Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Engineering Platelet Membrane Imitating Nanoparticles for Targeted Therapeutic Delivery

Author(s): Shradha B. Adhalrao, Kisan R. Jadhav*, Prashant L. Patil, Vilasrao J. Kadam and Kasekar Nirmal M.

Volume 25, Issue 10, 2024

Published on: 16 August, 2023

Page: [1230 - 1244] Pages: 15

DOI: 10.2174/1389201024666230804140926

Price: $65

Abstract

Platelet Membrane Imitating Nanoparticles (PMINs) is a novel drug delivery system that imitates the structure and functionality of platelet membranes. PMINs imitate surface markers of platelets to target specific cells and transport therapeutic cargo. PMINs are engineered by incorporating the drug into the platelet membrane and encapsulating it in a nanoparticle scaffold. This allows PMINs to circulate in the bloodstream and bind to target cells with high specificity, reducing off-target effects and improving therapeutic efficacy. The engineering of PMINs entails several stages, including the separation and purification of platelet membranes, the integration of therapeutic cargo into the membrane, and the encapsulation of the membrane in a nanoparticle scaffold. In addition to being involved in a few pathological conditions including cancer, atherosclerosis, and rheumatoid arthritis, platelets are crucial to the body's physiological processes. This study includes the preparation and characterization of platelet membrane-like nanoparticles and focuses on their most recent advancements in targeted therapy for conditions, including cancer, immunological disorders, atherosclerosis, phototherapy, etc. PMINs are a potential drug delivery system that combines the advantages of platelet membranes with nanoparticles. The capacity to create PMMNs with particular therapeutic cargo and surface markers provides new possibilities for targeted medication administration and might completely change the way that medicine is practiced. Despite the need for more studies to optimize the engineering process and evaluate the effectiveness and safety of PMINs in clinical trials, this technology has a lot of potential.

Graphical Abstract

[1]
Emerich, D.F.; Thanos, C.G. Targeted Nanoparticle-Based Drug Delivery and Diagnosis. J. Drug Target., 2007, 15(3), 163-183.
[http://dx.doi.org/10.1080/10611860701231810]
[2]
Groneberg, D.A.; Giersig, M.; Welte, T.; Pison, U. Nanoparticle-Based Diagnosis and Therapy. Curr. Drug Targets, 2006, 7(6), 643-648.
[http://dx.doi.org/10.2174/138945006777435245]
[3]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400]
[4]
Mohanraj, V.J.; Chen, Y. Nanoparticles - A Review. Trop. J. Pharm. Res., 2007, 5(1), 561-573.
[http://dx.doi.org/10.4314/tjpr.v5i1.14634]
[5]
Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium- Ion Polymer Batteries | Scientific Reports. https://www.nature.com/articles/srep26332 (accessed 2023-05-09).
[6]
Wang, Y.; Xia, Y. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano Lett., 2004, 4(10), 2047-2050.
[http://dx.doi.org/10.1021/nl048689j]
[7]
Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications | SpringerLink. https://link.springer.com/chapter/10.1007/978-3-319-41129-3_2 (accessed 2023-08-10).
[8]
Malachowski, T.; Hassel, A. Engineering Nanoparticles to Overcome Immunological Barriers for Enhanced Drug Delivery. Engineered Regeneration, 2020, 1, 35-50.
[http://dx.doi.org/10.1016/j.engreg.2020.06.001]
[9]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. In: Nano-Enabled Medical Applications; Jenny Stanford Publishing, 2020.
[10]
Petros, R.A.; DeSimone, J.M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591]
[11]
Naikoo, G.; Al-Mashali, F.; Arshad, F.; Al-Maashani, N.; Hassan, I.U.; Al-Baraami, Z.; Faruck, L.H.; Qurashi, A.; Ahmed, W.; Asiri, A.M.; Aljabali, A.A.; Bakshi, H.A.; Tambuwala, M.M. An Overview of Copper Nanoparticles: Synthesis, Characterisation and Anticancer Activity. Curr. Pharm. Des., 2021, 27(43), 4416-4432.
[http://dx.doi.org/10.2174/1381612827666210804100303]
[12]
Othman, M.S.; Obeidat, S.T.; Al-Bagawi, A.H.; Fareid, M.A.; Fehaid, A.; Abdel Moneim, A.E. Green-Synthetized Selenium Nanoparticles Using Berberine as a Promising Anticancer Agent. J. Integr. Med., 2022, 20(1), 65-72.
[http://dx.doi.org/10.1016/j.joim.2021.11.002]
[13]
Rao, L.; He, Z.; Meng, Q-F.; Zhou, Z.; Bu, L-L.; Guo, S-S.; Liu, W.; Zhao, X-Z. Effective Cancer Targeting and Imaging Using Macrophage Membrane-Camouflaged Upconversion Nanoparticles. J. Biomed. Mater. Res. Part A, 2017, 105(2), 521-530.
[http://dx.doi.org/10.1002/jbm.a.35927]
[14]
Anselmo, A.C.; Modery-Pawlowski, C.L.; Menegatti, S.; Kumar, S.; Vogus, D.R.; Tian, L.L.; Chen, M.; Squires, T.M.; Sen Gupta, A.; Mitragotri, S. Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries. ACS Nano, 2014, 8(11), 11243-11253.
[http://dx.doi.org/10.1021/nn503732m]
[15]
Merkel, T.J.; Jones, S.W.; Herlihy, K.P.; Kersey, F.R.; Shields, A.R.; Napier, M.; Luft, J.C.; Wu, H.; Zamboni, W.C.; Wang, A.Z.; Bear, J.E.; DeSimone, J.M. Using Mechanobiological Mimicry of Red Blood Cells to Extend Circulation Times of Hydrogel Microparticles. Proc. Natl. Acad. Sci., 2011, 108(2), 586-591.
[http://dx.doi.org/10.1073/pnas.1010013108]
[16]
Hu, C-M.J.; Fang, R.H.; Wang, K-C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle Biointerfacing by Platelet Membrane Cloaking. Nature, 2015, 526(7571), 118-121.
[http://dx.doi.org/10.1038/nature15373]
[17]
Lin, J.; Alexander-Katz, A. Cell Membranes Open “Doors” for Cationic Nanoparticles/Biomolecules: Insights into Uptake Kinetics. ACS Nano, 2013, 7(12), 10799-10808.
[http://dx.doi.org/10.1021/nn4040553]
[18]
Guido, C.; Maiorano, G.; Cortese, B.; D’Amone, S.; Palamà, I.E. Biomimetic Nanocarriers for Cancer Target Therapy. Bioengineering , 2020, 7(3), 111.
[http://dx.doi.org/10.3390/bioengineering7030111]
[19]
Simons, K.; Vaz, W.L.C. Model Systems; Lipid Rafts, and Cell Membranes, 2004.
[20]
Fang, R.H.; Jiang, Y.; Fang, J.C.; Zhang, L. Cell Membrane-Derived Nanomaterials for Biomedical Applications. Biomaterials, 2017, 128, 69-83.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.041]
[21]
Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics, 2017, 7(10), 2575-2592.
[http://dx.doi.org/10.7150/thno.20118]
[22]
Zhang, Y.; Liu, G.; Wei, J.; Nie, G. Platelet Membrane-Based and Tumor-Associated Platelettargeted Drug Delivery Systems for Cancer Therapy. Front. Med., 2018, 12(6), 667-677.
[http://dx.doi.org/10.1007/s11684-017-0583-y]
[23]
Eicher, J.D.; Lettre, G.; Johnson, A.D. The Genetics of Platelet Count and Volume in Humans. Platelets, 2018, 29(2), 125-130.
[http://dx.doi.org/10.1080/09537104.2017.1317732]
[24]
Ghoshal, K.; Bhattacharyya, M. Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in Disease Pathogenesis. ScientificWorldJournal, 2014, 2014, e781857.
[http://dx.doi.org/10.1155/2014/781857]
[25]
Clemetson, K.J.; Clemetson, J.M. Platelet Receptors. In: Platelets; Elsevier, 2019; pp. 169-192.
[http://dx.doi.org/10.1016/B978-0-12-813456-6.00009-6]
[26]
Gremmel, T.; Frelinger, A.; Michelson, A. Platelet Physiology. Semin. Thromb. Hemost., 2016, 42(03), 191-204.
[http://dx.doi.org/10.1055/s-0035-1564835]
[27]
Andrews, R.K.; Gardiner, E.E.; Shen, Y.; Whisstock, J.C.; Berndt, M.C. Glycoprotein Ib-IX-V. Int. J. Biochem. Cell Biol., 2003, 35(8), 1170-1174.
[http://dx.doi.org/10.1016/S1357-2725(02)00280-7]
[28]
Platelet Interactions in Thrombosis - Andrews - 2004 - IUBMB Life - Wiley Online Library. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1080/15216540310001649831 (accessed 2022-11-08).
[29]
Nieswandt, B.; Watson, S.P. Platelet-Collagen Interaction: Is GPVI the Central Receptor? Blood, 2003, 102(2), 449-461.
[http://dx.doi.org/10.1182/blood-2002-12-3882]
[30]
GPVI levels in platelets: relationship to platelet function at high shear | Blood | American Society of Hematology. https://ashpublications.org/blood/article/102/8/2811/17718/GPVI-levels-inplatelets-relationship-to-platelet (accessed 2022-11-08).
[31]
Samaha, F.F.; Hibbard, C.; Sacks, J.; Chen, H.; Varello, M.A.; George, T.; Kahn, M.L. Density of Platelet Collagen Receptors Glycoprotein VI and Alpha2beta1 and Prior Myocardial Infarction in Human Subjects, a Pilot Study. Med. Sci. Monit., 2005, 11(5), CR224-CR229.
[32]
The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis | Blood | American Society of Hematology. https://ashpublications.org/blood/article/113/20/4942/116504/The-tyrosinephosphatase-CD148-is-an-essential (accessed 2022-11-08).
[33]
The molecular biology of platelet membrane proteins. https://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19357913 (accessed 2022-11-08).
[34]
Blair, P.; Flaumenhaft, R. Platelet α-Granules: Basic Biology and Clinical Correlates. Blood Rev., 2009, 23(4), 177-189.
[http://dx.doi.org/10.1016/j.blre.2009.04.001]
[35]
The blood platelet open canalicular system: a two-way street. - Abstract - Europe PMC. https://europepmc.org/article/med/1802710 (accessed 2022-11-08).
[36]
Jennings, L.K. Mechanisms of Platelet Activation: Need for New Strategies to Protect against Platelet-Mediated Atherothrombosis. Thromb. Haemost., 2009, 102(8), 248-257.
[http://dx.doi.org/10.1160/TH09-03-0192]
[37]
A dual thrombin receptor system for platelet activation | Nature. https://www.nature.com/articles/29325 (accessed 2022-11-09).
[38]
Protease-Activated Receptors in Cardiovascular Diseases |Circulation. https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.105.574830 (accessed 2022-11-09).
[39]
The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity | Blood | American Society of Hematology. https://ashpublications.org/blood/article/96/7/2469/181114/The-GPIbthrombin-binding-site-is-essential-for (accessed 2022-11-09).
[40]
Glycoprotein Ib‐mediated platelet activation - Adam - 2003 - European Journal of Biochemistry - Wiley Online Library. https://febs.onlinelibrary.wiley.com/doi/full/10.1046/j.1432-1033.2003.03670.x (accessed 2022-11-09).
[41]
Binding of Thrombin to Glycoprotein Ib Accelerates the Hydrolysis of Par-1 on Intact Platelets* - Journal of Biological Chemistry. https://www.jbc.org/article/S0021-9258(18)46264-3/fulltext(accessed 2022-11-09).
[42]
Aggregation of Blood Platelets by Adenosine Diphosphate and its Reversal | CiNii Research. https://cir.nii.ac.jp/crid/1363388843371734400 (accessed 2022-11- 09).
[43]
Cattaneo, M. 14 - The Platelet P2 Receptors In: Platelets; (Fourth Edition); Michelson, A. D., Ed.; Academic Press, 2019; pp. 259-277.
[http://dx.doi.org/10.1016/B978-0-12-813456-6.00014-X]
[44]
Vijayan, V.; Uthaman, S.; Park, I-K. Cell Membrane Coated Nanoparticles: An Emerging Biomimetic Nanoplatform for Targeted Bioimaging and Therapy. In: Biomimetic Medical Materials;; Noh, I., Ed.; Advances in Experimental Medicine and Biology; Springer Singapore: Singapore, 2018; 1064, pp. 45-59.
[http://dx.doi.org/10.1007/978-981-13-0445-3_3]
[45]
Yan, H.; Shao, D.; Lao, Y.; Li, M.; Hu, H.; Leong, K.W. Engineering Cell Membrane-Based Nanotherapeutics to Target Inflammation. Adv. Sci., 2019, 6(15), 1900605.
[http://dx.doi.org/10.1002/advs.201900605]
[46]
Sci-Hub | Cell membrane-encapsulated nanoparticles for vaccines and immunotherapy https://scihub. wf/10.1016/j.partic.2021.04.017 (accessed 2022-10-16).
[http://dx.doi.org/10.1016/j.partic.2021.04.017]
[47]
Yoo, J-W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-Inspired. Bioengineered and Biomimetic Drug Delivery Carriers. Nat. Rev. Drug Discov., 2011, 10(7), 521-535.
[http://dx.doi.org/10.1038/nrd3499]
[48]
Bose, R.J.C.; Lee, S-H.; Park, H. Biofunctionalized Nanoparticles: An Emerging Drug Delivery Platform for Various Disease Treatments. Drug Discov. Today, 2016, 21(8), 1303-1312.
[http://dx.doi.org/10.1016/j.drudis.2016.06.005]
[49]
Hu, C-M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proc. Natl. Acad. Sci., 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108]
[50]
Hu, S.; Wang, X.; Li, Z.; Zhu, D.; Cores, J.; Wang, Z.; Li, J.; Mei, X.; Cheng, X.; Su, T.; Cheng, K. Platelet Membrane and Stem Cell Exosome Hybrids Enhance Cellular Uptake and Targeting to Heart Injury. Nano Today, 2021, 39, 101210.
[http://dx.doi.org/10.1016/j.nantod.2021.101210]
[51]
Ravikumar, M.; Modery, C.L.; Wong, T.L.; Dzuricky, M.; Sen Gupta, A. Mimicking Adhesive Functionalities of Blood Platelets Using Ligand-Decorated Liposomes. Bioconjug. Chem., 2012, 23(6), 1266-1275.
[http://dx.doi.org/10.1021/bc300086d]
[52]
Modery-Pawlowski, C.L.; Tian, L.L.; Ravikumar, M.; Wong, T.L.; Gupta, A.S. In Vitro and in Vivo Hemostatic Capabilities of a Functionally Integrated Platelet-Mimetic Liposomal Nanoconstruct. Biomaterials, 2013, 34(12), 3031-3041.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.045]
[53]
Modery, C.L.; Ravikumar, M.; Wong, T.L.; Dzuricky, M.J.; Durongkaveroj, N.; Sen Gupta, A. Heteromultivalent Liposomal Nanoconstructs for Enhanced Targeting and Shear-Stable Binding to Active Platelets for Site-Selective Vascular Drug Delivery. Biomaterials, 2011, 32(35), 9504-9514.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.067]
[54]
Song, Y.; Zhang, N.; Li, Q.; Chen, J.; Wang, Q.; Yang, H.; Tan, H.; Gao, J.; Dong, Z.; Pang, Z.; Huang, Z.; Qian, J.; Ge, J. Biomimetic Liposomes Hybrid with Platelet Membranes for Targeted Therapy of Atherosclerosis. Chem. Eng. J., 2021, 408, 127296.
[http://dx.doi.org/10.1016/j.cej.2020.127296]
[55]
Parodi, A.; Quattrocchi, N.; van de Ven, A.L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J.O.; Brown, B.S.; Khaled, S.Z.; Yazdi, I.K.; Enzo, M.V.; Isenhart, L.; Ferrari, M.; Tasciotti, E. Biomimetic Functionalization with Leukocyte Membranes Imparts Cell like Functions to Synthetic Particles. Nat. Nanotechnol., 2013, 8(1), 61-68.
[http://dx.doi.org/10.1038/nnano.2012.212]
[56]
Jagathesh Chandra Bose, R.; Kim, B-J.; Soo Hong, L.; Hansoo, P. Surface Modification of Polymeric Nanoparticles with Human Adipose Derived Stem Cell Membranes AdMSCs. Front. Bioeng. Biotechnol., 2016, 4.
[http://dx.doi.org/10.3389/conf.FBIOE.2016.01.01711]
[57]
Krishnamurthy, S.; K., Gnanasammandhan M.; Xie, C.; Huang, K.; Y. Cui, M.; M. Chan, J. Monocyte Cell Membrane-Derived Nanoghosts for Targeted Cancer Therapy. Nanoscale, 2016, 8(13), 6981-6985.
[http://dx.doi.org/10.1039/C5NR07588B]
[58]
Fang, Z.; Fang, J.; Gao, C.; Gao, R.; Lin, P.; Yu, W. Recent Trends in Platelet Membrane-Cloaked Nanoparticles for Application of Inflammatory Diseases. Drug Deliv., 2022, 29(1), 2805-2814.
[http://dx.doi.org/10.1080/10717544.2022.2117434]
[59]
Mei, D.; Gong, L.; Zou, Y.; Yang, D.; Liu, H.; Liang, Y.; Sun, N.; Zhao, L.; Zhang, Q.; Lin, Z. Platelet Membrane-Cloaked Paclitaxel-Nanocrystals Augment Postoperative Chemotherapeutical Efficacy. J. Control. Release, 2020, 324, 341-353.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.016]
[60]
Li, L-L.; Xu, J-H.; Qi, G-B.; Zhao, X.; Yu, F.; Wang, H. Core-Shell Supramolecular Gelatin Nanoparticles for Adaptive and “On-Demand” Antibiotic Delivery. ACS Nano, 2014, 8(5), 4975-4983.
[http://dx.doi.org/10.1021/nn501040h]
[61]
Rao, L.; Meng, Q-F.; Huang, Q.; Wang, Z.; Yu, G-T.; Li, A.; Ma, W.; Zhang, N.; Guo, S-S.; Zhao, X-Z.; Liu, K.; Yuan, Y.; Liu, W. Platelet-Leukocyte Hybrid Membrane-Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells. Adv. Funct. Mater., 2018, 28(34), 1803531.
[http://dx.doi.org/10.1002/adfm.201803531]
[62]
Liu, J.; Liew, S.S.; Wang, J.; Pu, K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv. Mater., 2022, 34(1), 2103790.
[http://dx.doi.org/10.1002/adma.202103790]
[63]
Liao, Y.; Zhang, Y.; Thomas Blum, N.; Lin, J.; Huang, P. Biomimetic Hybrid Membrane-Based Nanoplatforms: Synthesis, Properties and Biomedical Applications. Nanoscale Horiz., 2020, 5(9), 1293-1302.
[http://dx.doi.org/10.1039/D0NH00267D]
[64]
Xiong, K.; Wei, W.; Jin, Y.; Wang, S.; Zhao, D.; Wang, S.; Gao, X.; Qiao, C.; Yue, H.; Ma, G.; Xie, H-Y. Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells. Adv. Mater., 2016, 28(36), 7929-7935.
[http://dx.doi.org/10.1002/adma.201601643]
[65]
Rao, L.; Meng, Q-F.; Bu, L-L.; Cai, B.; Huang, Q.; Sun, Z-J.; Zhang, W-F.; Li, A.; Guo, S-S.; Liu, W.; Wang, T-H.; Zhao, X-Z. Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Appl. Mater. Interfaces, 2017, 9(3), 2159-2168.
[http://dx.doi.org/10.1021/acsami.6b14450]
[66]
Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R.H.; Zhang, L.; Lu, W. A Facile Approach to Functionalizing Cell Membrane-Coated Nanoparticles with Neurotoxin-Derived Peptide for Brain-Targeted Drug Delivery. J. Control. Release, 2017, 264, 102-111.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.027]
[67]
Chen, H-Y.; Deng, J.; Wang, Y.; Wu, C-Q.; Li, X.; Dai, H-W. Hybrid Cell Membrane-Coated Nanoparticles: A Multifunctional Biomimetic Platform for Cancer Diagnosis and Therapy. Acta Biomater., 2020, 112, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2020.05.028]
[68]
Liu, Y.; Wang, X.; Ouyang, B.; Liu, X.; Du, Y.; Cai, X.; Guo, H.; Pang, Z.; Yang, W.; Shen, S. Erythrocyte-Platelet Hybrid Membranes Coating Polypyrrol Nanoparticles for Enhanced Delivery and Photothermal Therapy. J. Mater. Chem. B, 2018, 6(43), 7033-7041.
[http://dx.doi.org/10.1039/C8TB02143K]
[69]
Bu, L.; Rao, L.; Yu, G.; Chen, L.; Deng, W.; Liu, J.; Wu, H.; Meng, Q.; Guo, S.; Zhao, X.; Zhang, W.; Chen, G.; Gu, Z.; Liu, W.; Sun, Z. Cancer Stem Cell-Platelet Hybrid Membrane-Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Adv. Funct. Mater., 2019, 29(10), 1807733.
[http://dx.doi.org/10.1002/adfm.201807733]
[70]
Xie, W.; Liu, P.; Gao, F.; Gu, Y.; Xiao, Y.; Wu, P.; Chen, B.; Liu, W.; Liu, Q. Platelet-Neutrophil Hybrid Membrane-Coated Gelatin Nanoparticles for Enhanced Targeting Ability and Intelligent Release in the Treatment of Non-Alcoholic Steatohepatitis. Nanomed. Nanotechnol. Biol. Med., 2022, 42, 102538.
[http://dx.doi.org/10.1016/j.nano.2022.102538]
[71]
Banerjee, M.; Whiteheart, S.W. The Ins and Outs of Endocytic Trafficking in Platelet Functions. Curr. Opin. Hematol., 2017, 24(5), 467-474.
[http://dx.doi.org/10.1097/MOH.0000000000000366]
[72]
Platelet collagen receptor Glycoprotein VI‐dimer recognizes fibrinogen and fibrin through their D‐domains, contributing to platelet adhesion and activation during thrombus formation - Induruwa - 2018 - Journal of Thrombosis and Haemostasis - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jth.13919 (accessed 2022-09-02).
[73]
Li, Y-J.; Wu, J-Y.; Liu, J.; Qiu, X.; Xu, W.; Tang, T.; Xiang, D-X. From Blood to Brain: Blood Cell-Based Biomimetic Drug Delivery Systems. Drug Deliv., 2021, 28(1), 1214-1225.
[http://dx.doi.org/10.1080/10717544.2021.1937384]
[74]
Li, B.; Chu, T.; Wei, J.; Zhang, Y.; Qi, F.; Lu, Z.; Gao, C.; Zhang, T.; Jiang, E.; Xu, J.; Xu, J.; Li, S.; Nie, G. Platelet-Membrane-Coated Nanoparticles Enable Vascular Disrupting Agent Combining Anti-Angiogenic Drug for Improved Tumor Vessel Impairment. Nano Lett., 2021, 21(6), 2588-2595.
[http://dx.doi.org/10.1021/acs.nanolett.1c00168]
[75]
Nanoparticle biointerfacing by platelet membrane cloaking | Nature. https://www.nature.com/articles/nature15373 (accessed 2022- 09-02).
[76]
Hu, Q.; Sun, W.; Wang, J.; Ruan, H.; Zhang, X.; Ye, Y.; Shen, S.; Wang, C.; Lu, W.; Cheng, K.; Dotti, G.; Zeidner, J.F.; Wang, J.; Gu, Z. Conjugation of Haematopoietic Stem Cells and Platelets Decorated with Anti-PD-1 Antibodies Augments Anti-Leukaemia Efficacy. Nat. Biomed. Eng., 2018, 2(11), 831-840.
[http://dx.doi.org/10.1038/s41551-018-0310-2]
[77]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Biomimetic Metal-Organic Framework Nanoparticles for Cooperative Combination of Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. Adv. Mater., 2019, 31(15), 1808200.
[http://dx.doi.org/10.1002/adma.201808200]
[78]
Xin, Y.; Huang, Q.; Tang, J-Q.; Hou, X-Y.; Zhang, P.; Zhang, L.Z.; Jiang, G. Nanoscale Drug Delivery for Targeted Chemotherapy. Cancer Lett., 2016, 379(1), 24-31.
[http://dx.doi.org/10.1016/j.canlet.2016.05.023]
[79]
Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions | Nature Nanotechnology. https://www.nature.com/articles/nnano.2012.212 (accessed 2022- 08-29).
[80]
Rao, L.; Tian, R.; Chen, X. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases. ACS Nano, 2020, 14(3), 2569-2574.
[http://dx.doi.org/10.1021/acsnano.0c01665]
[81]
Wei, X.; Ying, M.; Dehaini, D.; Su, Y.; Kroll, A.V.; Zhou, J.; Gao, W.; Fang, R.H.; Chien, S.; Zhang, L. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12(1), 109-116.
[http://dx.doi.org/10.1021/acsnano.7b07720]
[82]
He, Y.; Li, R.; Liang, J.; Zhu, Y.; Zhang, S.; Zheng, Z.; Qin, J.; Pang, Z. Wang, J. Drug Targeting through Platelet Membrane-Coated Nanoparticles for the Treatment of Rheumatoid Arthritis. Nano Res., 2018, 11(11), 6086-6101.
[http://dx.doi.org/10.1007/s12274-018-2126-5]
[83]
Zhuang, J.; Gong, H.; Zhou, J.; Zhang, Q.; Gao, W.; Fang, R.H.; Zhang, L. Targeted Gene Silencing in Vivo by Platelet Membrane-Coated Metal-Organic Framework Nanoparticles. Sci. Adv., 2020, 6(13), eaaz6108.
[http://dx.doi.org/10.1126/sciadv.aaz6108]
[84]
Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy | ACS Applied Materials & Interfaces. https://pubs.acs.org/doi/abs/10.1021/acsami.6b00853 (accessed 2022-09-08).
[85]
Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; de Rosa, E.; Yazdi, I.K.; Scaria, S.; Molinaro, R.; Furman, N.E.T.; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E. Biomimetic Carriers Mimicking Leukocyte Plasma Membrane to Increase Tumor Vasculature Permeability. Sci. Rep., 2016, 6(1), 34422.
[http://dx.doi.org/10.1038/srep34422]
[86]
Narain, A.; Asawa, S.; Chhabria, V.; Patil-Sen, Y. Cell Membrane Coated Nanoparticles: Next-Generation Therapeutics. Nanomedicine, 2017, 12(21), 2677-2692.
[http://dx.doi.org/10.2217/nnm-2017-0225]
[87]
Olsson, M.; Bruhns, P.; Frazier, W.A.; Ravetch, J.V.; Oldenborg, P-A. Platelet Homeostasis Is Regulated by Platelet Expression of CD47 under Normal Conditions and in Passive Immune Thrombocytopenia. Blood, 2005, 105(9), 3577-3582.
[http://dx.doi.org/10.1182/blood-2004-08-2980]
[88]
Dehaini, D.; Wei, X.; Fang, R.H.; Masson, S.; Angsantikul, P.; Luk, B.T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A.V.; Gao, W.; Zhang, L. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Adv. Mater., 2017, 29(16), 1606209.
[http://dx.doi.org/10.1002/adma.201606209]
[89]
Fang, R.H.; Aryal, S.; Hu, C-M.J.; Zhang, L. Quick Synthesis of Lipid-Polymer Hybrid Nanoparticles with Low Polydispersity Using a Single-Step Sonication Method. Langmuir, 2010, 26(22), 16958-16962.
[http://dx.doi.org/10.1021/la103576a]
[90]
Piccapietra, F.; Sigg, L.; Behra, R. Colloidal Stability of Carbonate-Coated Silver Nanoparticles in Synthetic and Natural Freshwater. Environ. Sci. Technol., 2012, 46(2), 818-825.
[http://dx.doi.org/10.1021/es202843h]
[91]
Nurden, A.T. Platelet Membrane Glycoproteins: A Historical Review. Semin. Thromb. Hemost., 2014, 40(5), 577-584.
[http://dx.doi.org/10.1055/s-0034-1383826]
[92]
Levental, K.R.; Levental, I. Isolation of Giant Plasma Membrane Vesicles for Evaluation of Plasma Membrane Structure and Protein Partitioning. In: Methods in Membrane Lipids; Owen, D. M., Ed.; Methods in Molecular Biology; Springer: New York, NY, 2015; pp. 65-77.
[http://dx.doi.org/10.1007/978-1-4939-1752-5_6]
[93]
Holmes, C.E.; Huang, J.C.; Pace, T.R.; Howard, A.B.; Muss, H.B. Tamoxifen and Aromatase Inhibitors Differentially Affect Vascular Endothelial Growth Factor and Endostatin Levels in Women with Breast Cancer. Clin. Cancer Res., 2008, 14(10), 3070-3076.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4640]
[94]
Peterson, J.E.; Zurakowski, D.; Italiano, Jr, J.E.; Michel, L.V.; Fox, L.; Klement, G.L.; Folkman, J. Normal Ranges of Angiogenesis Regulatory Proteins in Human Platelets. Am. J. Hematol., 2010, 85(7), 487-493.
[http://dx.doi.org/10.1002/ajh.21732]
[95]
Wojtukiewicz, M.Z.; Sierko, E.; Klementt, P.; Rak, J. The Hemostatic System and Angiogenesis in Malignancy. Neoplasia, 2001, 3(5), 371-384.
[http://dx.doi.org/10.1038/sj.neo.7900184]
[96]
Zaslavsky, A.; Baek, K-H.; Lynch, R.C.; Short, S.; Grillo, J.; Folkman, J.; Italiano, J.E., Jr; Ryeom, S. Platelet-Derived Thrombospondin-1 Is a Critical Negative Regulator and Potential Biomarker of Angiogenesis. Blood, 2010, 115(22), 4605-4613.
[http://dx.doi.org/10.1182/blood-2009-09-242065]
[97]
Jelkmann, W. Pitfalls in the Measurement of Circulating Vascular Endothelial Growth Factor. Clin. Chem., 2001, 47(4), 617-623.
[http://dx.doi.org/10.1093/clinchem/47.4.617]
[98]
Dong, G.; Lin, X.H.; Liu, H.H.; Gao, D.M.; Cui, J.F.; Ren, Z.G.; Chen, R.X. Intermittent Hypoxia Alleviates Increased Vegf and Pro-Angiogenic Potential in Liver Cancer Cells. Oncol. Lett., 2019, 18(2), 1831-1839.
[http://dx.doi.org/10.3892/ol.2019.10486]
[99]
Xu, L.; Su, T.; Xu, X.; Zhu, L.; Shi, L. Platelets Membrane Camouflaged Irinotecan-Loaded Gelatin Nanogels for in Vivo Colorectal Carcinoma Therapy. J. Drug Deliv. Sci. Technol., 2019, 53, 101190.
[http://dx.doi.org/10.1016/j.jddst.2019.101190]
[100]
Rao, L.; Bu, L.L.; Meng, Q.F.; Cai, B.; Deng, W.W.; Li, A.; Li, K.; Guo, S.S.; Zhang, W.F.; Liu, W.; Sun, Z.J.; Zhao, X.Z. Antitumor Platelet-Mimicking Magnetic Nanoparticles. Adv. Funct. Mater., 2017, 27(9), 1604774.
[http://dx.doi.org/10.1002/adfm.201604774]
[101]
Yang, Y.; Wen, J.; Wei, J.; Xiong, R.; Shi, J.; Pan, C. Polypyrrole-Decorated Ag-TiO2 Nanofibers Exhibiting Enhanced Photocatalytic Activity under Visible-Light Illumination. ACS Appl. Mater. Interfaces, 2013, 5(13), 6201-6207.
[http://dx.doi.org/10.1021/am401167y]
[102]
Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H.; Hu, C.; Jiang, C.; Jiang, L.; Cao, A.; Qu, L. Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-Mediated Graphene Foam Electrodes. Adv. Mater., 2013, 25(4), 591-595.
[http://dx.doi.org/10.1002/adma.201203578]
[103]
Zhu, Y.D.; Chen, S.P.; Zhao, H.; Yang, Y.; Chen, X.Q.; Sun, J.; Fan, H.S.; Zhang, X.D. PPy@MIL-100 Nanoparticles as a PH- and Near-IRIrradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl. Mater. Interfaces, 2016, 8(50), 34209-34217.
[http://dx.doi.org/10.1021/acsami.6b11378]
[104]
Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angew. Chem., 2012, 124(13), 3179-3183.
[http://dx.doi.org/10.1002/ange.201107919]
[105]
Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform Polypyrrole Nanoparticles with High Photothermal Conversion Efficiency for Photothermal Ablation of Cancer Cells. Adv. Mater., 2013, 25(5), 777-782.
[http://dx.doi.org/10.1002/adma.201202211]
[106]
Zhang, X.; Xu, X.; Li, T.; Lin, M.; Lin, X.; Zhang, H.; Sun, H.; Yang, B. Composite Photothermal Platform of Polypyrrole-Enveloped Fe3O4 Nanoparticle Self-Assembled Superstructures. ACS Appl. Mater. Interfaces, 2014, 6(16), 14552-14561.
[http://dx.doi.org/10.1021/am503831m]
[107]
Wu, L.; Xie, W.; Zan, H-M.; Liu, Z.; Wang, G.; Wang, Y.; Liu, W.; Dong, W. Platelet Membrane-Coated Nanoparticles for Targeted Drug Delivery and Local Chemo-Photothermal Therapy of Orthotopic Hepatocellular Carcinoma. J. Mater. Chem. B, 2020, 8(21), 4648-4659.
[http://dx.doi.org/10.1039/D0TB00735H]
[108]
Zuo, H.; Tao, J.; Shi, H.; He, J.; Zhou, Z.; Zhang, C. Platelet-Mimicking Nanoparticles Co-Loaded with W18O49 and Metformin Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy and Photothermal Therapy. Acta Biomater., 2018, 80, 296-307.
[http://dx.doi.org/10.1016/j.actbio.2018.09.017]
[109]
Cheng, L.; Kamkaew, A.; Sun, H.; Jiang, D.; Valdovinos, H.F.; Gong, H.; England, C.G.; Goel, S.; Barnhart, T.E.; Cai, W. Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin E6-Containing Nanomicelles. ACS Nano, 2016, 10(8), 7721-7730.
[http://dx.doi.org/10.1021/acsnano.6b03074]
[110]
Kamkaew, A.; Cheng, L.; Goel, S.; Valdovinos, H.F.; Barnhart, T.E.; Liu, Z.; Cai, W. Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin E6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(40), 26630-26637.
[http://dx.doi.org/10.1021/acsami.6b10255]
[111]
Näkki, S.; Martinez, J.O.; Evangelopoulos, M.; Xu, W.; Lehto, V-P.; Tasciotti, E. Chlorin E6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS Appl. Mater. Interfaces, 2017, 9(28), 23441-23449.
[http://dx.doi.org/10.1021/acsami.7b05766]
[112]
Light‐Up Probe for Targeted and Activatable Photodynamic Therapy with Real‐Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses - Yuan - 2015 - Advanced Functional Materials - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201502728 (accessed 2022-09-15).
[113]
Feng, L.; Cheng, L.; Dong, Z.; Tao, D.; Barnhart, T.E.; Cai, W.; Chen, M.; Liu, Z. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS Nano, 2017, 11(1), 927-937.
[http://dx.doi.org/10.1021/acsnano.6b07525]
[114]
Qian, C.; Feng, P.; Yu, J.; Chen, Y.; Hu, Q.; Sun, W.; Xiao, X.; Hu, X.; Bellotti, A.; Shen, Q-D.; Gu, Z. Anaerobe-Inspired Anticancer Nanovesicles. Angew. Chem., 2017, 129(10), 2632-2637.
[http://dx.doi.org/10.1002/ange.201611783]
[115]
Zhang, C.; Chen, W.; Zhang, T.; Jiang, X.; Hu, Y. Hybrid Nanoparticle Composites Applied to Photodynamic Therapy: Strategies and Applications. J. Mater. Chem. B, 2020, 8(22), 4726-4737.
[http://dx.doi.org/10.1039/D0TB00093K]
[116]
Mai, X.; Zhang, Y.; Fan, H.; Song, W.; Chang, Y.; Chen, B.; Shi, J.; Xin, X.; Teng, Z.; Sun, J.; Teng, G. Integration of Immunogenic Activation and Immunosuppressive Reversion Using Mitochondrial-Respiration-Inhibited Platelet-Mimicking Nanoparticles. Biomaterials, 2020, 232, 119699.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119699]
[117]
Mehlen, P.; Puisieux, A. Metastasis: A Question of Life or Death. Nat. Rev. Cancer, 2006, 6(6), 449-458.
[http://dx.doi.org/10.1038/nrc1886]
[118]
Dissemination and growth of cancer cells in metastatic sites | Nature Reviews Cancer. https://www.nature.com/articles/nrc865 (accessed 2022-09-02).
[119]
Li, J.; Ai, Y.; Wang, L.; Bu, P.; Sharkey, C.C.; Wu, Q.; Wun, B.; Roy, S.; Shen, X.; King, M.R. Targeted Drug Delivery to Circulating Tumor Cells via Platelet Membrane-Functionalized Particles. Biomaterials, 2016, 76, 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046]
[120]
Nanomedicine: Anticancer Platelet‐Mimicking Nanovehicles (Adv. Mater. 44/2015) - Hu - 2015 - Advanced Materials - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201570298 (accessed 2022-09-02).
[121]
Ngandeu Neubi, G.M.; Opoku-Damoah, Y.; Gu, X.; Han, Y.; Zhou, J.; Ding, Y. Bio-Inspired Drug Delivery Systems: An Emerging Platform for Targeted Cancer Therapy. Biomater. Sci., 2018, 6(5), 958-973.
[http://dx.doi.org/10.1039/C8BM00175H]
[122]
Du, Y.; Wang, S.; Zhang, M.; Chen, B.; Shen, Y. Cells-Based Drug Delivery for Cancer Applications. Nanoscale Res. Lett., 2021, 16(1), 139.
[http://dx.doi.org/10.1186/s11671-021-03588-x]
[123]
Shang, Y.; Wang, Q.; Li, J.; Zhao, Q.; Huang, X.; Dong, H.; Liu, H.; Gui, R.; Nie, X. Platelet-Membrane-Camouflaged Zirconia Nanoparticles Inhibit the Invasion and Metastasis of Hela Cells. Front Chem., 2020, 8.
[124]
Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy. Small, 2020, 16(22), 2001704.
[http://dx.doi.org/10.1002/smll.202001704]
[125]
Macrophages in atherosclerosis: a dynamic balance | Nature Reviews Immunology. https://www.nature.com/articles/nri3520 (accessed 2022-09-07).
[126]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Blood Vessels and Endothelial Cells. Molecular Biology of the Cell; 4th edition, 2002.
[127]
Lievens, D.; Hundelshausen, P. von Platelets in Atherosclerosis. Thromb. Haemost., 2011, 106(11), 827-838.
[http://dx.doi.org/10.1160/TH11-08-0592]
[128]
Ruggeri, Z.M. Platelets in Atherothrombosis. Nat. Med., 2002, 8(11), 1227-1234.
[http://dx.doi.org/10.1038/nm1102-1227]
[129]
Wang, S.; Duan, Y.; Zhang, Q.; Komarla, A.; Gong, H.; Gao, W.; Zhang, L. Drug Targeting via Platelet Membrane-Coated Nanoparticles. Small Struct., 2020, 1(1), 2000018.
[http://dx.doi.org/10.1002/sstr.202000018]
[130]
Song, Y.; Huang, Z.; Liu, X.; Pang, Z.; Chen, J.; Yang, H.; Zhang, N.; Cao, Z.; Liu, M.; Cao, J.; Li, C.; Yang, X.; Gong, H.; Qian, J.; Ge, J. Platelet Membrane-Coated Nanoparticle-Mediated Targeting Delivery of Rapamycin Blocks Atherosclerotic Plaque Development and Stabilizes Plaque in Apolipoprotein E-Deficient (ApoE-/-) Mice. Nanomedicine: Nanotechnology. Biol. Med., 2019, 15(1), 13-24.
[http://dx.doi.org/10.1016/j.nano.2018.08.002]
[131]
Bagheri, A.; Arandiyan, H.; Boyer, C.; Lim, M. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. Adv. Sci., 2016, 3(7), 1500437.
[http://dx.doi.org/10.1002/advs.201500437]
[132]
Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Bioinorganic Photochemistry: Frontiers and Mechanisms. Chem. Rev., 2005, 105(6), 2647-2694.
[http://dx.doi.org/10.1021/cr030707e]
[133]
Ma, Y.; Ma, Y.; Gao, M.; Han, Z.; Jiang, W.; Gu, Y.; Liu, Y. Platelet-Mimicking Therapeutic System for Noninvasive Mitigation of the Progression of Atherosclerotic Plaques. Adv. Sci., 2021, 8(8), 2004128.
[http://dx.doi.org/10.1002/advs.202004128]
[134]
Thrombocytopenia in SLE and related autoimmune disorders: association with anticardiolipin antibody - Harris - 1985 - British Journal of Haematology - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2141.1985.tb02988.x (accessed 2022-09-09).
[135]
Krötz, F.; Sohn, H-Y.; Pohl, U. Reactive Oxygen Species. Arterioscler. Thromb. Vasc. Biol., 2004, 24(11), 1988-1996.
[http://dx.doi.org/10.1161/01.ATV.0000145574.90840.7d]
[136]
Oxidative Stress and Platelets | Arteriosclerosis, Thrombosis, and Vascular Biology. https://www.ahajournals.org/doi/10.1161/ATVBAHA.107.159178 (accessed 2022-09-12).
[137]
Oxidative risk for atherothrombotic cardiovascular disease - ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0891584909005358 (accessed 2022-09-12).
[138]
Hydrogen Peroxide Promotes Aging-Related Platelet Hyperactivation and Thrombosis | Circulation. https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.112.000966 (accessed 2022-09-12).
[139]
Hydrogen peroxide regulation of endothelial function: Origins, mechanisms, and consequences | Cardiovascular Research | Oxford Academic. https://academic.oup.com/cardiovascres/article/68/1/26/287849 (accessed 2022-09-12).
[140]
Reactive Oxygen Species: Physiological Roles in the Regulation of...: Ingenta Connect. https://www.ingentaconnect.com/content/ben/cmm/2014/00000014/00000009/art00001 (accessed 2022-09-12).
[141]
Zhao, Y.; Gao, H.; He, J.; Jiang, C.; Lu, J.; Zhang, W.; Yang, H.; Liu, J. Co-Delivery of LOX-1 SiRNA and Statin to Endothelial Cells and Macrophages in the Atherosclerotic Lesions by a Dual-Targeting Core-Shell Nanoplatform: A Dual Cell Therapy to Regress Plaques. J. Control. Release, 2018, 283, 241-260.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.041]
[142]
Zhao, Y.; Xie, R.; Yodsanit, N.; Ye, M.; Wang, Y.; Wang, B.; Guo, L-W.; Kent, K.C.; Gong, S. Hydrogen Peroxide-Responsive Platelet Membrane-Coated Nanoparticles for Thrombus Therapy. Biomater. Sci., 2021, 9(7), 2696-2708.
[http://dx.doi.org/10.1039/D0BM02125C]
[143]
Zhang, P.; Liu, G.; Chen, X. Nanobiotechnology: Cell Membrane-Based Delivery Systems. Nano Today, 2017, 13, 7-9.
[http://dx.doi.org/10.1016/j.nantod.2016.10.008]
[144]
Wang, Q.; Qin, X.; Fang, J.; Sun, X. Nanomedicines for the Treatment of Rheumatoid Arthritis: State of Art and Potential Therapeutic Strategies. Acta Pharm. Sinica B, 2021, 11(5), 1158-1174.
[http://dx.doi.org/10.1016/j.apsb.2021.03.013]
[145]
Platelets Amplify Inflammation in Arthritis via Collagen- Dependent Microparticle Production | Science. https://www.science.org/doi/abs/10.1126/science.1181928(accessed 2022-09-15).
[146]
Adhesion molecule expression in human synovial tissue - Johnson - 1993 - Arthritis & Rheumatism - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/art.1780360203 (accessed 2022-09-15).
[147]
Cloutier, N.; Paré, A.; Farndale, R.W.; Schumacher, H.R.; Nigrovic, P.A.; Lacroix, S.; Boilard, E. Platelets Can Enhance Vascular Permeability. Blood, 2012, 120(6), 1334-1343.
[http://dx.doi.org/10.1182/blood-2012-02-413047]
[148]
Han, Y.; Pang, X.; Pi, G. Biomimetic and Bioinspired Intervention Strategies for the Treatment of Rheumatoid Arthritis. Adv. Funct. Mater., 2021, 31(38), 2104640.
[http://dx.doi.org/10.1002/adfm.202104640]
[149]
Esteban Fernández de Ávila, B.; Gao, W.; Karshalev, E.; Zhang, L.; Wang, J. Cell-Like Micromotors. Acc. Chem. Res., 2018, 51.
[http://dx.doi.org/10.1021/acs.accounts.8b00202]
[150]
Jung, H.; Kang, Y.Y.; Mok, H. Platelet-Derived Nanovesicles for Hemostasis without Release of pro-Inflammatory Cytokines. Biomater. Sci., 2019, 7(3), 856-859.
[http://dx.doi.org/10.1039/C8BM01480A]
[151]
Zhang, M.; Cheng, S.; Jin, Y.; Zhang, N.; Wang, Y. Membrane Engineering of Cell Membrane Biomimetic Nanoparticles for Nanoscale Therapeutics. Clin. Transl. Med., 2021, 11(2), e292.
[http://dx.doi.org/10.1002/ctm2.292]
[152]
Bang, K-H.; Na, Y-G.; Huh, H.W.; Hwang, S-J.; Kim, M-S.; Kim, M.; Lee, H-K.; Cho, C-W. The Delivery Strategy of Paclitaxel Nanostructured Lipid Carrier Coated with Platelet Membrane. Cancers, 2019, 11(6), 807.
[http://dx.doi.org/10.3390/cancers11060807]
[153]
Jing, L.; Qu, H.; Wu, D.; Zhu, C.; Yang, Y.; Jin, X.; Zheng, J.; Shi, X.; Yan, X.; Wang, Y. Platelet-Camouflaged Nanococktail: Simultaneous Inhibition of Drug-Resistant Tumor Growth and Metastasis via a Cancer Cells and Tumor Vasculature Dual-Targeting Strategy. Theranostics, 2018, 8(10), 2683.
[http://dx.doi.org/10.7150/thno.23654]
[154]
Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral Immunotherapy Using Platelet-Cloaked Nanoparticles Enhances Antitumor Immunity in Solid Tumors. Nat. Commun., 2021, 12(1), 1999.
[http://dx.doi.org/10.1038/s41467-021-22311-z]
[155]
Xu, L.; Gao, F.; Fan, F.; Yang, L. Platelet Membrane Coating Coupled with Solar Irradiation Endows a Photodynamic Nanosystem with Both Improved Antitumor Efficacy and Undetectable Skin Damage. Biomaterials, 2018, 159, 59-67.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.028]
[156]
Chi, C.; Li, F.; Liu, H.; Feng, S.; Zhang, Y.; Zhou, D.; Zhang, R. Docetaxel-Loaded Biomimetic Nanoparticles for Targeted Lung Cancer Therapy in Vivo. J. Nanopart. Res., 2019, 21(7), 144.
[http://dx.doi.org/10.1007/s11051-019-4580-8]
[157]
Wang, H.; Wu, J.; Williams, G.R.; Fan, Q.; Niu, S.; Wu, J.; Xie, X.; Zhu, L-M. Platelet-Membrane-Biomimetic Nanoparticles for Targeted Antitumor Drug Delivery. J. Nanobiotechnology, 2019, 17(1), 60.
[http://dx.doi.org/10.1186/s12951-019-0494-y]
[158]
Wang, S.; Wang, R.; Meng, N.; Guo, H.; Wu, S.; Wang, X.; Li, J.; Wang, H.; Jiang, K.; Xie, C.; Liu, Y.; Wang, H.; Lu, W. Platelet Membrane-Functionalized Nanoparticles with Improved Targeting Ability and Lower Hemorrhagic Risk for Thrombolysis Therapy. J. Control. Release, 2020, 328, 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.030]
[159]
Han, H.; Bártolo, R.; Li, J.; Shahbazi, M-A.; Santos, H.A. Biomimetic Platelet Membrane-Coated Nanoparticles for Targeted Therapy. Eur. J. Pharm. Biopharm., 2022, 172, 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2022.01.004]
[160]
Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the Blood Coagulation System. In: Frontiers in Nanobiomedical Research; WORLD SCIENTIFIC, 2016; Vol. 5, pp. 261-302.
[http://dx.doi.org/10.1142/9789813140455_0008]
[161]
Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. AAPS PharmSciTech, 2014, 15(6), 1527-1534.
[http://dx.doi.org/10.1208/s12249-014-0177-9]
[162]
Lenau, T.A. Biomimetics as a Design Methodology - Possibilities and Challenges. DS 58-5: Proceedings of ICED 09, the 17th International Conference on Engineering Design, Vol. 5, Design Methods and Tools (pt. 1), Palo Alto, CA, USA, 24.-27.08. 2009 2009, 121-132.
[163]
Luk, B.T.; Zhang, L. Cell Membrane-Camouflaged Nanoparticles for Drug Delivery. J. Control. Release, 2015, 220, 600-607.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.019]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy