/10.1097/WNN.0000000000000243] [PMID: 32947370]
[41]
Wager-Smith, K.; Markou, A. Depression: A repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci. Biobehav. Rev., 2011, 35(3), 742-764.
[http://dx.doi.org/10.1016/j.neubiorev.2010.09.010] [PMID: 20883718]
[42]
Kreisel, T.; Frank, M.G.; Licht, T.; Reshef, R.; Ben-Menachem-Zidon, O.; Baratta, M.V.; Maier, S.F.; Yirmiya, R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry, 2014, 19(6), 699-709.
[http://dx.doi.org/10.1038/mp.2013.155] [PMID: 24342992]
[43]
Tong, L.; Gong, Y.; Wang, P.; Hu, W.; Wang, J.; Chen, Z.; Zhang, W.; Huang, C. Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem. Res., 2017, 42(10), 2698-2711.
[http://dx.doi.org/10.1007/s11064-017-2270-4] [PMID: 28434164]
[44]
Hori, H.; Kim, Y. Inflammation and post‐traumatic stress disorder. Psychiatry Clin. Neurosci., 2019, 73(4), 143-153.
[http://dx.doi.org/10.1111/pcn.12820] [PMID: 30653780]
[45]
Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhães, P.V.; Kapczinski, F.; Kauer-Sant’Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry, 2015, 2(11), 1002-1012.
[http://dx.doi.org/10.1016/S2215-0366(15)00309-0] [PMID: 26544749]
[46]
Pan, X.; Kaminga, A.C.; Wu Wen, S.; Liu, A. Chemokines in post-traumatic stress disorder: A network meta-analysis. Brain Behav. Immun., 2021, 92, 115-126.
[http://dx.doi.org/10.1016/j.bbi.2020.11.033] [PMID: 33242653]
[47]
Spitzer, C.; Barnow, S.; Völzke, H.; Wallaschofski, H.; John, U.; Freyberger, H.J.; Löwe, B.; Grabe, H.J. Association of posttraumatic stress disorder with low-grade elevation of C-reactive protein: Evidence from the general population. J. Psychiatr. Res., 2010, 44(1), 15-21.
[http://dx.doi.org/10.1016/j.jpsychires.2009.06.002] [PMID: 19628221]
[48]
Michopoulos, V.; Rothbaum, A.O.; Jovanovic, T.; Almli, L.M.; Bradley, B.; Rothbaum, B.O.; Gillespie, C.F.; Ressler, K.J. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry, 2015, 172(4), 353-362.
[http://dx.doi.org/10.1176/appi.ajp.2014.14020263] [PMID: 25827033]
[49]
Tursich, M.; Neufeld, R.W.J.; Frewen, P.A.; Harricharan, S.; Kibler, J.L.; Rhind, S.G.; Lanius, R.A. Association of trauma exposure with proinflammatory activity: A transdiagnostic meta-analysis. Transl. Psychiatry, 2014, 4(7), e413.
[http://dx.doi.org/10.1038/tp.2014.56] [PMID: 25050993]
[50]
Breen, M.S.; Maihofer, A.X.; Glatt, S.J.; Tylee, D.S.; Chandler, S.D.; Tsuang, M.T.; Risbrough, V.B.; Baker, D.G.; O’Connor, D.T.; Nievergelt, C.M.; Woelk, C.H. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol. Psychiatry, 2015, 20(12), 1538-1545.
[http://dx.doi.org/10.1038/mp.2015.9] [PMID: 25754082]
[51]
Breen, M.S.; Tylee, D.S.; Maihofer, A.X.; Neylan, T.C.; Mehta, D.; Binder, E.B.; Chandler, S.D.; Hess, J.L.; Kremen, W.S.; Risbrough, V.B.; Woelk, C.H.; Baker, D.G.; Nievergelt, C.M.; Tsuang, M.T.; Buxbaum, J.D.; Glatt, S.J. PTSD blood transcriptome mega-analysis: Shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology, 2018, 43(3), 469-481.
[http://dx.doi.org/10.1038/npp.2017.220] [PMID: 28925389]
[52]
Uddin, M.; Aiello, A.E.; Wildman, D.E.; Koenen, K.C.; Pawelec, G.; de los Santos, R.; Goldmann, E.; Galea, S. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9470-9475.
[http://dx.doi.org/10.1073/pnas.0910794107] [PMID: 20439746]
[53]
Katrinli, S.; Maihofer, A.X.; Wani, A.H.; Pfeiffer, J.R.; Ketema, E.; Ratanatharathorn, A.; Baker, D.G.; Boks, M.P.; Geuze, E.; Kessler, R.C.; Risbrough, V.B.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Logue, M.W.; Nievergelt, C.M.; Smith, A.K.; Uddin, M. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol. Psychiatry, 2022, 27(3), 1720-1728.
[http://dx.doi.org/10.1038/s41380-021-01398-2] [PMID: 34992238]
[54]
Zhou, J.; Nagarkatti, P.; Zhong, Y.; Ginsberg, J.P.; Singh, N.P.; Zhang, J.; Nagarkatti, M. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder. PLoS One, 2014, 9(4), e94075.
[http://dx.doi.org/10.1371/journal.pone.0094075] [PMID: 24759737]
[55]
Bam, M.; Yang, X.; Zumbrun, E.E.; Ginsberg, J.P.; Leyden, Q.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation. Transl. Psychiatry, 2017, 7(8), e1222.
[http://dx.doi.org/10.1038/tp.2017.185] [PMID: 28850112]
[56]
Sommershof, A.; Aichinger, H.; Engler, H.; Adenauer, H.; Catani, C.; Boneberg, E.M.; Elbert, T.; Groettrup, M.; Kolassa, I.T. Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain Behav. Immun., 2009, 23(8), 1117-1124.
[http://dx.doi.org/10.1016/j.bbi.2009.07.003] [PMID: 19619638]
[57]
Jergović, M.; Bendelja, K.; Vidović, A.; Savić, A.; Vojvoda, V.; Aberle, N.; Rabatić, S.; Jovanovic, T.; Sabioncello, A. Patients with post-traumatic stress disorder exhibit an altered phenotype of regulatory T cells. Allergy Asthma Clin. Immunol., 2014, 10(1), 43.
[http://dx.doi.org/10.1186/1710-1492-10-43] [PMID: 25670936]
[58]
Edmondson, D.; Kronish, I.M.; Shaffer, J.A.; Falzon, L.; Burg, M.M. Posttraumatic stress disorder and risk for coronary heart disease: A meta-analytic review. Am. Heart J., 2013, 166(5), 806-814.
[http://dx.doi.org/10.1016/j.ahj.2013.07.031] [PMID: 24176435]
[59]
O’Donovan, A.; Cohen, B.E.; Seal, K.H.; Bertenthal, D.; Margaretten, M.; Nishimi, K.; Neylan, T.C. Elevated risk for autoimmune disorders in iraq and afghanistan veterans with posttraumatic stress disorder. Biol. Psychiatry, 2015, 77(4), 365-374.
[http://dx.doi.org/10.1016/j.biopsych.2014.06.015] [PMID: 25104173]
[60]
Song, H.; Fang, F.; Tomasson, G.; Arnberg, F.K.; Mataix-Cols, D.; Fernández de la Cruz, L.; Almqvist, C.; Fall, K.; Valdimarsdóttir, U.A. Association of stress-related disorders with subsequent autoimmune disease. JAMA, 2018, 319(23), 2388-2400.
[http://dx.doi.org/10.1001/jama.2018.7028] [PMID: 29922828]
[61]
Eraly, S.A.; Nievergelt, C.M.; Maihofer, A.X.; Barkauskas, D.A.; Biswas, N.; Agorastos, A.; O’Connor, D.T.; Baker, D.G. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry, 2014, 71(4), 423-431.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.4374] [PMID: 24576974]
[62]
Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Margeli, A.; Ferentinos, S.; Bakoula, C.; Lazaropoulou, C.; Papassotiriou, I.; Tsiantis, J.; Chrousos, G.P. Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology, 2007, 32(8-10), 991-999.
[http://dx.doi.org/10.1016/j.psyneuen.2007.07.001] [PMID: 17825995]
[63]
Smid, G.E.; van Zuiden, M.; Geuze, E.; Kavelaars, A.; Heijnen, C.J.; Vermetten, E. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers. Psychoneuroendocrinology, 2015, 51, 534-546.
[http://dx.doi.org/10.1016/j.psyneuen.2014.07.010] [PMID: 25106657]
[64]
Michopoulos, V.; Beurel, E.; Gould, F.; Dhabhar, F.S.; Schultebraucks, K.; Galatzer-Levy, I.; Rothbaum, B.O.; Ressler, K.J.; Nemeroff, C.B. Association of prospective risk for chronic PTSD symptoms with low TNFα and IFNγ concentrations in the immediate aftermath of trauma exposure. Am. J. Psychiatry, 2020, 177(1), 58-65.
[http://dx.doi.org/10.1176/appi.ajp.2019.19010039] [PMID: 31352811]
[65]
Lalonde, C.S.; Mekawi, Y.; Ethun, K.F.; Beurel, E.; Gould, F.; Dhabhar, F.S.; Schultebraucks, K.; Galatzer-Levy, I.; Maples-Keller, J.L.; Rothbaum, B.O.; Ressler, K.J.; Nemeroff, C.B.; Stevens, J.S.; Michopoulos, V. Sex differences in peritraumatic inflammatory cytokines and steroid hormones contribute to prospective risk for nonremitting posttraumatic stress disorder. Chronic Stress, 2021, 5, 24705470211032208.
[http://dx.doi.org/10.1177/24705470211032208] [PMID: 34595364]
[66]
Sumner, J.A.; Nishimi, K.M.; Koenen, K.C.; Roberts, A.L.; Kubzansky, L.D. Posttraumatic stress disorder and inflammation: untangling issues of bidirectionality. Biol. Psychiatry, 2020, 87(10), 885-897.
[http://dx.doi.org/10.1016/j.biopsych.2019.11.005] [PMID: 31932029]
[67]
Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol., 2017, 102(4), 977-988.
[http://dx.doi.org/10.1189/jlb.3RI0716-335R] [PMID: 28733462]
[68]
Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol., 2018, 8, 1960.
[http://dx.doi.org/10.3389/fimmu.2017.01960] [PMID: 29375577]
[69]
Solana, C.; Tarazona, R.; Solana, R. Immunosenescence of natural killer cells, inflammation, and Alzheimer’s Disease. Int. J. Alzheimers Dis., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/3128758] [PMID: 30515321]
[70]
de Punder, K.; Heim, C.; Wadhwa, P.D.; Entringer, S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology, 2019, 101, 87-100.
[http://dx.doi.org/10.1016/j.psyneuen.2018.10.019] [PMID: 30445409]
[71]
Patas, K.; Willing, A.; Demiralay, C.; Engler, J.B.; Lupu, A.; Ramien, C.; Schäfer, T.; Gach, C.; Stumm, L.; Chan, K.; Vignali, M.; Arck, P.C.; Friese, M.A.; Pless, O.; Wiedemann, K.; Agorastos, A.; Gold, S.M. T Cell Phenotype and T cell receptor repertoire in patients with major depressive disorder. Front. Immunol., 2018, 9, 291.
[http://dx.doi.org/10.3389/fimmu.2018.00291] [PMID: 29515587]
[72]
Miller, M.W.; Sadeh, N. Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry, 2014, 19(11), 1156-1162.
[http://dx.doi.org/10.1038/mp.2014.111] [PMID: 25245500]
[73]
Bersani, F.S.; Wolkowitz, O.M.; Milush, J.M.; Sinclair, E.; Eppling, L.; Aschbacher, K.; Lindqvist, D.; Yehuda, R.; Flory, J.; Bierer, L.M.; Matokine, I.; Abu-Amara, D.; Reus, V.I.; Coy, M.; Hough, C.M.; Marmar, C.R.; Mellon, S.H. A population of atypical CD56-CD16+ natural killer cells is expanded in PTSD and is associated with symptom severity. Brain Behav. Immun., 2016, 56, 264-270.
[http://dx.doi.org/10.1016/j.bbi.2016.03.021] [PMID: 27025668]
[74]
Aiello, A.E.; Dowd, J.B.; Jayabalasingham, B.; Feinstein, L.; Uddin, M.; Simanek, A.M.; Cheng, C.K.; Galea, S.; Wildman, D.E.; Koenen, K.; Pawelec, G. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit. Psychoneuroendocrinology, 2016, 67, 133-141.
[http://dx.doi.org/10.1016/j.psyneuen.2016.01.024] [PMID: 26894484]
[75]
Xiong, Y.; Wang, Z.; Young, M.R.I. Reduced expression of immune mediators by T-Cell subpopulations of combat-exposed veterans with post-traumatic stress disorder. Front. Psychiatry, 2019, 10, 693.
[http://dx.doi.org/10.3389/fpsyt.2019.00693] [PMID: 31620037]
[76]
Bellon, M.; Nicot, C. Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses, 2017, 9(10), 289.
[http://dx.doi.org/10.3390/v9100289] [PMID: 28981470]
[77]
Reed, R.G. Stress and immunological aging. Curr. Opin. Behav. Sci., 2019, 28, 38-43.
[http://dx.doi.org/10.1016/j.cobeha.2019.01.012] [PMID: 31179376]
[78]
Song, H.; Fall, K.; Fang, F.; Erlendsdóttir, H.; Lu, D.; Mataix-Cols, D.; Fernández de la Cruz, L.; D’Onofrio, B.M.; Lichtenstein, P.; Gottfreðsson, M.; Almqvist, C.; Valdimarsdóttir, U.A. Stress related disorders and subsequent risk of life threatening infections: Population based sibling controlled cohort study. BMJ, 2019, 367, l5784.
[http://dx.doi.org/10.1136/bmj.l5784] [PMID: 31645334]
[79]
Jiang, T.; Farkas, D.K.; Ahern, T.P.; Lash, T.L.; Sørensen, H.T.; Gradus, J.L. Posttraumatic stress disorder and incident infections. Epidemiology, 2019, 30(6), 911-917.
[http://dx.doi.org/10.1097/EDE.0000000000001071] [PMID: 31584893]
[80]
Kanterman, J.; Sade-Feldman, M.; Baniyash, M. New insights into chronic inflammation-induced immunosuppression. Semin. Cancer Biol., 2012, 22(4), 307-318.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.008] [PMID: 22387003]
[81]
Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; Stoicescu, M.; Radu, A.F.; Bungau, S.G. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules, 2021, 26(21), 6570.
[http://dx.doi.org/10.3390/molecules26216570] [PMID: 34770980]
[82]
Bhattacharyya, S.; Saha, J. Tumour, oxidative stress and Host T cell response: Cementing the dominance. Scand. J. Immunol., 2015, 82(6), 477-488.
[http://dx.doi.org/10.1111/sji.12350] [PMID: 26286126]
[83]
Zhang, R.; Becnel, L.; Li, M.; Chen, C.; Yao, Q. C-reactive protein impairs human CD14+ monocyte-derived dendritic cell differentiation, maturation and function. Eur. J. Immunol., 2006, 36(11), 2993-3006.
[http://dx.doi.org/10.1002/eji.200635207] [PMID: 17051617]
[84]
Yoshida, T.; Ichikawa, J.; Giuroiu, I.; Laino, A.S.; Hao, Y.; Krogsgaard, M.; Vassallo, M.; Woods, D.M.; Stephen Hodi, F.; Weber, J. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J. Immunother. Cancer, 2020, 8(1), e000234.
[http://dx.doi.org/10.1136/jitc-2019-000234] [PMID: 32303612]
[85]
Fulop, T.; Larbi, A.; Hirokawa, K.; Cohen, A.A.; Witkowski, J.M. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin. Immunopathol., 2020, 42(5), 521-536.
[http://dx.doi.org/10.1007/s00281-020-00818-9] [PMID: 32930852]
[86]
Schwartz, M.; Kipnis, J.; Rivest, S.; Prat, A. How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci., 2013, 33(45), 17587-17596.
[http://dx.doi.org/10.1523/JNEUROSCI.3241-13.2013] [PMID: 24198349]
[87]
Schwartz, M.; Shechter, R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol. Psychiatry, 2010, 15(4), 342-354.
[http://dx.doi.org/10.1038/mp.2010.31] [PMID: 20332793]
[88]
Filiano, A.J.; Gadani, S.P.; Kipnis, J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci., 2017, 18(6), 375-384.
[http://dx.doi.org/10.1038/nrn.2017.39] [PMID: 28446786]
[89]
Lewitus, G.M.; Cohen, H.; Schwartz, M. Reducing post-traumatic anxiety by immunization. Brain Behav. Immun., 2008, 22(7), 1108-1114.
[http://dx.doi.org/10.1016/j.bbi.2008.05.002] [PMID: 18562161]
[90]
Lewitus, G.M.; Schwartz, M. Behavioral immunization: Immunity to self-antigens contributes to psychological stress resilience. Mol. Psychiatry, 2009, 14(5), 532-536.
[http://dx.doi.org/10.1038/mp.2008.103] [PMID: 18779818]
[91]
Scheinert, R.B.; Haeri, M.H.; Lehmann, M.L.; Herkenham, M. Therapeutic effects of stress-programmed lymphocytes transferred to chronically stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 1-7.
[http://dx.doi.org/10.1016/j.pnpbp.2016.04.010] [PMID: 27109071]
[92]
Kertser, A.; Baruch, K.; Deczkowska, A.; Weiner, A.; Croese, T.; Kenigsbuch, M.; Cooper, I.; Tsoory, M.; Ben-Hamo, S.; Amit, I.; Schwartz, M. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Sci. Adv., 2019, 5(5), eaav4111.
[http://dx.doi.org/10.1126/sciadv.aav4111] [PMID: 31149632]
[93]
Cohen, H.; Ziv, Y.; Cardon, M.; Kaplan, Z.; Matar, M.A.; Gidron, Y.; Schwartz, M.; Kipnis, J. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J. Neurobiol., 2006, 66(6), 552-563.
[http://dx.doi.org/10.1002/neu.20249] [PMID: 16555237]
[94]
Brachman, R.A.; Lehmann, M.L.; Maric, D.; Herkenham, M. Lymphocytes from chronically stressed mice confer antidepressant-like effects to naive mice. J. Neurosci., 2015, 35(4), 1530-1538.
[http://dx.doi.org/10.1523/JNEUROSCI.2278-14.2015] [PMID: 25632130]
[95]
Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J. Neuroimmune Pharmacol., 2016, 11(1), 168-181.
[http://dx.doi.org/10.1007/s11481-015-9643-8] [PMID: 26589234]
[96]
Kipnis, J.; Yoles, E.; Mizrahi, T.; Ben-Nur, A.; Schwartz, M. Myelin specific Th1 cells are necessary for post-traumatic protective auto-immunity. J. Neuroimmunol., 2002, 130(1-2), 78-85.
[http://dx.doi.org/10.1016/S0165-5728(02)00219-9] [PMID: 12225890]
[97]
Kunis, G.; Baruch, K.; Rosenzweig, N.; Kertser, A.; Miller, O.; Berkutzki, T.; Schwartz, M. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain, 2013, 136(11), 3427-3440.
[http://dx.doi.org/10.1093/brain/awt259] [PMID: 24088808]
[98]
Fisher, Y.; Strominger, I.; Biton, S.; Nemirovsky, A.; Baron, R.; Monsonego, A. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. J. Immunol., 2014, 192(1), 92-102.
[http://dx.doi.org/10.4049/jimmunol.1301707] [PMID: 24307730]
[99]
Reber, S.O.; Siebler, P.H.; Donner, N.C.; Morton, J.T.; Smith, D.G.; Kopelman, J.M.; Lowe, K.R.; Wheeler, K.J.; Fox, J.H.; Hassell, J.E., Jr; Greenwood, B.N.; Jansch, C.; Lechner, A.; Schmidt, D.; Uschold-Schmidt, N.; Füchsl, A.M.; Langgartner, D.; Walker, F.R.; Hale, M.W.; Lopez Perez, G.; Van Treuren, W.; González, A.; Halweg-Edwards, A.L.; Fleshner, M.; Raison, C.L.; Rook, G.A.; Peddada, S.D.; Knight, R.; Lowry, C.A. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. USA, 2016, 113(22), E3130-E3139.
[http://dx.doi.org/10.1073/pnas.1600324113] [PMID: 27185913]
[100]
Fox, J.H.; Hassell, J.E., Jr; Siebler, P.H.; Arnold, M.R.; Lamb, A.K.; Smith, D.G.; Day, H.E.W.; Smith, T.M.; Simmerman, E.M.; Outzen, A.A.; Holmes, K.S.; Brazell, C.J.; Lowry, C.A. Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav. Immun., 2017, 66, 70-84.
[http://dx.doi.org/10.1016/j.bbi.2017.08.014] [PMID: 28888667]
[101]
Amoroso, M.; Böttcher, A.; Lowry, C.A.; Langgartner, D.; Reber, S.O. Subcutaneous Mycobacterium vaccae promotes resilience in a mouse model of chronic psychosocial stress when administered prior to or during psychosocial stress. Brain Behav. Immun., 2020, 87, 309-317.
[http://dx.doi.org/10.1016/j.bbi.2019.12.018] [PMID: 31887415]
[102]
Bowers, S.J.; Lambert, S.; He, S.; Lowry, C.A.; Fleshner, M.; Wright, K.P., Jr; Turek, F.W.; Vitaterna, M.H. Immunization with a heat-killed bacterium, Mycobacterium vaccae NCTC 11659, prevents the development of cortical hyperarousal and a PTSD-like sleep phenotype after sleep disruption and acute stress in mice. Sleep, 2021, 44(6), zsaa271.
[http://dx.doi.org/10.1093/sleep/zsaa271] [PMID: 33283862]
[103]
Bazzi, S.; Modjtahedi, H.; Mudan, S.; Akle, C.; Bahr, G.M. Analysis of the immunomodulatory properties of two heat-killed mycobacterial preparations in a human whole blood model. Immunobiology, 2015, 220(12), 1293-1304.
[http://dx.doi.org/10.1016/j.imbio.2015.07.015] [PMID: 26253276]
[104]
Schittenhelm, L.; Hilkens, C.M.; Morrison, V.L. β2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front. Immunol., 2017, 8, 1866.
[http://dx.doi.org/10.3389/fimmu.2017.01866] [PMID: 29326724]
[105]
Zhang, Y.; Liu, Q.; Yang, S.; Liao, Q. CD58 immunobiology at a glance. Front. Immunol., 2021, 12, 705260.
[http://dx.doi.org/10.3389/fimmu.2021.705260] [PMID: 34168659]
[106]
Katrinli, S.; Smith, A.K. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol. Stress, 2021, 15, 100366.
[http://dx.doi.org/10.1016/j.ynstr.2021.100366] [PMID: 34355049]
[107]
Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638.
[http://dx.doi.org/10.1038/nri.2016.90] [PMID: 27546235]
[108]
Fonkoue, I.T.; Michopoulos, V.; Park, J. Sex differences in post-traumatic stress disorder risk: Autonomic control and inflammation. Clin. Auton. Res., 2020, 30(5), 409-421.
[http://dx.doi.org/10.1007/s10286-020-00729-7] [PMID: 33021709]
[109]
Nusslock, R.; Miller, G.E. Early-life adversity and physical and emotional health across the lifespan: A neuroimmune network hypothesis. Biol. Psychiatry, 2016, 80(1), 23-32.
[http://dx.doi.org/10.1016/j.biopsych.2015.05.017] [PMID: 26166230]
[110]
Danese, A.; J Lewis, S. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology, 2017, 42(1), 99-114.
[http://dx.doi.org/10.1038/npp.2016.198] [PMID: 27629365]
[111]
Zen, A.L.; Whooley, M.A.; Zhao, S.; Cohen, B.E. Post-traumatic stress disorder is associated with poor health behaviors: Findings from the Heart and Soul Study. Health Psychol., 2012, 31(2), 194-201.
[http://dx.doi.org/10.1037/a0025989] [PMID: 22023435]
[112]
Dennis, P.A.; Weinberg, J.B.; Calhoun, P.S.; Watkins, L.L.; Sherwood, A.; Dennis, M.F.; Beckham, J.C. An investigation of vago-regulatory and health-behavior accounts for increased inflammation in posttraumatic stress disorder. J. Psychosom. Res., 2016, 83, 33-39.
[http://dx.doi.org/10.1016/j.jpsychores.2016.02.008] [PMID: 27020074]
[113]
Pace, T.W.W.; Heim, C.M. A short review on the psychoneuroimmunology of posttraumatic stress disorder: From risk factors to medical comorbidities. Brain Behav. Immun., 2011, 25(1), 6-13.
[http://dx.doi.org/10.1016/j.bbi.2010.10.003] [PMID: 20934505]
[114]
Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol., 2017, 17(4), 233-247.
[http://dx.doi.org/10.1038/nri.2017.1] [PMID: 28192415]
[115]
Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med., 1995, 332(20), 1351-1363.
[http://dx.doi.org/10.1056/NEJM199505183322008] [PMID: 7715646]
[116]
Daskalakis, N.P. New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Exp. Neurol., 2016, 284(Pt B), 133-140.
[http://dx.doi.org/10.1016/j.expneurol.2016.07.024]
[117]
Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 2017, 42(1), 254-270.
[http://dx.doi.org/10.1038/npp.2016.146] [PMID: 27510423]
[118]
Agorastos, A.; Boel, J.A.; Heppner, P.S.; Hager, T.; Moeller-Bertram, T.; Haji, U.; Motazedi, A.; Yanagi, M.A.; Baker, D.G.; Stiedl, O. Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder. Stress, 2013, 16(3), 300-310.
[http://dx.doi.org/10.3109/10253890.2012.751369] [PMID: 23167763]
[119]
Matteoli, G.; Boeckxstaens, G.E. The vagal innervation of the gut and immune homeostasis. Gut, 2013, 62(8), 1214-1222.
[http://dx.doi.org/10.1136/gutjnl-2012-302550] [PMID: 23023166]
[120]
Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav. Immun., 2007, 21(7), 901-912.
[http://dx.doi.org/10.1016/j.bbi.2007.03.011] [PMID: 17475444]
[121]
Bierhaus, A.; Wolf, J.; Andrassy, M.; Rohleder, N.; Humpert, P.M.; Petrov, D.; Ferstl, R.; von Eynatten, M.; Wendt, T.; Rudofsky, G.; Joswig, M.; Morcos, M.; Schwaninger, M.; McEwen, B.; Kirschbaum, C.; Nawroth, P.P. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1920-1925.
[http://dx.doi.org/10.1073/pnas.0438019100] [PMID: 12578963]
[122]
Meduri, G.U.; Chrousos, G.P. General Adaptation in Critical Illness: Glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front. Endocrinol., 2020, 11, 161.
[http://dx.doi.org/10.3389/fendo.2020.00161] [PMID: 32390938]
[123]
Meewisse, M.L.; Reitsma, J.B.; De Vries, G.J.; Gersons, B.P.R.; Olff, M. Cortisol and post-traumatic stress disorder in adults. Br. J. Psychiatry, 2007, 191(5), 387-392.
[http://dx.doi.org/10.1192/bjp.bp.106.024877] [PMID: 17978317]
[124]
Chrousos, G.P.; Kaltsas, G. Post-SARS sickness syndrome manifestations and endocrinopathy: How, why, and so what? Clin. Endocrinol. (Oxf.), 2005, 63(4), 363-365.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02361.x] [PMID: 16181227]
[125]
van Zuiden, M.; Heijnen, C.J.; Maas, M.; Amarouchi, K.; Vermetten, E.; Geuze, E.; Kavelaars, A. Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: A prospective study. Psychoneuroendocrinology, 2012, 37(11), 1822-1836.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.018] [PMID: 22503138]
[126]
Elenkov, I.J.; Chrousos, G.P. Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol. Metab., 1999, 10(9), 359-368.
[http://dx.doi.org/10.1016/S1043-2760(99)00188-5] [PMID: 10511695]
[127]
Capelle, C.M.; Chen, A.; Zeng, N.; Baron, A.; Grzyb, K.; Arns, T.; Skupin, A.; Ollert, M.; Hefeng, F.Q. Stress hormone signalling inhibits Th1 polarization in a CD4 T‐cell‐intrinsic manner via mTORC1 and the circadian gene PER1. Immunology, 2022, 165(4), 428-444.
[http://dx.doi.org/10.1111/imm.13448] [PMID: 35143696]
[128]
Elenkov, I.J.; Iezzoni, D.G.; Daly, A.; Harris, A.G.; Chrousos, G.P. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation, 2005, 12(5), 255-269.
[http://dx.doi.org/10.1159/000087104] [PMID: 16166805]
[129]
Miller, M.W.; Maniates, H.; Wolf, E.J.; Logue, M.W.; Schichman, S.A.; Stone, A.; Milberg, W.; McGlinchey, R. CRP polymorphisms and DNA methylation of the AIM2 gene influence associations between trauma exposure, PTSD, and C-reactive protein. Brain Behav. Immun., 2018, 67, 194-202.
[http://dx.doi.org/10.1016/j.bbi.2017.08.022] [PMID: 28867284]
[130]
Muniz Carvalho, C.; Wendt, F.R.; Maihofer, A.X.; Stein, D.J.; Stein, M.B.; Sumner, J.A.; Hemmings, S.M.J.; Nievergelt, C.M.; Koenen, K.C.; Gelernter, J.; Belangero, S.I.; Polimanti, R. Dissecting the genetic association of C-reactive protein with PTSD, traumatic events, and social support. Neuropsychopharmacology, 2021, 46(6), 1071-1077.
[http://dx.doi.org/10.1038/s41386-020-0655-6] [PMID: 32179874]
[131]
Stein, M.B.; Chen, C.Y.; Ursano, R.J.; Cai, T.; Gelernter, J.; Heeringa, S.G.; Jain, S.; Jensen, K.P.; Maihofer, A.X.; Mitchell, C.; Nievergelt, C.M.; Nock, M.K.; Neale, B.M.; Polimanti, R.; Ripke, S.; Sun, X.; Thomas, M.L.; Wang, Q.; Ware, E.B.; Borja, S.; Kessler, R.C.; Smoller, J.W. Genome-wide Association Studies of Posttraumatic Stress Disorder in 2 Cohorts of US Army Soldiers. JAMA Psychiatry, 2016, 73(7), 695-704.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.0350] [PMID: 27167565]
[132]
Katrinli, S.; Lori, A.; Kilaru, V.; Carter, S.; Powers, A.; Gillespie, C.F.; Wingo, A.P.; Michopoulos, V.; Jovanovic, T.; Ressler, K.J.; Smith, A.K. Association of HLA locus alleles with posttraumatic stress disorder. Brain Behav. Immun., 2019, 81, 655-658.
[http://dx.doi.org/10.1016/j.bbi.2019.07.016] [PMID: 31310798]
[133]
Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; Levey, D.F.; Logue, M.W.; Polimanti, R.; Provost, A.C.; Ratanatharathorn, A.; Stein, M.B.; Torres, K.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Andersen, S.B.; Andreassen, O.A.; Arbisi, P.A.; Ashley-Koch, A.E.; Austin, S.B.; Avdibegovic, E.; Babić, D.; Bækvad-Hansen, M.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.I.; Boks, M.P.; Bolger, E.A.; Børglum, A.D.; Bradley, B.; Brashear, M.; Breen, G.; Bryant, R.A.; Bustamante, A.C.; Bybjerg-Grauholm, J.; Calabrese, J.R. Caldas- de- Almeida, J.M.; Dale, A.M.; Daly, M.J.; Daskalakis, N.P.; Deckert, J.; Delahanty, D.L.; Dennis, M.F.; Disner, S.G.; Domschke, K.; Dzubur-Kulenovic, A.; Erbes, C.R.; Evans, A.; Farrer, L.A.; Feeny, N.C.; Flory, J.D.; Forbes, D.; Franz, C.E.; Galea, S.; Garrett, M.E.; Gelaye, B.; Geuze, E.; Gillespie, C.; Uka, A.G.; Gordon, S.D.; Guffanti, G.; Hammamieh, R.; Harnal, S.; Hauser, M.A.; Heath, A.C.; Hemmings, S.M.J.; Hougaard, D.M.; Jakovljevic, M.; Jett, M.; Johnson, E.O.; Jones, I.; Jovanovic, T.; Qin, X.J.; Junglen, A.G.; Karstoft, K.I.; Kaufman, M.L.; Kessler, R.C.; Khan, A.; Kimbrel, N.A.; King, A.P.; Koen, N.; Kranzler, H.R.; Kremen, W.S.; Lawford, B.R.; Lebois, L.A.M.; Lewis, C.E.; Linnstaedt, S.D.; Lori, A.; Lugonja, B.; Luykx, J.J.; Lyons, M.J.; Maples-Keller, J.; Marmar, C.; Martin, A.R.; Martin, N.G.; Maurer, D.; Mavissakalian, M.R.; McFarlane, A.; McGlinchey, R.E.; McLaughlin, K.A.; McLean, S.A.; McLeay, S.; Mehta, D.; Milberg, W.P.; Miller, M.W.; Morey, R.A.; Morris, C.P.; Mors, O.; Mortensen, P.B.; Neale, B.M.; Nelson, E.C.; Nordentoft, M.; Norman, S.B.; O’Donnell, M.; Orcutt, H.K.; Panizzon, M.S.; Peters, E.S.; Peterson, A.L.; Peverill, M.; Pietrzak, R.H.; Polusny, M.A.; Rice, J.P.; Ripke, S.; Risbrough, V.B.; Roberts, A.L.; Rothbaum, A.O.; Rothbaum, B.O.; Roy-Byrne, P.; Ruggiero, K.; Rung, A.; Rutten, B.P.F.; Saccone, N.L.; Sanchez, S.E.; Schijven, D.; Seedat, S.; Seligowski, A.V.; Seng, J.S.; Sheerin, C.M.; Silove, D.; Smith, A.K.; Smoller, J.W.; Sponheim, S.R.; Stein, D.J.; Stevens, J.S.; Sumner, J.A.; Teicher, M.H.; Thompson, W.K.; Trapido, E.; Uddin, M.; Ursano, R.J.; van den Heuvel, L.L.; Van Hooff, M.; Vermetten, E.; Vinkers, C.H.; Voisey, J.; Wang, Y.; Wang, Z.; Werge, T.; Williams, M.A.; Williamson, D.E.; Winternitz, S.; Wolf, C.; Wolf, E.J.; Wolff, J.D.; Yehuda, R.; Young, R.M.; Young, K.A.; Zhao, H.; Zoellner, L.A.; Liberzon, I.; Ressler, K.J.; Haas, M.; Koenen, K.C. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun., 2019, 10(1), 4558.
[http://dx.doi.org/10.1038/s41467-019-12576-w] [PMID: 31594949]
[134]
Daskalakis, N.P.; Xu, C.; Bader, H.N.; Chatzinakos, C.; Weber, P.; Makotkine, I.; Lehrner, A.; Bierer, L.M.; Binder, E.B.; Yehuda, R. Intergenerational trauma is associated with expression alterations in glucocorticoid- and immune-related genes. Neuropsychopharmacology, 2021, 46(4), 763-773.
[http://dx.doi.org/10.1038/s41386-020-00900-8] [PMID: 33173192]
[135]
Snijders, C.; Maihofer, A.X.; Ratanatharathorn, A.; Baker, D.G.; Boks, M.P.; Geuze, E.; Jain, S.; Kessler, R.C.; Pishva, E.; Risbrough, V.B.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Smith, A.K.; Uddin, M.; Rutten, B.P.F.; Nievergelt, C.M. Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clin. Epigenetics, 2020, 12(1), 11.
[http://dx.doi.org/10.1186/s13148-019-0798-7] [PMID: 31931860]
[136]
Smith, A.K.; Ratanatharathorn, A.; Maihofer, A.X.; Naviaux, R.K.; Aiello, A.E.; Amstadter, A.B.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Boks, M.P.; Bromet, E.; Dennis, M.; Galea, S.; Garrett, M.E.; Geuze, E.; Guffanti, G.; Hauser, M.A.; Katrinli, S.; Kilaru, V.; Kessler, R.C.; Kimbrel, N.A.; Koenen, K.C.; Kuan, P.F.; Li, K.; Logue, M.W.; Lori, A.; Luft, B.J.; Miller, M.W.; Naviaux, J.C.; Nugent, N.R.; Qin, X.; Ressler, K.J.; Risbrough, V.B.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Wang, L.; Youssef, N.A.; Marx, C.; Grant, G.; Stein, M.; Qin, X-J.; Jain, S.; McAllister, T.W.; Zafonte, R.; Lang, A.; Coimbra, R.; Andaluz, N.; Shutter, L.; George, M.S.; Brancu, M.; Calhoun, P.S.; Dedert, E.; Elbogen, E.B.; Fairbank, J.A.; Hurley, R.A.; Kilts, J.D.; Kirby, A.; Marx, C.E.; McDonald, S.D.; Moore, S.D.; Morey, R.A.; Naylor, J.C.; Rowland, J.A.; Swinkels, C.; Szabo, S.T.; Taber, K.H.; Tupler, L.A.; Van Voorhees, E.E.; Yoash-Gantz, R.E.; Basu, A.; Brick, L.A.; Dalvie, S.; Daskalakis, N.P.; Ensink, J.B.M.; Hemmings, S.M.J.; Herringa, R.; Ikiyo, S.; Koen, N.; Kuan, P.F.; Montalvo-Ortiz, J.; Nispeling, D.; Pfeiffer, J.; Qin, X.J.; Ressler, K.J.; Schijven, D.; Seedat, S.; Shinozaki, G.; Sumner, J.A.; Swart, P.; Tyrka, A.; Van Zuiden, M.; Wani, A.; Wolf, E.J.; Zannas, A.; Uddin, M.; Nievergelt, C.M. Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nat. Commun., 2020, 11(1), 5965.
[http://dx.doi.org/10.1038/s41467-020-19615-x] [PMID: 33235198]
[137]
Katrinli, S.; Zheng, Y.; Gautam, A.; Hammamieh, R.; Yang, R.; Venkateswaran, S.; Kilaru, V.; Lori, A.; Hinrichs, R.; Powers, A.; Gillespie, C.F.; Wingo, A.P.; Michopoulos, V.; Jovanovic, T.; Wolf, E.J.; McGlinchey, R.E.; Milberg, W.P.; Miller, M.W.; Kugathasan, S.; Jett, M.; Logue, M.W.; Ressler, K.J.; Smith, A.K. PTSD is associated with increased DNA methylation across regions of HLA-DPB1 and SPATC1L. Brain Behav. Immun., 2021, 91, 429-436.
[http://dx.doi.org/10.1016/j.bbi.2020.10.023] [PMID: 33152445]
[138]
Rutten, B.P.F.; Vermetten, E.; Vinkers, C.H.; Ursini, G.; Daskalakis, N.P.; Pishva, E.; de Nijs, L.; Houtepen, L.C.; Eijssen, L.; Jaffe, A.E.; Kenis, G.; Viechtbauer, W.; van den Hove, D.; Schraut, K.G.; Lesch, K-P.; Kleinman, J.E.; Hyde, T.M.; Weinberger, D.R.; Schalkwyk, L.; Lunnon, K.; Mill, J.; Cohen, H.; Yehuda, R.; Baker, D.G.; Maihofer, A.X.; Nievergelt, C.M.; Geuze, E.; Boks, M.P.M. Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder. Mol. Psychiatry, 2018, 23(5), 1145-1156.
[http://dx.doi.org/10.1038/mp.2017.120] [PMID: 28630453]
[139]
Logue, M.W.; Miller, M.W.; Wolf, E.J.; Huber, B.R.; Morrison, F.G.; Zhou, Z.; Zheng, Y.; Smith, A.K.; Daskalakis, N.P.; Ratanatharathorn, A.; Uddin, M.; Nievergelt, C.M.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Garrett, M.E.; Boks, M.P.; Geuze, E.; Grant, G.A.; Hauser, M.A.; Kessler, R.C.; Kimbrel, N.A.; Maihofer, A.X.; Marx, C.E.; Qin, X.J.; Risbrough, V.B.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Ware, E.B.; Stone, A.; Schichman, S.A.; McGlinchey, R.E.; Milberg, W.P.; Hayes, J.P.; Verfaellie, M. An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clin. Epigenetics, 2020, 12(1), 46.
[http://dx.doi.org/10.1186/s13148-020-0820-0] [PMID: 32171335]
[140]
Dendrou, C.A.; Petersen, J.; Rossjohn, J.; Fugger, L. HLA variation and disease. Nat. Rev. Immunol., 2018, 18(5), 325-339.
[http://dx.doi.org/10.1038/nri.2017.143] [PMID: 29292391]
[141]
Shatz, C.J. MHC class I: An unexpected role in neuronal plasticity. Neuron, 2009, 64(1), 40-45.
[http://dx.doi.org/10.1016/j.neuron.2009.09.044] [PMID: 19840547]
[142]
Sankar, A.; MacKenzie, R.N.; Foster, J.A. Loss of class I MHC function alters behavior and stress reactivity. J. Neuroimmunol., 2012, 244(1-2), 8-15.
[http://dx.doi.org/10.1016/j.jneuroim.2011.12.025] [PMID: 22245287]
[143]
Pasciuto, E.; Burton, O.T.; Roca, C.P.; Lagou, V.; Rajan, W.D.; Theys, T.; Mancuso, R.; Tito, R.Y.; Kouser, L.; Callaerts-Vegh, Z.; de la Fuente, A.G.; Prezzemolo, T.; Mascali, L.G.; Brajic, A.; Whyte, C.E.; Yshii, L.; Martinez-Muriana, A.; Naughton, M.; Young, A.; Moudra, A.; Lemaitre, P.; Poovathingal, S.; Raes, J.; De Strooper, B.; Fitzgerald, D.C.; Dooley, J.; Liston, A. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell, 2020, 182(3), 625-640.e24.
[http://dx.doi.org/10.1016/j.cell.2020.06.026] [PMID: 32702313]
[144]
Schetters, S.T.T.; Gomez-Nicola, D.; Garcia-Vallejo, J.J.; Van Kooyk, Y. Neuroinflammation: Microglia and T cells get ready to tango. Front. Immunol., 2018, 8, 1905.
[http://dx.doi.org/10.3389/fimmu.2017.01905] [PMID: 29422891]
[145]
Byram, S.C.; Carson, M.J.; DeBoy, C.A.; Serpe, C.J.; Sanders, V.M.; Jones, K.J. CD4-positive T cell-mediated neuroprotection requires dual compartment antigen presentation. J. Neurosci., 2004, 24(18), 4333-4339.
[http://dx.doi.org/10.1523/JNEUROSCI.5276-03.2004] [PMID: 15128847]
[146]
Mittal, K.; Eremenko, E.; Berner, O.; Elyahu, Y.; Strominger, I.; Apelblat, D.; Nemirovsky, A.; Spiegel, I.; Monsonego, A. CD4 T cells induce a subset of MHCII-expressing microglia that attenuates alzheimer pathology. iScience, 2019, 16, 298-311.
[http://dx.doi.org/10.1016/j.isci.2019.05.039] [PMID: 31203186]
[147]
Baker, D.G.; Nievergelt, C.M.; O’Connor, D.T. Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology, 2012, 62(2), 663-673.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.027] [PMID: 21392516]
[148]
Karanikas, E.; Daskalakis, N.P.; Agorastos, A. Oxidative dysregulation in early life stress and posttraumatic stress disorder: A comprehensive review. Brain Sci., 2021, 11(6), 723.
[http://dx.doi.org/10.3390/brainsci11060723] [PMID: 34072322]
[149]
Câmara, A.B.; Brandão, I.A. Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol. Behav. Neurosci., 2022, 137(1), 52-66.
[http://dx.doi.org/10.1037/bne0000539] [PMID: 36326637]
[150]
Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Andronie-Cioara, F.L.; Munteanu, M.A.; Brisc, M.C.; Uivarosan, D.; Brisc, C. Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation. Int. J. Mol. Sci., 2021, 22(14), 7432.
[http://dx.doi.org/10.3390/ijms22147432] [PMID: 34299052]
[151]
Rana, T.; Behl, T.; Mehta, V.; Uddin, M.S.; Bungau, S. Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol. Rep., 2021, 73(1), 31-42.
[http://dx.doi.org/10.1007/s43440-020-00163-6] [PMID: 33015736]
[152]
Dantzer, R.; Kelley, K.W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun., 2007, 21(2), 153-160.
[http://dx.doi.org/10.1016/j.bbi.2006.09.006] [PMID: 17088043]
[153]
Dooley, L.N.; Kuhlman, K.R.; Robles, T.F.; Eisenberger, N.I.; Craske, M.G.; Bower, J.E. The role of inflammation in core features of depression: Insights from paradigms using exogenously-induced inflammation. Neurosci. Biobehav. Rev., 2018, 94, 219-237.
[http://dx.doi.org/10.1016/j.neubiorev.2018.09.006] [PMID: 30201219]
[154]
Dunn, A.J.; Swiergiel, A.H.; Beaurepaire, R. Cytokines as mediators of depression: What can we learn from animal studies? Neurosci. Biobehav. Rev., 2005, 29(4-5), 891-909.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.023] [PMID: 15885777]
[155]
Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70(1), 31-41.
[http://dx.doi.org/10.1001/2013.jamapsychiatry.4] [PMID: 22945416]
[156]
McIntyre, R.S.; Subramaniapillai, M.; Lee, Y.; Pan, Z.; Carmona, N.E.; Shekotikhina, M.; Rosenblat, J.D.; Brietzke, E.; Soczynska, J.K.; Cosgrove, V.E.; Miller, S.; Fischer, E.G.; Kramer, N.E.; Dunlap, K.; Suppes, T.; Mansur, R.B. Efficacy of adjunctive infliximab vs. placebo in the treatment of adults with bipolar I/II depression. JAMA Psychiatry, 2019, 76(8), 783-790.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.0779] [PMID: 31066887]
[157]
Knight, J.M.; Costanzo, E.S.; Singh, S.; Yin, Z.; Szabo, A.; Pawar, D.S.; Hillard, C.J.; Rizzo, J.D.; D’Souza, A.; Pasquini, M.; Coe, C.L.; Irwin, M.R.; Raison, C.L.; Drobyski, W.R. The IL-6 antagonist tocilizumab is associated with worse depression and related symptoms in the medically ill. Transl. Psychiatry, 2021, 11(1), 58.
[http://dx.doi.org/10.1038/s41398-020-01164-y] [PMID: 33462203]
[158]
Husain, M.I.; Chaudhry, I.B.; Khoso, A.B.; Husain, M.O.; Hodsoll, J.; Ansari, M.A.; Naqvi, H.A.; Minhas, F.A.; Carvalho, A.F.; Meyer, J.H.; Deakin, B.; Mulsant, B.H.; Husain, N.; Young, A.H. Minocycline and celecoxib as adjunctive treatments for bipolar depression: A multicentre, factorial design randomised controlled trial. Lancet Psychiatry, 2020, 7(6), 515-527.
[http://dx.doi.org/10.1016/S2215-0366(20)30138-3] [PMID: 32445690]
[159]
Berk, M.; Agustini, B.; Woods, R.L.; Nelson, M.R.; Shah, R.C.; Reid, C.M.; Storey, E.; Fitzgerald, S.M.; Lockery, J.E.; Wolfe, R.; Mohebbi, M.; Dodd, S.; Murray, A.M.; Stocks, N.; Fitzgerald, P.B.; Mazza, C.; McNeil, J.J. Effects of aspirin on the long-term management of depression in older people: A double-blind randomised placebo-controlled trial. Mol. Psychiatry, 2021, 26(9), 5161-5170.
[http://dx.doi.org/10.1038/s41380-021-01020-5] [PMID: 33504953]
[160]
Berk, M.; Mohebbi, M.; Dean, O.M.; Cotton, S.M.; Chanen, A.M.; Dodd, S.; Ratheesh, A.; Amminger, G.P.; Phelan, M.; Weller, A.; Mackinnon, A.; Giorlando, F.; Baird, S.; Incerti, L.; Brodie, R.E.; Ferguson, N.O.; Rice, S.; Schäfer, M.R.; Mullen, E.; Hetrick, S.; Kerr, M.; Harrigan, S.M.; Quinn, A.L.; Mazza, C.; McGorry, P.; Davey, C.G. Youth depression alleviation with anti-inflammatory agents (YoDA-A): A randomised clinical trial of rosuvastatin and aspirin. BMC Med., 2020, 18(1), 16.
[http://dx.doi.org/10.1186/s12916-019-1475-6] [PMID: 31948461]
[161]
Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent models of post-traumatic stress disorder: Behavioral assessment. Transl. Psychiatry, 2020, 10(1), 132.
[http://dx.doi.org/10.1038/s41398-020-0806-x] [PMID: 32376819]
[162]
Johnson, J.D.; Barnard, D.F.; Kulp, A.C.; Mehta, D.M. Neuroendocrine regulation of brain cytokines after psychological stress. J. Endocr. Soc., 2019, 3(7), 1302-1320.
[http://dx.doi.org/10.1210/js.2019-00053] [PMID: 31259292]
[163]
Goshen, I.; Kreisel, T.; Ben-Menachem-Zidon, O.; Licht, T.; Weidenfeld, J.; Ben-Hur, T.; Yirmiya, R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry, 2008, 13(7), 717-728.
[http://dx.doi.org/10.1038/sj.mp.4002055] [PMID: 17700577]
[164]
Koo, J.W.; Duman, R.S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA, 2008, 105(2), 751-756.
[http://dx.doi.org/10.1073/pnas.0708092105] [PMID: 18178625]
[165]
Muhie, S.; Gautam, A.; Chakraborty, N.; Hoke, A.; Meyerhoff, J.; Hammamieh, R.; Jett, M. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl. Psychiatry, 2017, 7(5), e1135.
[http://dx.doi.org/10.1038/tp.2017.91] [PMID: 28534873]
[166]
Kim, J.; Yoon, S.; Lee, S.; Hong, H.; Ha, E.; Joo, Y.; Lee, E.H.; Lyoo, I.K. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat. Commun., 2020, 11(1), 1898.
[http://dx.doi.org/10.1038/s41467-020-15655-5] [PMID: 32313055]
[167]
Ganguly, P.; Brenhouse, H.C. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev. Cogn. Neurosci., 2015, 11, 18-30.
[http://dx.doi.org/10.1016/j.dcn.2014.07.001] [PMID: 25081071]
[168]
Ferle, V.; Repouskou, A.; Aspiotis, G.; Raftogianni, A.; Chrousos, G.; Stylianopoulou, F.; Stamatakis, A. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. Physiol. Behav., 2020, 215, 112791.
[http://dx.doi.org/10.1016/j.physbeh.2019.112791] [PMID: 31870943]
[169]
Cai, Z.; Ye, T.; Xu, X.; Gao, M.; Zhang, Y.; Wang, D.; Gu, Y.; Zhu, H.; Tong, L.; Lu, J.; Chen, Z.; Huang, C. Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 101, 109931.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109931] [PMID: 32201112]
[170]
Rimmerman, N.; Verdiger, H.; Goldenberg, H.; Naggan, L.; Robinson, E.; Kozela, E.; Gelb, S.; Reshef, R.; Ryan, K.M.; Ayoun, L.; Refaeli, R.; Ashkenazi, E.; Schottlender, N.; Ben Hemo-Cohen, L.; Pienica, C.; Aharonian, M.; Dinur, E.; Lazar, K.; McLoughlin, D.M.; Zvi, A.B.; Yirmiya, R. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Mol. Psychiatry, 2022, 27(2), 1120-1135.
[http://dx.doi.org/10.1038/s41380-021-01338-0] [PMID: 34650207]
[171]
Yirmiya, R.; Rimmerman, N.; Reshef, R. Depression as a microglial disease. Trends Neurosci., 2015, 38(10), 637-658.
[http://dx.doi.org/10.1016/j.tins.2015.08.001] [PMID: 26442697]
[172]
DellaGioia, N.; Hannestad, J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci. Biobehav. Rev., 2010, 34(1), 130-143.
[http://dx.doi.org/10.1016/j.neubiorev.2009.07.014] [PMID: 19666048]
[173]
Bauer, J.; Hohagen, F.; Gimmel, E.; Bruns, F.; Lis, S.; Krieger, S.; Ambach, W.; Guthmann, A.; Grunze, H.; Fritsch-Montero, R.; Weissbach, A.; Ganter, U.; Frommberger, U.; Riemann, D.; Berger, M. Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biol. Psychiatry, 1995, 38(9), 611-621.
[http://dx.doi.org/10.1016/0006-3223(95)00374-X] [PMID: 8573663]
[174]
Lu, X.; Liu, H.; Cai, Z.; Hu, Z.; Ye, M.; Gu, Y.; Wang, Y.; Wang, D.; Lu, Q.; Shen, Z.; Shen, X.; Huang, C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav. Immun., 2022, 106, 147-160.
[http://dx.doi.org/10.1016/j.bbi.2022.08.005] [PMID: 35995236]
[175]
Frank, M.G.; Baratta, M.V.; Sprunger, D.B.; Watkins, L.R.; Maier, S.F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun., 2007, 21(1), 47-59.
[http://dx.doi.org/10.1016/j.bbi.2006.03.005] [PMID: 16647243]
[176]
Gu, Y.; Ye, T.; Tan, P.; Tong, L.; Ji, J.; Gu, Y.; Shen, Z.; Shen, X.; Lu, X.; Huang, C. Tolerance-inducing effect and properties of innate immune stimulation on chronic stress-induced behavioral abnormalities in mice. Brain Behav. Immun., 2021, 91, 451-471.
[http://dx.doi.org/10.1016/j.bbi.2020.11.002] [PMID: 33157258]
[177]
Lu, Q.; Xiang, H.; Zhu, H.; Chen, Y.; Lu, X.; Huang, C. Intranasal lipopolysaccharide administration prevents chronic stress-induced depression- and anxiety-like behaviors in mice. Neuropharmacology, 2021, 200, 108816.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108816] [PMID: 34599975]
[178]
Shi, R.; Liu, H.; Tan, P.; Hu, Z.; Ma, Y.; Ye, M.; Gu, Y.; Wang, Y.; Ye, T.; Gu, Y.; Lu, X.; Huang, C. Innate immune stimulation prevents the development of anxiety-like behaviors in chronically stressed mice. Neuropharmacology, 2022, 207, 108950.
[http://dx.doi.org/10.1016/j.neuropharm.2022.108950] [PMID: 35074304]
[179]
Wang, Y.; Hu, Z.; Liu, H.; Gu, Y.; Ye, M.; Lu, Q.; Lu, X.; Huang, C. Adolescent microglia stimulation produces long-lasting protection against chronic stress-induced behavioral abnormalities in adult male mice. Brain Behav. Immun., 2022, 105, 44-66.
[http://dx.doi.org/10.1016/j.bbi.2022.06.015] [PMID: 35781008]
[180]
Mondelli, V.; Vernon, A.C.; Turkheimer, F.; Dazzan, P.; Pariante, C.M. Brain microglia in psychiatric disorders. Lancet Psychiatry, 2017, 4(7), 563-572.
[http://dx.doi.org/10.1016/S2215-0366(17)30101-3] [PMID: 28454915]
[181]
Baker, D.G.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Zoumakis, E.; Dashevsky, B.A.; Chrousos, G.P.; Geracioti, T.D. Jr Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation, 2001, 9(4), 209-217.
[http://dx.doi.org/10.1159/000049028] [PMID: 11847483]
[182]
Bonne, O.; Gill, J.M.; Luckenbaugh, D.A.; Collins, C.; Owens, M.J.; Alesci, S.; Neumeister, A.; Yuan, P.; Kinkead, B.; Manji, H.K.; Charney, D.S.; Vythilingam, M. Corticotropin-releasing factor, interleukin-6, brain-derived neurotrophic factor, insulin-like growth factor-1, and substance P in the cerebrospinal fluid of civilians with posttraumatic stress disorder before and after treatment with paroxetine. J. Clin. Psychiatry, 2011, 72(8), 1124-1128.
[http://dx.doi.org/10.4088/JCP.09m05106blu] [PMID: 21208596]
[183]
Agorastos, A.; Hauger, R.L.; Barkauskas, D.A.; Lerman, I.R.; Moeller-Bertram, T.; Snijders, C.; Haji, U.; Patel, P.M.; Geracioti, T.D.; Chrousos, G.P.; Baker, D.G. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology, 2019, 100, 237-245.
[http://dx.doi.org/10.1016/j.psyneuen.2018.09.009] [PMID: 30390522]
[184]
Lerman, I.; Davis, B.A.; Bertram, T.M.; Proudfoot, J.; Hauger, R.L.; Coe, C.L.; Patel, P.M.; Baker, D.G. Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology, 2016, 73, 99-108.
[http://dx.doi.org/10.1016/j.psyneuen.2016.07.202] [PMID: 27490714]
[185]
Morrison, F.G.; Miller, M.W.; Wolf, E.J.; Logue, M.W.; Maniates, H.; Kwasnik, D.; Cherry, J.D.; Svirsky, S.; Restaino, A.; Hildebrandt, A.; Aytan, N.; Stein, T.D.; Alvarez, V.E.; McKee, A.C.; Huber, B.R. Reduced interleukin 1A gene expression in the dorsolateral prefrontal cortex of individuals with PTSD and depression. Neurosci. Lett., 2019, 692, 204-209.
[http://dx.doi.org/10.1016/j.neulet.2018.10.027] [PMID: 30366016]
[186]
Bhatt, S.; Hillmer, A.T.; Girgenti, M.J.; Rusowicz, A.; Kapinos, M.; Nabulsi, N.; Huang, Y.; Matuskey, D.; Angarita, G.A.; Esterlis, I.; Davis, M.T.; Southwick, S.M.; Friedman, M.J.; Girgenti, M.J.; Friedman, M.J.; Duman, R.S.; Krystal, J.H.; Duman, R.S.; Carson, R.E.; Krystal, J.H.; Pietrzak, R.H.; Cosgrove, K.P. PTSD is associated with neuroimmune suppression: Evidence from PET imaging and postmortem transcriptomic studies. Nat. Commun., 2020, 11(1), 2360.
[http://dx.doi.org/10.1038/s41467-020-15930-5] [PMID: 32398677]
[187]
Jaffe, A.E.; Tao, R.; Page, S.C.; Maynard, K.R.; Pattie, E.A.; Nguyen, C.V.; Deep-Soboslay, A.; Bharadwaj, R.; Young, K.A.; Friedman, M.J.; Williamson, D.E.; Shin, J.H.; Hyde, T.M.; Martinowich, K.; Kleinman, J.E. Decoding shared versus divergent transcriptomic signatures across cortico-amygdala circuitry in PTSD and depressive disorders. Am. J. Psychiatry, 2022, 179(9), 673-686.
[http://dx.doi.org/10.1176/appi.ajp.21020162] [PMID: 35791611]
[188]
Fenster, R.J.; Lebois, L.A.M.; Ressler, K.J.; Suh, J. Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man. Nat. Rev. Neurosci., 2018, 19(9), 535-551.
[http://dx.doi.org/10.1038/s41583-018-0039-7] [PMID: 30054570]
[189]
Girgenti, M.J.; Wang, J.; Ji, D.; Cruz, D.A.; Stein, M.B.; Gelernter, J.; Young, K.A.; Huber, B.R.; Williamson, D.E.; Friedman, M.J.; Krystal, J.H.; Zhao, H.; Duman, R.S. Transcriptomic organization of the human brain in post-traumatic stress disorder. Nat. Neurosci., 2021, 24(1), 24-33.
[http://dx.doi.org/10.1038/s41593-020-00748-7] [PMID: 33349712]
[190]
Logue, M.W.; Zhou, Z.; Morrison, F.G.; Wolf, E.J.; Daskalakis, N.P.; Chatzinakos, C.; Georgiadis, F.; Labadorf, A.T.; Girgenti, M.J.; Young, K.A.; Williamson, D.E.; Zhao, X.; Grenier, J.G.; Huber, B.R.; Miller, M.W. Gene expression in the dorsolateral and ventromedial prefrontal cortices implicates immune-related gene networks in PTSD. Neurobiol. Stress, 2021, 15, 100398.
[http://dx.doi.org/10.1016/j.ynstr.2021.100398] [PMID: 34646915]
[191]
Sandiego, C.M.; Gallezot, J.D.; Pittman, B.; Nabulsi, N.; Lim, K.; Lin, S.F.; Matuskey, D.; Lee, J.Y.; O’Connor, K.C.; Huang, Y.; Carson, R.E.; Hannestad, J.; Cosgrove, K.P. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc. Natl. Acad. Sci. USA, 2015, 112(40), 12468-12473.
[http://dx.doi.org/10.1073/pnas.1511003112] [PMID: 26385967]
[192]
Holmes, S.E.; Girgenti, M.J.; Davis, M.T.; Pietrzak, R.H.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Southwick, S.; Duman, R.S.; Carson, R.E.; Krystal, J.H.; Esterlis, I.; Friedman, M.; Kowall, N.; Brady, C.; McKee, A.; Stein, T.; Huber, B.; Kaloupek, D.; Alvarez, V.; Benedek, D.; Ursano, R.; Williamson, D.; Cruz, D.; Young, K.; Duman, R.; Krystal, J.; Mash, D.; Hardegree, M.; Serlin, G. Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc. Natl. Acad. Sci. USA, 2017, 114(31), 8390-8395.
[http://dx.doi.org/10.1073/pnas.1701749114] [PMID: 28716937]
[193]
Byrnes, K.R.; Stoica, B.; Loane, D.J.; Riccio, A.; Davis, M.I.; Faden, A.I. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 2009, 57(5), 550-560.
[http://dx.doi.org/10.1002/glia.20783] [PMID: 18816644]
[194]
Gill, T.; Watling, S.E.; Richardson, J.D.; McCluskey, T.; Tong, J.; Meyer, J.H.; Warsh, J.; Jetly, R.; Hutchison, M.G.; Rhind, S.G.; Houle, S.; Vasdev, N.; Kish, S.J.; Boileau, I. Imaging of astrocytes in posttraumatic stress disorder: A PET study with the monoamine oxidase B radioligand [11C]SL25.1188. Eur. Neuropsychopharmacol., 2022, 54, 54-61.
[http://dx.doi.org/10.1016/j.euroneuro.2021.10.006] [PMID: 34773851]
[195]
Reid, J.K.; Kuipers, H.F. She Doesn’t Even Go Here: The role of inflammatory astrocytes in CNS disorders. Front. Cell. Neurosci., 2021, 15, 704884.
[http://dx.doi.org/10.3389/fncel.2021.704884] [PMID: 34539348]
[196]
Wingo, T.S.; Gerasimov, E.S.; Liu, Y.; Duong, D.M.; Vattathil, S.M.; Lori, A.; Gockley, J.; Breen, M.S.; Maihofer, A.X.; Nievergelt, C.M.; Koenen, K.C.; Levey, D.F.; Gelernter, J.; Stein, M.B.; Ressler, K.J.; Bennett, D.A.; Levey, A.I.; Seyfried, N.T.; Wingo, A.P. Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Mol. Psychiatry, 2022, 27(7), 3075-3084.
[http://dx.doi.org/10.1038/s41380-022-01544-4] [PMID: 35449297]
[197]
Friend, S.F. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur. J. Neurosci., 2020, 55, 9-10.
[PMID: 33131159]
[198]
Richards, D.M.; Kyewski, B.; Feuerer, M. Re-examining the nature and function of self-reactive T cells. Trends Immunol., 2016, 37(2), 114-125.
[http://dx.doi.org/10.1016/j.it.2015.12.005] [PMID: 26795134]
[199]
Cohen, I.R. Real and artificial immune systems: Computing the state of the body. Nat. Rev. Immunol., 2007, 7(7), 569-574.
[http://dx.doi.org/10.1038/nri2102] [PMID: 17558422]
[200]
Norris, G.T.; Kipnis, J. Immune cells and CNS physiology: Microglia and beyond. J. Exp. Med., 2019, 216(1), 60-70.
[http://dx.doi.org/10.1084/jem.20180199] [PMID: 30504438]
[201]
Schwartz, M.; Abellanas, M.A.; Tsitsou-Kampeli, A.; Suzzi, S. The brain-immune ecosystem: Implications for immunotherapy in defeating neurodegenerative diseases. Neuron, 2022, 110(21), 3421-3424.
[http://dx.doi.org/10.1016/j.neuron.2022.09.007] [PMID: 36150394]
[202]
Correale, J.; Fiol, M.; Villa, A. Neuroprotective Effects of Inflammation in the Nervous System. In: NeuroImmune Biology; Elsevier, 2008; pp. 403-431.
[http://dx.doi.org/10.1016/S1567-7443(07)10020-X]
[203]
Hohlfeld, R.; Kerschensteiner, M.; Stadelmann, C.; Lassmann, H.; Wekerle, H. The neuroprotective effect of inflammation: Implications for the therapy of multiple sclerosis. Neurol. Sci., 2006, 27(S1)(Suppl. 1), s1-s7.
[http://dx.doi.org/10.1007/s10072-006-0537-7] [PMID: 16708174]
[204]
Popovich, P.G.; Longbrake, E.E. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci., 2008, 9(6), 481-493.
[http://dx.doi.org/10.1038/nrn2398] [PMID: 18490917]
[205]
Schwartz, M.; Baruch, K. The resolution of neuroinflammation in neurodegeneration: Leukocyte recruitment via the choroid plexus. EMBO J., 2014, 33(1), 7-22.
[http://dx.doi.org/10.1002/embj.201386609] [PMID: 24357543]
[206]
Kerschensteiner, M.; Gallmeier, E.; Behrens, L.; Leal, V.V.; Misgeld, T.; Klinkert, W.E.F.; Kolbeck, R.; Hoppe, E.; Oropeza-Wekerle, R.L.; Bartke, I.; Stadelmann, C.; Lassmann, H.; Wekerle, H.; Hohlfeld, R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med., 1999, 189(5), 865-870.
[http://dx.doi.org/10.1084/jem.189.5.865] [PMID: 10049950]
[207]
Schulte-Herbrüggen, O.; Nassenstein, C.; Lommatzsch, M.; Quarcoo, D.; Renz, H.; Braun, A. Tumor necrosis factor-α and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J. Neuroimmunol., 2005, 160(1-2), 204-209.
[http://dx.doi.org/10.1016/j.jneuroim.2004.10.026] [PMID: 15710474]
[208]
van Buel, E.M.; Patas, K.; Peters, M.; Bosker, F.J.; Eisel, U.L.M.; Klein, H.C. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? Transl. Psychiatry, 2015, 5(7), e609.
[http://dx.doi.org/10.1038/tp.2015.100] [PMID: 26218851]
[209]
Raison, C.L.; Knight, J.M.; Pariante, C. Interleukin (IL)-6: A good kid hanging out with bad friends (and why sauna is good for health). Brain Behav. Immun., 2018, 73, 1-2.
[http://dx.doi.org/10.1016/j.bbi.2018.06.008] [PMID: 29908964]
[210]
Patas, K.; Penninx, B.W.J.H.; Bus, B.A.A.; Vogelzangs, N.; Molendijk, M.L.; Elzinga, B.M.; Bosker, F.J.; Oude Voshaar, R.C. Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain Behav. Immun., 2014, 36, 71-79.
[http://dx.doi.org/10.1016/j.bbi.2013.10.007] [PMID: 24140302]
[211]
Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[212]
Papanicolaou, D.A.; Wilder, R.L.; Manolagas, S.C.; Chrousos, G.P. The pathophysiologic roles of interleukin-6 in human disease. Ann. Intern. Med., 1998, 128(2), 127-137.
[http://dx.doi.org/10.7326/0003-4819-128-2-199801150-00009] [PMID: 9441573]
[213]
Jenkins, R.H.; Hughes, S.T.O.; Figueras, A.C.; Jones, S.A. Unravelling the broader complexity of IL-6 involvement in health and disease. Cytokine, 2021, 148, 155684.
[http://dx.doi.org/10.1016/j.cyto.2021.155684] [PMID: 34411990]
[214]
Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183.
[http://dx.doi.org/10.1016/j.brainresrev.2011.01.002] [PMID: 21238488]
[215]
Rohleder, N.; Aringer, M.; Boentert, M. Role of interleukin-6 in stress, sleep, and fatigue. Ann. N. Y. Acad. Sci., 2012, 1261(1), 88-96.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06634.x] [PMID: 22823398]
[216]
O’Donovan, A.; Chao, L.L.; Paulson, J.; Samuelson, K.W.; Shigenaga, J.K.; Grunfeld, C.; Weiner, M.W.; Neylan, T.C. Altered inflammatory activity associated with reduced hippocampal volume and more severe posttraumatic stress symptoms in Gulf War veterans. Psychoneuroendocrinology, 2015, 51, 557-566.
[http://dx.doi.org/10.1016/j.psyneuen.2014.11.010] [PMID: 25465168]
[217]
Bruenig, D.; Mehta, D.; Morris, C.P.; Lawford, B.; Harvey, W.; McD Young, R.; Voisey, J. Correlation between interferon γ and interleukin 6 with PTSD and resilience. Psychiatry Res., 2018, 260, 193-198.
[http://dx.doi.org/10.1016/j.psychres.2017.11.069] [PMID: 29202383]
[218]
Mac Giollabhui, N.; Foster, S.; Lowry, C.A.; Mischoulon, D.; Raison, C.L.; Nyer, M. Interleukin-6 receptor antagonists in immunopsychiatry: Can they lead to increased interleukin-6 in the central nervous system (CNS) and worsening psychiatric symptoms? Brain Behav. Immun., 2022, 103, 202-204.
[http://dx.doi.org/10.1016/j.bbi.2022.04.009] [PMID: 35452794]
[219]
Mullard, A. New plaque psoriasis approval carries suicide warning. Nat. Rev. Drug Discov., 2017, 16(3), 155.
[http://dx.doi.org/10.1038/nrd.2017.44] [PMID: 28248935]
[220]
Minnema, L.A.; Giezen, T.J.; Souverein, P.C.; Egberts, T.C.G.; Leufkens, H.G.M.; Gardarsdottir, H. Exploring the association between monoclonal antibodies and depression and suicidal ideation and behavior: A vigibase study. Drug Saf., 2019, 42(7), 887-895.
[http://dx.doi.org/10.1007/s40264-018-00789-9] [PMID: 30617497]
[221]
Hunt, D. Inflammation, monoclonal antibodies and depression: Joining the dots. Drug Saf., 2019, 42(7), 811-812.
[http://dx.doi.org/10.1007/s40264-019-00819-0] [PMID: 31069702]
[222]
Ottum, P.A.; Arellano, G.; Reyes, L.I.; Iruretagoyena, M.; Naves, R. Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front. Immunol., 2015, 6, 539.
[http://dx.doi.org/10.3389/fimmu.2015.00539] [PMID: 26579119]
[223]
Probert, L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience, 2015, 302, 2-22.
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.038] [PMID: 26117714]
[224]
Zhang, L.; Hu, X.Z.; Li, X.; Chen, Z.; Benedek, D.M.; Fullerton, C.S.; Wynn, G.; Naifeh, J.A.; Wu, H.; Benfer, N.; Ng, T.H.H.; Aliaga, P.; Dinh, H.; Kao, T-C.; Ursano, R.J. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members. Transl. Psychiatry, 2020, 10(1), 31.
[http://dx.doi.org/10.1038/s41398-020-0693-1] [PMID: 32066664]
[225]
Winter, A.N.; Subbarayan, M.S.; Grimmig, B.; Weesner, J.A.; Moss, L.; Peters, M.; Weeber, E.; Nash, K.; Bickford, P.C. Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. J. Neuroinflammation, 2020, 17(1), 157.
[http://dx.doi.org/10.1186/s12974-020-01828-y] [PMID: 32410624]
[226]
Heim, C. Deficiency of inflammatory response to acute trauma exposure as a neuroimmune mechanism driving the development of chronic PTSD: Another paradigmatic shift for the conceptualization of stress-related disorders? Am. J. Psychiatry, 2020, 177(1), 10-13.
[http://dx.doi.org/10.1176/appi.ajp.2019.19111189] [PMID: 31892300]
[227]
Rohleder, N.; Karl, A. Role of endocrine and inflammatory alterations in comorbid somatic diseases of post-traumatic stress disorder. Minerva Endocrinol., 2006, 31(4), 273-288.
[PMID: 17213794]
[228]
Segman, R.H.; Stein, M.B. C-reactive protein: A stress diathesis marker at the crossroads of maladaptive behavioral and cardiometabolic sequelae. Am. J. Psychiatry, 2015, 172(4), 307-309.
[http://dx.doi.org/10.1176/appi.ajp.2015.15010063] [PMID: 25827026]
[229]
Agorastos, A.; Linthorst, A.C.E. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J. Pineal Res., 2016, 61(1), 3-26.
[http://dx.doi.org/10.1111/jpi.12330] [PMID: 27061919]
[230]
Behl, T.; Kaur, D.; Sehgal, A.; Singla, R.K.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bungau, S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front. Pharmacol., 2022, 13, 976799.
[http://dx.doi.org/10.3389/fphar.2022.976799] [PMID: 36091826]
[231]
Colaço, H.G.; Moita, L.F. Initiation of innate immune responses by surveillance of homeostasis perturbations. FEBS J., 2016, 283(13), 2448-2457.
[http://dx.doi.org/10.1111/febs.13730] [PMID: 27037950]
[232]
Deri, Y.; Clouston, S.A.P.; DeLorenzo, C.; Gardus, J.D., III; Bartlett, E.A.; Santiago-Michels, S.; Bangiyev, L.; Kreisl, W.C.; Kotov, R.; Huang, C.; Slifstein, M.; Parsey, R.V.; Luft, B.J. Neuroinflammation in World Trade Center responders at midlife: A pilot study using [18F]-FEPPA PET imaging Brain, Behavior, & Immunity - Health, 2021, 16, 100287.
[http://dx.doi.org/10.1016/j.bbih.2021.100287] [PMID: 34589784]
[233]
Toczek, J.; Hillmer, A.T.; Han, J.; Liu, C.; Peters, D.; Emami, H.; Wu, J.; Esterlis, I.; Cosgrove, K.P.; Sadeghi, M.M. FDG PET imaging of vascular inflammation in post-traumatic stress disorder: A pilot case-control study. J. Nucl. Cardiol., 2021, 28(2), 688-694.
[http://dx.doi.org/10.1007/s12350-019-01724-w] [PMID: 31073848]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy