Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer

Author(s): Juan Li, Xihao Wang, Zhilong Li, Minzhen Li, Xuelian Zheng, Danxi Zheng, Yanyun Wang* and Mingrong Xi*

Volume 24, Issue 8, 2024

Published on: 18 August, 2023

Page: [820 - 834] Pages: 15

DOI: 10.2174/1568009623666230804161607

Price: $65

Abstract

Background and Purpose: Sulfatase 1 (SULF1) can regulate the binding of numerous signaling molecules by removing 6-O-sulfate from heparan sulfate proteoglycans (HSPGs) to affect numerous physiological and pathological processes. Our research aimed to investigate the effect of the SULF1-mediated VEGFR2/PI3K/AKT signaling pathway on tumorigenesis and development of cervical cancer (CC).

Methods: The expression and prognostic values of SULF1 in patients with CC were analyzed through bioinformatics analysis, qRT-PCR, immunohistochemistry, and western blot. The function and regulatory mechanism of SULF1 in proliferation, migration, and invasion of cervical cancer cells were examined through lentivirus transduction, CCK8, flow cytometry analysis, plate colony formation assay, scratch assay, transwell assay, western blot, VEGFR2 inhibitor (Ki8751), and mouse models.

Results: SULF1 expression was significantly upregulated in CC tissues, which was significantly associated with poor prognosis of patients with CC. In vitro, the upregulation of SULF1 expression in HeLa cells promoted cell proliferation, colony formation, migration, and invasion while inhibiting apoptosis. Conversely, the downregulation of SULF1 expression had the opposite effect. In vivo, the upregulation of SULF1 expression resulted in a significant increase in both tumor growth and angiogenesis, while its downregulation had the opposite effect. Furthermore, western blot detection and cell function rescue assay confirmed that the upregulation of SULF1 in HeLa cells promoted the tumorigenic behaviors of cancer cells by activating the VEGFR2/PI3K/AKT signaling pathway.

Conclusion: SULF1 plays an oncogenic role in the tumorigenesis and development of CC, indicating its potential as a novel molecular target for gene-targeted therapy in patients with CC.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Aoki, E.S.; Yin, R.; Li, K.; Bhatla, N.; Singhal, S.; Ocviyanti, D.; Saika, K.; Suh, M.; Kim, M.; Termrungruanglert, W. National screening programs for cervical cancer in Asian countries. J. Gynecol. Oncol., 2020, 31(3), e55.
[http://dx.doi.org/10.3802/jgo.2020.31.e55] [PMID: 32266804]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Prasad, C.B.; Singh, D.; Pandey, L.K.; Pradhan, S.; Singh, S.; Narayan, G. VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail. Int. J. Biochem. Cell Biol., 2022, 142, 106122.
[http://dx.doi.org/10.1016/j.biocel.2021.106122] [PMID: 34826615]
[5]
Guan, J.; Darb-Esfahani, S.; Richter, R.; Taube, E.T.; Ruscito, I.; Mahner, S.; Woelber, L.; Prieske, K.; Concin, N.; Vergote, I.; Van Nieuwenhuysen, E.; Achimas-Cadariu, P.; Glajzer, J.; Woopen, H.; Stanske, M.; Kulbe, H.; Denkert, C.; Sehouli, J.; Braicu, E.I. Vascular endothelial growth factor receptor 2 (VEGFR2) correlates with long-term survival in patients with advanced high-grade serous ovarian cancer (HGSOC): A study from the Tumor Bank Ovarian Cancer (TOC) Consortium. J. Cancer Res. Clin. Oncol., 2019, 145(4), 1063-1073.
[http://dx.doi.org/10.1007/s00432-019-02877-4] [PMID: 30810838]
[6]
Zhong, M.; Li, N.; Qiu, X.; Ye, Y.; Chen, H.; Hua, J.; Yin, P.; Zhuang, G. TIPE regulates VEGFR2 expression and promotes angiogenesis in colorectal cancer. Int. J. Biol. Sci., 2020, 16(2), 272-283.
[http://dx.doi.org/10.7150/ijbs.37906] [PMID: 31929755]
[7]
Darrington, E.; Zhong, M.; Vo, B.H.; Khan, S.A. Vascular endothelial growth factor A, secreted in response to transforming growth factor-β1 under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells. Asian J. Androl., 2012, 14(5), 745-751.
[http://dx.doi.org/10.1038/aja.2011.197] [PMID: 22705563]
[8]
Qiu, H.; Li, J.; Liu, Q.; Tang, M.; Wang, Y. Apatinib, a novel tyrosine kinase inhibitor, suppresses tumor growth in cervical cancer and synergizes with Paclitaxel. Cell Cycle, 2018, 17(10), 1235-1244.
[http://dx.doi.org/10.1080/15384101.2018.1471315] [PMID: 29886786]
[9]
Stegeman, H.; Span, P.N.; Kaanders, J.H.A.M.; Bussink, J. Improving chemoradiation efficacy by PI3-K/AKT inhibition. Cancer Treat. Rev., 2014, 40(10), 1182-1191.
[http://dx.doi.org/10.1016/j.ctrv.2014.09.005] [PMID: 25312653]
[10]
Wang, F.; Tan, W.H.; Liu, W.; Jin, Y.X.; Dong, D.D.; Zhao, X.J.; Liu, Q. Effects of miR-214 on cervical cancer cell proliferation, apoptosis and invasion via modulating PI3K/AKT/mTOR signal pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7573.
[http://dx.doi.org/10.26355/eurrev_202007_22242] [PMID: 32744678]
[11]
Fu, K.; Zhang, L.; Liu, R.; Shi, Q.; Li, X.; Wang, M. MiR-125 inhibited cervical cancer progression by regulating VEGF and PI3K/AKT signaling pathway. World J. Surg. Oncol., 2020, 18(1), 115.
[http://dx.doi.org/10.1186/s12957-020-01881-0] [PMID: 32473637]
[12]
Monk, B.J.; Mas Lopez, L.; Zarba, J.J.; Oaknin, A.; Tarpin, C.; Termrungruanglert, W.; Alber, J.A.; Ding, J.; Stutts, M.W.; Pandite, L.N. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J. Clin. Oncol., 2010, 28(22), 3562-3569.
[http://dx.doi.org/10.1200/JCO.2009.26.9571] [PMID: 20606083]
[13]
Dreyfuss, J.L.; Regatieri, C.V.; Jarrouge, T.R.; Cavalheiro, R.P.; Sampaio, L.O.; Nader, H.B. Heparan sulfate proteoglycans: Structure, protein interactions and cell signaling. An. Acad. Bras. Cienc., 2009, 81(3), 409-429.
[http://dx.doi.org/10.1590/S0001-37652009000300007] [PMID: 19722012]
[14]
Kim, J.H.; Chan, C.; Elwell, C.; Singer, M.S.; Dierks, T.; Lemjabbar-Alaoui, H.; Rosen, S.D.; Engel, J.N. Endosulfatases SULF1 and SULF2 limit Chlamydia muridarum infection. Cell. Microbiol., 2013, 15(9), 1560-1571.
[http://dx.doi.org/10.1111/cmi.12133] [PMID: 23480519]
[15]
Lai, J.; Chien, J.; Staub, J.; Avula, R.; Greene, E.L.; Matthews, T.A.; Smith, D.I.; Kaufmann, S.H.; Roberts, L.R.; Shridhar, V. Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J. Biol. Chem., 2003, 278(25), 23107-23117.
[http://dx.doi.org/10.1074/jbc.M302203200] [PMID: 12686563]
[16]
Yi, B.; Qiu, Y.; Ji, W.; Wei, M.; Liu, C.; Peng, Z.; Zhang, Y.; Quan, Z.; Tang, Z.; Su, C. Desulfation of cell surface HSPG is an effective strategy for the treatment of gallbladder carcinoma. Cancer Lett., 2016, 381(2), 349-358.
[http://dx.doi.org/10.1016/j.canlet.2016.08.002] [PMID: 27502167]
[17]
Liu, H.; Fu, X.; Ji, W.; Liu, K.; Bao, L.; Yan, Y.; Wu, M.; Yang, J.; Su, C. Human sulfatase-1 inhibits the migration and proliferation of SMMC-7721 hepatocellular carcinoma cells by downregulating the growth factor signaling. Hepatol. Res., 2013, 43(5), 516-525.
[http://dx.doi.org/10.1111/j.1872-034X.2012.01080.x] [PMID: 22900980]
[18]
Narita, K.; Staub, J.; Chien, J.; Meyer, K.; Bauer, M.; Friedl, A.; Ramakrishnan, S.; Shridhar, V. HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res., 2006, 66(12), 6025-6032.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3582] [PMID: 16778174]
[19]
Ji, W.; Yang, J.; Wang, D.; Cao, L.; Tan, W.; Qian, H.; Sun, B.; Qian, Q.; Yin, Z.; Wu, M.; Su, C. hSulf-1 gene exhibits anticancer efficacy through negatively regulating VEGFR-2 signaling in human cancers. PLoS One, 2011, 6(8), e23274.
[http://dx.doi.org/10.1371/journal.pone.0023274] [PMID: 21853101]
[20]
Justo, T.; Smart, N.; Dhoot, G.K. Context dependent Sulf1/Sulf2 functional divergence in endothelial cell activity. Int. J. Mol. Sci., 2022, 23(7), 3769.
[http://dx.doi.org/10.3390/ijms23073769] [PMID: 35409127]
[21]
Zhou, C.; He, X.; Zeng, Q.; Zhang, P.; Wang, C. CCDC7 activates interleukin-6 and vascular endothelial growth factor to promote proliferation via the JAK-STAT3 pathway in cervical cancer cells. OncoTargets Ther., 2020, 13, 6229-6244.
[http://dx.doi.org/10.2147/OTT.S244663] [PMID: 32669853]
[22]
Zhu, L.; Baczyk, D.; Lye, S.J.; Zhang, Z. Preeclampsia is associated with low placental transthyretin levels. Taiwan. J. Obstet. Gynecol., 2016, 55(3), 385-389.
[http://dx.doi.org/10.1016/j.tjog.2016.04.014] [PMID: 27343320]
[23]
Okumura, D.; Hagino, M.; Yamagishi, A.; Kaibori, Y.; Munira, S.; Saito, Y.; Nakayama, Y. Inhibitors of the VEGF receptor suppress HeLa S3 cell proliferation via misalignment of chromosomes and rotation of the mitotic spindle, causing a delay in m-phase progression. Int. J. Mol. Sci., 2018, 19(12), 4014.
[http://dx.doi.org/10.3390/ijms19124014] [PMID: 30545129]
[24]
Lai, J.; Chien, J.R.; Moser, D.R.; Staub, J.K.; Aderca, I.; Montoya, D.P.; Matthews, T.A.; Nagorney, D.M.; Cunningham, J.M.; Smith, D.I.; Greene, E.L.; Shridhar, V.; Roberts, L.R. hSulf1 sulfatase promotes apoptosis of hepatocellular cancer cells by decreasing heparin-binding growth factor signaling. Gastroenterology, 2004, 126(1), 231-248.
[http://dx.doi.org/10.1053/j.gastro.2003.09.043] [PMID: 14699503]
[25]
Chen, F.; Zhang, Z.; Yu, Y.; Liu, Q.; Pu, F. HSulf-1 and palbociclib exert synergistic antitumor effects on RB-positive triple-negative breast cancer. Int. J. Oncol., 2020, 57(1), 223-236.
[http://dx.doi.org/10.3892/ijo.2020.5057] [PMID: 32377705]
[26]
Li, J.; Kleeff, J.; Abiatari, I.; Kayed, H.; Giese, N.A.; Felix, K.; Giese, T.; Büchler, M.W.; Friess, H. Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer. Mol. Cancer., 2005, 4(1), 14.
[http://dx.doi.org/10.1186/1476-4598-4-14] [PMID: 15817123]
[27]
Lai, J.P.; Chien, J.; Strome, S.E.; Staub, J.; Montoya, D.P.; Greene, E.L.; Smith, D.I.; Roberts, L.R.; Shridhar, V. HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene., 2004, 23(7), 1439-1447.
[http://dx.doi.org/10.1038/sj.onc.1207258] [PMID: 14973553]
[28]
Liu, P.; Gou, M.; Yi, T.; Qi, X.; Xie, C.; Zhou, S.; Deng, H.; Wei, Y.; Zhao, X. The enhanced antitumor effects of biodegradable cationic heparin-polyethyleneimine nanogels delivering HSulf-1 gene combined with cisplatin on ovarian cancer. Int. J. Oncol., 2012, 41(4), 1504-1512.
[http://dx.doi.org/10.3892/ijo.2012.1558] [PMID: 22825572]
[29]
Chen, L.M.; Niu, Y.D.; Xiao, M.; Li, X.J.; Lin, H. LncRNA NEAT1 regulated cell proliferation, invasion, migration and apoptosis by targeting has-miR-376b-3p/SULF1 axis in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(9), 4810-4821.
[http://dx.doi.org/10.26355/eurrev_202005_21170] [PMID: 32432744]
[30]
Lee, H.Y.; Yeh, B.W.; Chan, T.C.; Yang, K.F.; Li, W.M.; Huang, C.N.; Ke, H.L.; Li, C.C.; Yeh, H.C.; Liang, P.I.; Shiue, Y.L.; Wu, W.J.; Li, C.F. Sulfatase-1 overexpression indicates poor prognosis in urothelial carcinoma of the urinary bladder and upper tract. Oncotarget., 2017, 8(29), 47216-47229.
[http://dx.doi.org/10.18632/oncotarget.17590] [PMID: 28525382]
[31]
Lyu, Y.; Cheng, Y.; Wang, B.; Chen, L.; Zhao, S. Sulfatase 1 expression in pancreatic cancer and its correlation with clinicopathological features and postoperative prognosis. Cancer. Biomark., 2018, 22(4), 701-707.
[http://dx.doi.org/10.3233/CBM-181210] [PMID: 29843217]
[32]
Abiatari, I.; Kleeff, J.; Li, J.; Felix, K.; Büchler, M.W.; Friess, H. Hsulf-1 regulates growth and invasion of pancreatic cancer cells. J. Clin. Pathol., 2006, 59(10), 1052-1058.
[http://dx.doi.org/10.1136/jcp.2005.031716] [PMID: 16603650]
[33]
Hur, K.; Han, T.S.; Jung, E.J.; Yu, J.; Lee, H.J.; Kim, W.H.; Goel, A.; Yang, H.K. Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer. J. Pathol., 2012, 228(1), 88-98.
[http://dx.doi.org/10.1002/path.4055] [PMID: 22653794]
[34]
Rosen, S.D.; Lemjabbar-Alaoui, H. Sulf-2: An extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets, 2010, 14(9), 935-949.
[http://dx.doi.org/10.1517/14728222.2010.504718] [PMID: 20629619]
[35]
Bret, C.; Moreaux, J.; Schved, J.F.; Hose, D.; Klein, B. SULFs in human neoplasia: Implication as progression and prognosis factors. J. Transl. Med., 2011, 9(1), 72.
[http://dx.doi.org/10.1186/1479-5876-9-72] [PMID: 21599997]
[36]
Wang, S.S.; Gonzalez, P.; Yu, K.; Porras, C.; Li, Q.; Safaeian, M.; Rodriguez, A.C.; Sherman, M.E.; Bratti, C.; Schiffman, M.; Wacholder, S.; Burk, R.D.; Herrero, R.; Chanock, S.J.; Hildesheim, A. Common genetic variants and risk for HPV persistence and progression to cervical cancer. PLoS. One., 2010, 5(1), e8667.
[http://dx.doi.org/10.1371/journal.pone.0008667] [PMID: 20084279]
[37]
Dardiotis, E.; Siokas, V.; Garas, A.; Paraskevaidis, E.; Kyrgiou, M.; Xiromerisiou, G.; Deligeoroglou, E.; Galazios, G.; Kontomanolis, E.; Spandidos, D.; Tsatsakis, A.; Daponte, A. Genetic variations in the SULF1 gene alter the risk of cervical cancer and precancerous lesions. Oncol. Lett., 2018, 16(3), 3833-3841.
[http://dx.doi.org/10.3892/ol.2018.9104] [PMID: 30127996]
[38]
Kubo, K.; Shimizu, T.; Ohyama, S.; Murooka, H.; Iwai, A.; Nakamura, K.; Hasegawa, K.; Kobayashi, Y.; Takahashi, N.; Takahashi, K.; Kato, S.; Izawa, T.; Isoe, T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: Synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N'-4-(4-quinolyloxy)phenylureas. J. Med. Chem., 2005, 48(5), 1359-1366.
[http://dx.doi.org/10.1021/jm030427r] [PMID: 15743179]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy