Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Hair Cortisol Research in Posttraumatic Stress Disorder - 10 Years of Insights and Open Questions. A Systematic Review

Author(s): Lena Schindler-Gmelch, Klara Capito, Susann Steudte-Schmiedgen*, Clemens Kirschbaum and Matthias Berking

Volume 22, Issue 10, 2024

Published on: 07 August, 2023

Page: [1697 - 1719] Pages: 23

DOI: 10.2174/1570159X21666230807112425

Price: $65

conference banner
Abstract

Background: Cortisol is one of the most extensively studied biomarkers in the context of trauma/posttraumatic stress disorder (PTSD). For more than a decade, hair cortisol concentrations (HCC) have been measured in this context, leading to a two-staged dysregulation model. Specifically, an elevated secretion during/immediately after trauma exposure eventually reverts to hyposecretion with increasing time since trauma exposure has been postulated.

Objective: The aim of our systematic review was to re-evaluate the two-staged secretion model with regard to the accumulated diagnostic, prognostic, and intervention-related evidence of HCC in lifetime trauma exposure and PTSD. Further, we provide an overview of open questions, particularly with respect to reporting standards and quality criteria.

Method: A systematic literature search yielded 5,046 records, of which 31 studies were included.

Results: For recent/ongoing (traumatic) stress, the predictions of cortisol hypersecretion could be largely confirmed. However, for the assumed hyposecretion temporally more distal to trauma exposure, the results are more ambiguous. As most studies did not report holistic overviews of trauma history and confounding influences, this may largely be attributable to methodological limitations. Data on the prognostic and intervention-related benefits of HCC remain sparse.

Conclusion: Over the last decade, important insights could be gained about long-term cortisol secretion patterns following lifetime trauma exposure and PTSD. This systematic review integrates these insights into an updated secretion model for trauma/PTSD. We conclude with recommendations for improving HCC research in the context of trauma/PTSD in order to answer the remaining open questions.

Graphical Abstract

[1]
Diagnostic and statistical manual of mental disorders: DSM-5, 5th ed; American Psychiatric Publishing: Washington, DC, 2013.
[2]
Schumacher, S.; Niemeyer, H.; Engel, S.; Cwik, J.C.; Laufer, S.; Klusmann, H.; Knaevelsrud, C. HPA axis regulation in posttraumatic stress disorder: A meta-analysis focusing on potential moderators. Neurosci. Biobehav. Rev., 2019, 100, 35-57.
[http://dx.doi.org/10.1016/j.neubiorev.2019.02.005] [PMID: 30790632]
[3]
Engel, S.; Klusmann, H.; Laufer, S.; Kapp, C.; Schumacher, S.; Knaevelsrud, C. Biological markers in clinical psychological research - A systematic framework applied to HPA axis regulation in PTSD. Comprehensive Psychoneuroendocrinology, 2022, 11, 100148.
[http://dx.doi.org/10.1016/j.cpnec.2022.100148] [PMID: 35967927]
[4]
Steudte-Schmiedgen, S.; Kirschbaum, C.; Alexander, N.; Stalder, T. An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings. Neurosci. Biobehav. Rev., 2016, 69, 124-135.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.015] [PMID: 27443960]
[5]
Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[6]
Gunnar, M.; Quevedo, K. The neurobiology of stress and development. Annu. Rev. Psychol., 2007, 58(1), 145-173.
[http://dx.doi.org/10.1146/annurev.psych.58.110405.085605] [PMID: 16903808]
[7]
Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav., 2017, 89, 69-85.
[http://dx.doi.org/10.1016/j.yhbeh.2016.11.018] [PMID: 27979632]
[8]
Stalder, T.; Kirschbaum, C. Cortisol.Encyclopedia of Behavioral Medicine; Gellman, M.D; Turner, J.R., Ed.; Springer: New York, NY, 2013, pp. 507-512.
[http://dx.doi.org/10.1007/978-1-4419-1005-9_171]
[9]
Dickerson, S.S.; Kemeny, M.E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull., 2004, 130(3), 355-391.
[http://dx.doi.org/10.1037/0033-2909.130.3.355] [PMID: 15122924]
[10]
Heim, C.; Schultebraucks, K.; Marmar, C.R.; Nemeroff, C.B. Neurobiological pathways involved in fear, stress, and PTSD.Post-traumatic stress disorder; Nemeroff, C.B; Marmar, C.R., Ed.; Oxford University Press: New York, 2018, pp. 331-352.
[11]
Meewisse, M.L.; Reitsma, J.B.; De Vries, G.J.; Gersons, B.P.R.; Olff, M. Cortisol and post-traumatic stress disorder in adults. Br. J. Psychiatry, 2007, 191(5), 387-392.
[http://dx.doi.org/10.1192/bjp.bp.106.024877] [PMID: 17978317]
[12]
Morris, M.C.; Compas, B.E.; Garber, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clin. Psychol. Rev., 2012, 32(4), 301-315.
[http://dx.doi.org/10.1016/j.cpr.2012.02.002] [PMID: 22459791]
[13]
Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair-State of the art and future directions. Brain Behav. Immun., 2012, 26(7), 1019-1029.
[http://dx.doi.org/10.1016/j.bbi.2012.02.002] [PMID: 22366690]
[14]
Greff, M.J.E.; Levine, J.M.; Abuzgaia, A.M.; Elzagallaai, A.A.; Rieder, M.J.; van Uum, S.H.M. Hair cortisol analysis: An update on methodological considerations and clinical applications. Clin. Biochem., 2019, 63, 1-9.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.09.010] [PMID: 30261181]
[15]
Klaassens, E.R.; Giltay, E.J.; Cuijpers, P.; van Veen, T.; Zitman, F.G. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. Psychoneuroendocrinology, 2012, 37(3), 317-331.
[http://dx.doi.org/10.1016/j.psyneuen.2011.07.003] [PMID: 21802212]
[16]
Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int., 2000, 107(1-3), 5-12.
[http://dx.doi.org/10.1016/S0379-0738(99)00146-2] [PMID: 10689559]
[17]
LeBeau, M.A.; Montgomery, M.A.; Brewer, J.D. The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci. Int., 2011, 210(1-3), 110-116.
[http://dx.doi.org/10.1016/j.forsciint.2011.02.015] [PMID: 21382678]
[18]
Colding-Jørgensen, P.; Hestehave, S.; Abelson, K.S.; Kalliokoski, O. Hair glucocorticoids are not a historical marker of stress - exploring the time-scale of corticosterone incorporation into hairs in a rat model. 2020.
[19]
Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology, 2017, 77, 261-274.
[http://dx.doi.org/10.1016/j.psyneuen.2016.12.017] [PMID: 28135674]
[20]
Miller, G.E.; Chen, E.; Zhou, E.S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull., 2007, 133(1), 25-45.
[http://dx.doi.org/10.1037/0033-2909.133.1.25] [PMID: 17201569]
[21]
Koumantarou Malisiova, E.; Mourikis, I.; Darviri, C.; Nicolaides, N.C.; Zervas, I.M.; Papageorgiou, C.; Chrousos, G.P. Hair cortisol concentrations in mental disorders: A systematic review. Physiol. Behav., 2021, 229, 113244.
[http://dx.doi.org/10.1016/j.physbeh.2020.113244] [PMID: 33181165]
[22]
Schumacher, S.; Niemeyer, H.; Engel, S.; Cwik, J.C.; Knaevelsrud, C. Psychotherapeutic treatment and HPA axis regulation in posttraumatic stress disorder: A systematic review and meta-analysis. Psychoneuroendocrinology, 2018, 98, 186-201.
[http://dx.doi.org/10.1016/j.psyneuen.2018.08.006] [PMID: 30193225]
[23]
Schär, S.; Mürner-Lavanchy, I.; Schmidt, S.J.; Koenig, J.; Kaess, M. Child maltreatment and hypothalamic-pituitary-adrenal axis functioning: A systematic review and meta-analysis. Front. Neuroendocrinol., 2022, 66, 100987.
[http://dx.doi.org/10.1016/j.yfrne.2022.100987] [PMID: 35202606]
[24]
Khoury, J.E.; Bosquet Enlow, M.; Plamondon, A.; Lyons-Ruth, K. The association between adversity and hair cortisol levels in humans: A meta-analysis. Psychoneuroendocrinology, 2019, 103, 104-117.
[http://dx.doi.org/10.1016/j.psyneuen.2019.01.009] [PMID: 30682626]
[25]
Bernstein, D.P.; Fink, L.; Handelsman, L.; Foote, J.; Lovejoy, M.; Wenzel, K.; Sapareto, E.; Ruggiero, J. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatry, 1994, 151(8), 1132-1136.
[http://dx.doi.org/10.1176/ajp.151.8.1132] [PMID: 8037246]
[26]
McLaughlin, K.A.; DeCross, S.N.; Jovanovic, T.; Tottenham, N. Mechanisms linking childhood adversity with psychopathology: Learning as an intervention target. Behav. Res. Ther., 2019, 118, 101-109.
[http://dx.doi.org/10.1016/j.brat.2019.04.008] [PMID: 31030002]
[27]
Diagnostic and statistical manual of mental disorders: DSM-IV-TR, 4th ed; American Psychiatric Assoc: Arlington, VA, 2007.
[28]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[29]
Raul, J.S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem., 2004, 37(12), 1105-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.02.010] [PMID: 15589817]
[30]
Marceau, K.; Wang, W.; Robertson, O.; Shirtcliff, E.A. A systematic review of hair cortisol during pregnancy: Reference ranges and methodological considerations. Psychoneuroendocrinology, 2020, 122, 104904.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104904] [PMID: 33080521]
[31]
Bluemke, M.; Crombach, A.; Hecker, T.; Schalinski, I.; Elbert, T.; Weierstall, R. Is the implicit association test for aggressive attitudes a measure for attraction to violence or traumatization? Z. Psychol. Z. Angew. Psychol., 2017, 225, 54-63.
[32]
Marcil, M.J.; Cyr, S.; Marin, M.F.; Rosa, C.; Tardif, J.C.; Guay, S.; Guertin, M.C.; Genest, C.; Forest, J.; Lavoie, P.; Labrosse, M.; Vadeboncoeur, A.; Selcer, S.; Ducharme, S.; Brouillette, J. Hair cortisol change at COVID-19 pandemic onset predicts burnout among health personnel. Psychoneuroendocrinology, 2022, 138, 105645.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105645] [PMID: 35134663]
[33]
Spikman, J.M.; van der Horn, H.J.; Scheenen, M.E.; de Koning, M.E.; Savas, M.; Langerak, T.; van Rossum, E.F.C.; van der Naalt, J. Coping with stress before and after mild traumatic brain injury: a pilot hair cortisol study. Brain Inj., 2021, 35(8), 871-879.
[http://dx.doi.org/10.1080/02699052.2021.1901143] [PMID: 34096416]
[34]
Kalliokoski, O.; Jellestad, F.K.; Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep., 2019, 9(1), 11997.
[http://dx.doi.org/10.1038/s41598-019-48517-2] [PMID: 31427664]
[35]
Cuijpers, P. Meta-analysis in mental health: A practical guide; Colofon, 2016.
[36]
Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev., 2016, 5(1), 210.
[http://dx.doi.org/10.1186/s13643-016-0384-4] [PMID: 27919275]
[37]
Laufer, S.; Engel, S.; Lupien, S.; Knaevelsrud, C.; Schumacher, S. The Cortisol Assessment List (CoAL) A tool to systematically document and evaluate cortisol assessment in blood, urine and saliva. Comprehensive Psychoneuroendocrinology, 2022, 9, 100108.
[http://dx.doi.org/10.1016/j.cpnec.2021.100108] [PMID: 35755928]
[38]
Herbers, J.; Miller, R.; Walther, A.; Schindler, L.; Schmidt, K.; Gao, W.; Kirschbaum, C.; Rupprecht, F. Non-detectable and outlying values in biomarker research: Best practices and recommendations for univariate approaches. Psychoneuroendocrinology, 2020, 119, 104967.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104967]
[39]
Steudte, S.; Kolassa, I.T.; Stalder, T.; Pfeiffer, A.; Kirschbaum, C.; Elbert, T. Increased cortisol concentrations in hair of severely traumatized Ugandan individuals with PTSD. Psychoneuroendocrinology, 2011, 36(8), 1193-1200.
[http://dx.doi.org/10.1016/j.psyneuen.2011.02.012] [PMID: 21411229]
[40]
van den Heuvel, L.L.; Stalder, T.; du Plessis, S.; Suliman, S.; Kirschbaum, C.; Seedat, S. Hair cortisol levels in posttraumatic stress disorder and metabolic syndrome. Stress, 2020, 23(5), 577-589.
[http://dx.doi.org/10.1080/10253890.2020.1724949] [PMID: 32008379]
[41]
Schumacher, S.; Engel, S.; Klusmann, H.; Niemeyer, H.; Küster, A.; Burchert, S.; Skoluda, N.; Rau, H.; Nater, U.M.; Willmund, G.D.; Knaevelsrud, C. Trauma-related but not PTSD-related increases in hair cortisol concentrations in military personnel. J. Psychiatr. Res., 2022, 150, 17-20.
[http://dx.doi.org/10.1016/j.jpsychires.2022.02.031] [PMID: 35344923]
[42]
Yirmiya, K.; Motsan, S.; Zagoory-Sharon, O.; Schonblum, A.; Koren, L.; Feldman, R. Continuity of psychopathology v. resilience across the transition to adolescence: Role of hair cortisol and sensitive caregiving. Psychol. Med., 2022, 1-12.
[http://dx.doi.org/10.1017/S0033291722001350] [PMID: 35634966]
[43]
Gao, W.; Zhong, P.; Xie, Q.; Wang, H.; Jin, J.; Deng, H.; Lu, Z. Temporal features of elevated hair cortisol among earthquake survivors. Psychophysiology, 2014, 51(4), 319-326.
[http://dx.doi.org/10.1111/psyp.12179] [PMID: 24611842]
[44]
Zuiden, M.; Savas, M.; Koch, S.B.J.; Nawijn, L.; Staufenbiel, S.M.; Frijling, J.L.; Veltman, D.J.; Rossum, E.F.C.; Olff, M. Associations among hair cortisol concentrations, posttraumatic stress disorder status, and amygdala reactivity to negative affective stimuli in female police officers. J. Trauma. Stress, 2019, 32(2), 238-248.
[http://dx.doi.org/10.1002/jts.22395] [PMID: 30883913]
[45]
Steudte, S.; Kirschbaum, C.; Gao, W.; Alexander, N.; Schönfeld, S.; Hoyer, J.; Stalder, T. Hair cortisol as a biomarker of traumatization in healthy individuals and posttraumatic stress disorder patients. Biol. Psychiatry, 2013, 74(9), 639-646.
[http://dx.doi.org/10.1016/j.biopsych.2013.03.011] [PMID: 23623187]
[46]
Steudte-Schmiedgen, S.; Stalder, T.; Schönfeld, S.; Wittchen, H.U.; Trautmann, S.; Alexander, N.; Miller, R.; Kirschbaum, C. Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment. Psychoneuroendocrinology, 2015, 59, 123-133.
[http://dx.doi.org/10.1016/j.psyneuen.2015.05.007] [PMID: 26072152]
[47]
Castro-Vale, I.; van Rossum, E.F.C.; Staufenbiel, S.M.; Severo, M.; Mota-Cardoso, R.; Carvalho, D. Hair cortisol as a marker of intergenerational heritage of war? A study of veterans and their offspring. Psychiatry Investig., 2020, 17(10), 976-986.
[http://dx.doi.org/10.30773/pi.2020.0212] [PMID: 33017887]
[48]
Boeckel, M.G.; Viola, T.W.; Daruy-Filho, L.; Martinez, M.; Grassi-Oliveira, R. Intimate partner violence is associated with increased maternal hair cortisol in mother-child dyads. Compr. Psychiatry, 2017, 72, 18-24.
[http://dx.doi.org/10.1016/j.comppsych.2016.09.006] [PMID: 27693887]
[49]
Mewes, R.; Reich, H.; Skoluda, N.; Seele, F.; Nater, U.M. Elevated hair cortisol concentrations in recently fled asylum seekers in comparison to permanently settled immigrants and non-immigrants. Transl. Psychiatry, 2017, 7(3), e1051.
[http://dx.doi.org/10.1038/tp.2017.14] [PMID: 28267148]
[50]
Heller, M.; Roberts, S.T.; Masese, L.; Ngina, J.; Chohan, N.; Chohan, V.; Shafi, J.; McClelland, R.S.; Brindle, E.; Graham, S.M. Gender-Based violence, physiological stress, and inflammation: A cross-sectional study. J. Womens Health (Larchmt.), 2018, 27(9), 1152-1161.
[http://dx.doi.org/10.1089/jwh.2017.6743] [PMID: 29630431]
[51]
Lynch, R.; Aspelund, T.; Kormáksson, M.; Flores-Torres, M.H.; Hauksdóttir, A.; Arnberg, F.K.; Lajous, M.; Kirschbaum, C.; Valdimarsdóttir, U. Lifetime exposure to violence and other life stressors and hair cortisol concentration in women. Stress, 2022, 25(1), 48-56.
[http://dx.doi.org/10.1080/10253890.2021.2011204] [PMID: 34962229]
[52]
Groër, M.W.; Kostas-Polston, E.A.; Dillahunt-Aspillaga, C.; Beckie, T.M.; Johnson-Mallard, V.; Duffy, A.; Evans, M.E. Allostatic perspectives in women veterans with a history of childhood sexual assault. Biol. Res. Nurs., 2016, 18(4), 454-464.
[http://dx.doi.org/10.1177/1099800416638442] [PMID: 27067613]
[53]
Morris, M.C.; Abelson, J.L.; Mielock, A.S.; Rao, U. Psychobiology of cumulative trauma: Hair cortisol as a risk marker for stress exposure in women. Stress, 2017, 20(4), 350-354.
[http://dx.doi.org/10.1080/10253890.2017.1340450] [PMID: 28595479]
[54]
Buchmüller, T.; Lembcke, H.; Busch, J.; Kumsta, R.; Wolf, O.T.; Leyendecker, B. Exploring hair steroid concentrations in asylum seekers, internally displaced refugees, and immigrants. Stress, 2020, 23(5), 538-545.
[http://dx.doi.org/10.1080/10253890.2020.1737008] [PMID: 32116089]
[55]
Petrowski, K.; Wichmann, S.; Pyrc, J.; Steudte-Schmiedgen, S.; Kirschbaum, C. Hair cortisol predicts avoidance behavior and depressiveness after first-time and single-event trauma exposure in motor vehicle crash victims. Stress, 2020, 23(5), 567-576.
[http://dx.doi.org/10.1080/10253890.2020.1714585] [PMID: 31939338]
[56]
Sopp, M.R.; Michael, T.; Lass-Hennemann, J.; Haim-Nachum, S.; Lommen, M.J.J. Longitudinal associations between hair cortisol, PTSD symptoms, and sleep disturbances in a sample of firefighters with duty-related trauma exposure. Psychoneuroendocrinology, 2021, 134, 105449.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105449] [PMID: 34687966]
[57]
Bob, P.; Touskova, T.P.; Pec, O.; Raboch, J.; Boutros, N.; Lysaker, P. Psychosocial stress, epileptic-like symptoms and psychotic experiences. Front. Psychol., 2022, 13, 804628.
[http://dx.doi.org/10.3389/fpsyg.2022.804628] [PMID: 35496146]
[58]
Söder, E.; Clamor, A.; Lincoln, T.M. Hair cortisol concentrations as an indicator of potential HPA axis hyperactivation in risk for psychosis. Schizophr. Res., 2019, 212, 54-61.
[http://dx.doi.org/10.1016/j.schres.2019.08.012] [PMID: 31455519]
[59]
Andersen, J.P.; Silver, R.C.; Stewart, B.; Koperwas, B.; Kirschbaum, C. Psychological and physiological responses following repeated peer death. PLoS One, 2013, 8(9), e75881.
[http://dx.doi.org/10.1371/journal.pone.0075881] [PMID: 24086655]
[60]
Pacella, M.L.; Hruska, B.; Steudte-Schmiedgen, S.; George, R.L.; Delahanty, D.L. The utility of hair cortisol concentrations in the prediction of PTSD symptoms following traumatic physical injury. Soc. Sci. Med., 2017, 175(175), 228-234.
[http://dx.doi.org/10.1016/j.socscimed.2016.12.046] [PMID: 28109728]
[61]
Schalinski, I.; Teicher, M.H.; Rockstroh, B. Early neglect is a key determinant of adult hair cortisol concentration and is associated with increased vulnerability to trauma in a transdiagnostic sample. Psychoneuroendocrinology, 2019, 108, 35-42.
[http://dx.doi.org/10.1016/j.psyneuen.2019.06.007] [PMID: 31226659]
[62]
Behnke, A.; Karabatsiakis, A.; Krumbholz, A.; Karrasch, S.; Schelling, G.; Kolassa, I.T.; Rojas, R. Associating Emergency Medical Services personnel’s workload, trauma exposure, and health with the cortisol, endocannabinoid, and N-acylethanolamine concentrations in their hair. Sci. Rep., 2020, 10(1), 22403.
[http://dx.doi.org/10.1038/s41598-020-79859-x] [PMID: 33376241]
[63]
Hummel, K.V.; Schellong, J.; Trautmann, S.; Kummer, S.; Hürrig, S.; Klose, M.; Croy, I.; Weidner, K.; Kirschbaum, C.; Steudte-Schmiedgen, S. The predictive role of hair cortisol concentrations for treatment outcome in PTSD inpatients. Psychoneuroendocrinology, 2021, 131, 105326.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105326] [PMID: 34182250]
[64]
Basso, L.; Boecking, B.; Neff, P.; Brueggemann, P.; Peters, E.M.J.; Mazurek, B. Hair-cortisol and hair-BDNF as biomarkers of tinnitus loudness and distress in chronic tinnitus. Sci. Rep., 2022, 12(1), 1934.
[http://dx.doi.org/10.1038/s41598-022-04811-0] [PMID: 35121746]
[65]
Fischer, S.; Duncko, R.; Hatch, S.L.; Papadopoulos, A.; Goodwin, L.; Frissa, S.; Hotopf, M.; Cleare, A.J. Sociodemographic, lifestyle, and psychosocial determinants of hair cortisol in a South London community sample. Psychoneuroendocrinology, 2017, 76, 144-153.
[http://dx.doi.org/10.1016/j.psyneuen.2016.11.011] [PMID: 27923182]
[66]
Blake, D.D.; Weathers, F.W.; Nagy, L.M.; Kaloupek, D.G.; Gusman, F.D.; Charney, D.S.; Keane, T.M. The development of a clinician-administered PTSD scale. J. Trauma. Stress, 1995, 8(1), 75-90.
[http://dx.doi.org/10.1002/jts.2490080106] [PMID: 7712061]
[67]
Weathers, F.W.; Blake, D.D.; Schnurr, P.P.; Kaloupek, D.G.; Marx, B.P.; Keane, T.M. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Available from: www.ptsd.va.gov
[68]
Wittchen, H-U.; Pfister, H. DIA-X-Interviews: Manual für Screening-Verfahren und Interview; Interviewheft Längsschnittuntersuchung (DIA-X-Lifetime); Ergänzungsheft (DIA-X-Lifetime); Interviewheft Querschnittuntersuchung (DIA-X-12Monate); Ergänzungsheft (DIA-X-12Monate); PC-programm zur Durchführung des Interviews (Längs- und Querschnittuntersuchung); Auswertungsprogramm; Swets & Zeitlinger: Frankfurt/Main, 1997.
[69]
Wittchen, H-U.; Schönfeld, S. CIDI-Military Version (MI).: unpublished manual and computer-assisted personal interview; Dresden, 2009.
[70]
Mollica, R.F.; Caspi-Yavin, Y.; Bollini, P.; Truong, T.; Tor, S.; Lavelle, J. The Harvard Trauma questionnaire. Validating a cross-cultural instrument for measuring torture, trauma, and posttraumatic stress disorder in Indochinese refugees. J. Nerv. Ment. Dis., 1992, 180(2), 111-116.
[http://dx.doi.org/10.1097/00005053-199202000-00008] [PMID: 1737972]
[71]
Weathers, F.W.; Blake, D.D.; Schnurr, P.P.; Kaloupek, D.G.; Marx, B.P.; Keane, T.M. The Life Events Checklist for DSM-5 (LEC-5). Available from: https://www.ptsd.va.gov/
[72]
Wolfe, J.; Kimerling, R.; Brown, P.; Chrestman, K.; Levin, K. The Life Stressor Checklist-Revised (LSC-R) [Measurement instrument]. Available from: http://www.ptsd.va.gov
[73]
Weathers, F.W.; Litz, B.T.; Keane, T.M.; Palmieri, P.A.; Marx, B.P.; Schnurr, P.P. The PTSD checklist for DSM-5 (PCL-5). 2015, 28(6), 489-98.
[74]
Weathers, F.W.; Litz, B.T.; Herman, D.; Huska, J.; Keane, T.M. The PTSD checklist - civilian version (PCL-C); MA Natl. Cent. PTSD: Boston, 1994.
[75]
Weathers, F.W.; Huska, J.; Keane, T.M. PCL-M for DSM-IV.
[76]
Ouimette, P.; Wade, M.; Prins, A.; Schohn, M. Identifying PTSD in primary care: comparison of the Primary Care-PTSD screen (PC-PTSD) and the General Health Questionnaire-12 (GHQ). J. Anxiety Disord., 2008, 22(2), 337-343.
[http://dx.doi.org/10.1016/j.janxdis.2007.02.010] [PMID: 17383853]
[77]
Foa, E. Posttraumatic Stress Diagnostic Scale Manual; National Computer Systems Inc., 1995.
[78]
Carlier, I.V.E.; Gersons, B.P.R. Development of a scale for traumatic incidents in police officers. Psychiatr. Fenn., 1992, 59.
[79]
Foa, E.B.; Riggs, D.S.; Dancu, C.V.; Rothbaum, B.O. Reliability and validity of a brief instrument for assessing post-traumatic stress disorder. J. Trauma. Stress, 1993, 6(4), 459-473.
[http://dx.doi.org/10.1002/jts.2490060405]
[80]
Wittchen, H-U.; Zaudig, M.; Fydrich, T. Strukturiertes Klinisches Interview für DSM-IV; Hogrefe, 1997.
[81]
Hooper, L.M.; Stockton, P.; Krupnick, J.L.; Green, B.L. Development, use, and psychometric properties of the trauma history questionnaire. J. Loss Trauma, 2011, 16(3), 258-283.
[http://dx.doi.org/10.1080/15325024.2011.572035]
[82]
Castro-Vale, I.; Maia, A. War Exposure Questionnaire. 2012.
[83]
Woud, M.L.; Blackwell, S.E.; Shkreli, L.; Würtz, F.; Cwik, J.C.; Margraf, J.; Holmes, E.A.; Steudte-Schmiedgen, S.; Herpertz, S.; Kessler, H. The effects of modifying dysfunctional appraisals in posttraumatic stress disorder using a form of cognitive bias modification: Results of a randomized controlled trial in an inpatient setting. Psychother. Psychosom., 2021, 90(6), 386-402.
[http://dx.doi.org/10.1159/000514166] [PMID: 33621970]
[84]
Weiss, D.S.; Marmar, C.R. The Impact of Event Scale - Revised.Assessing psychological trauma and PTSD; Wilson, J.P; Keane, T.M., Ed.; Guilford Press: New York, 1996, pp. 399-411.
[85]
Gray, M.J.; Litz, B.T.; Hsu, J.L.; Lombardo, T.W. Psychometric properties of the life events checklist.
[http://dx.doi.org/10.1177/1073191104269954]
[86]
Foa, E.B.; Ehlers, A.; Clark, D.M.; Tolin, D.F.; Orsillo, S.M. The Posttraumatic Cognitions Inventory (PTCI): Development and validation. Psychol. Assess., 1999, 11(3), 303-314.
[http://dx.doi.org/10.1037/1040-3590.11.3.303]
[87]
Behnke, A.; Rojas, R.; Karrasch, S.; Hitzler, M.; Kolassa, I.T. Deconstructing Traumatic Mission Experiences: Identifying critical incidents and their relevance for the mental and physical health among emergency medical service personnel. Front. Psychol., 2019, 10, 2305.
[http://dx.doi.org/10.3389/fpsyg.2019.02305] [PMID: 31695639]
[88]
Elliott, D.M.; Briere, J. Sexual abuse trauma among professional women: Validating the Trauma Symptom Checklist-40 (TSC-40). Child Abuse Negl., 1992, 16(3), 391-398.
[http://dx.doi.org/10.1016/0145-2134(92)90048-V] [PMID: 1617473]
[89]
Maercker, A.; Augsburger, M. Developments in psychotraumatology: A conceptual, biological, and cultural update. Const. Polit. Econ., 2019, 1.
[90]
Bryant, R.A. Post‐traumatic stress disorder: A state‐of‐the‐art review of evidence and challenges. World Psychiatry, 2019, 18(3), 259-269.
[http://dx.doi.org/10.1002/wps.20656] [PMID: 31496089]
[91]
Schuler, K.; Ruggero, C.J.; Mahaffey, B.; Gonzalez, A.; L Callahan, J.; Boals, A.; Waszczuk, M.A.; Luft, B.J.; Kotov, R. When Hindsight Is Not 20/20: Ecological momentary assessment of PTSD symptoms versus retrospective report. Assessment, 2021, 28(1), 238-247.
[http://dx.doi.org/10.1177/1073191119869826] [PMID: 31422682]
[92]
Trautmann, S.; Muehlhan, M.; Kirschbaum, C.; Wittchen, H.U.; Höfler, M.; Stalder, T.; Steudte-Schmiedgen, S. Biological stress indicators as risk markers for increased alcohol use following traumatic experiences. Addict. Biol., 2018, 23(1), 281-290.
[http://dx.doi.org/10.1111/adb.12487] [PMID: 28105726]
[93]
Fischer, S.; King, S.; Papadopoulos, A.; Hotopf, M.; Young, A.H.; Cleare, A.J. Hair cortisol and childhood trauma predict psychological therapy response in depression and anxiety disorders. Acta Psychiatr. Scand., 2018, 138(6), 526-535.
[http://dx.doi.org/10.1111/acps.12970] [PMID: 30302747]
[94]
Dalgleish, T.; Black, M.; Johnston, D.; Bevan, A. Transdiagnostic approaches to mental health problems: Current status and future directions. J. Consult. Clin. Psychol., 2020, 88(3), 179-195.
[http://dx.doi.org/10.1037/ccp0000482] [PMID: 32068421]
[95]
Guzman, V.; Kenny, R.A.; Feeney, J. The impact of glucocorticoid medication use on hair cortisol and cortisone in older adults: Data from the Irish Longitudinal Study on Ageing. Psychoneuroendocrinology, 2020, 118, 104701.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104701] [PMID: 32474347]
[96]
Schelling, G.; Briegel, J.; Roozendaal, B.; Stoll, C.; Rothenhäusler, H.B.; Kapfhammer, H.P. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol. Psychiatry, 2001, 50(12), 978-985.
[http://dx.doi.org/10.1016/S0006-3223(01)01270-7] [PMID: 11750894]
[97]
Zohar, J.; Yahalom, H.; Kozlovsky, N.; Cwikel-Hamzany, S.; Matar, M.A.; Kaplan, Z.; Yehuda, R.; Cohen, H. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies. Eur. Neuropsychopharmacol., 2011, 21(11), 796-809.
[http://dx.doi.org/10.1016/j.euroneuro.2011.06.001] [PMID: 21741804]
[98]
Grass, J.; Kirschbaum, C.; Miller, R.; Gao, W.; Steudte-Schmiedgen, S.; Stalder, T. Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations. Psychoneuroendocrinology, 2015, 53, 108-116.
[http://dx.doi.org/10.1016/j.psyneuen.2014.12.023] [PMID: 25615913]
[99]
Russell, E.; Kirschbaum, C.; Laudenslager, M.L.; Stalder, T.; de Rijke, Y.; van Rossum, E.F.C.; Van Uum, S.; Koren, G. Toward standardization of hair cortisol measurement: Results of the first international interlaboratory round robin. Ther. Drug Monit., 2015, 37(1), 71-75.
[http://dx.doi.org/10.1097/FTD.0000000000000148] [PMID: 25387254]
[100]
Ku, M.; Kim, J.; Won, J.E.; Kang, W.; Park, Y.G.; Park, J.; Lee, J.H.; Cheon, J.; Lee, H.H.; Park, J.U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv., 2020, 6(28), eabb2891.
[http://dx.doi.org/10.1126/sciadv.abb2891] [PMID: 32923592]
[101]
Lee, H.B.; Meeseepong, M.; Trung, T.Q.; Kim, B.Y.; Lee, N.E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron., 2020, 156, 112133.
[http://dx.doi.org/10.1016/j.bios.2020.112133] [PMID: 32174559]
[102]
Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv., 2018, 4(7), eaar2904.
[http://dx.doi.org/10.1126/sciadv.aar2904] [PMID: 30035216]
[103]
Mugo, S.M.; Alberkant, J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal. Bioanal. Chem., 2020, 412(8), 1825-1833.
[http://dx.doi.org/10.1007/s00216-020-02430-0] [PMID: 32002581]
[104]
Kinnamon, D.; Ghanta, R.; Lin, K.C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep., 2017, 7(1), 13312.
[http://dx.doi.org/10.1038/s41598-017-13684-7] [PMID: 29042582]
[105]
Tseng, P.; Napier, B.; Garbarini, L.; Kaplan, D.L.; Omenetto, F.G. Functional, RF‐Trilayer sensors for tooth‐mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater., 2018, 30(18), 1703257.
[http://dx.doi.org/10.1002/adma.201703257] [PMID: 29572979]
[106]
Sollberger, S.; Ehlert, U. How to use and interpret hormone ratios. Psychoneuroendocrinology, 2016, 63, 385-397.
[http://dx.doi.org/10.1016/j.psyneuen.2015.09.031] [PMID: 26521052]
[107]
Schultebraucks, K.; Qian, M.; Abu-Amara, D.; Dean, K.; Laska, E.; Siegel, C.; Gautam, A.; Guffanti, G.; Hammamieh, R.; Misganaw, B.; Mellon, S.H.; Wolkowitz, O.M.; Blessing, E.M.; Etkin, A.; Ressler, K.J.; Doyle, F.J., III; Jett, M.; Marmar, C.R. Pre-deployment risk factors for PTSD in active-duty personnel deployed to Afghanistan: A machine-learning approach for analyzing multivariate predictors. Mol. Psychiatry, 2021, 26(9), 5011-5022.
[http://dx.doi.org/10.1038/s41380-020-0789-2] [PMID: 32488126]
[108]
McLaughlin, K.A. Future directions in childhood adversity and youth psychopathology. Journal of clinical child and adolescent psychology : the official journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53, 2016, 45, 361-382.
[109]
Leeb, R.; Paulozzi, L.; Melanson, C.; Simin, T. Child maltreatment surveillance: Uniform definitions for public health and recommended data elements; Atlanta, GA, 2008.
[110]
Anda, R.F.; Butchart, A.; Felitti, V.J.; Brown, D.W. Building a framework for global surveillance of the public health implications of adverse childhood experiences. Am. J. Prev. Med., 2010, 39(1), 93-98.
[http://dx.doi.org/10.1016/j.amepre.2010.03.015] [PMID: 20547282]
[111]
Meier, M.; Lonsdorf, T.B.; Lupien, S.J.; Stalder, T.; Laufer, S.; Sicorello, M.; Linz, R.; Puhlmann, L.M.C. Open and reproducible science practices in psychoneuroendocrinology: Opportunities to foster scientific progress. Comprehensive Psychoneuroendocrinology, 2022, 11, 100144.
[http://dx.doi.org/10.1016/j.cpnec.2022.100144] [PMID: 35757179]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy