Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Autophagy Behavior under Local Hypothermia in Myocardiocytes Injury

Author(s): Basheer Abdullah Marzoog*

Volume 22, Issue 2, 2024

Published on: 10 August, 2023

Page: [114 - 120] Pages: 7

DOI: 10.2174/1871525721666230803102554

Price: $65

Abstract

Hypothermia and autophagy are critical regulators of cell homeostasis by regulating intra and intercellular cell communication. Myocardiocyte cryotherapy poses multiple cellular and subcellular effects on the injured cell, including upregulation of autophagy. Autophagy plays a crucial role in modifying cell metabolism by regulating downregulation, reducing reactive oxygen species production, and improving the natural cellular antioxidant defense system. Reduction of reactive oxygen species production and improving natural cellular antioxidant defense system. Therapeutic hypothermia ranges from 32-34°C in terms of local myocardiocyte cooling. Hypothermia induces autophagy by phosphorylating the Akt signaling pathway. Hypothermia has a more therapeutic effect when applied at the beginning of reperfusion rather than in the beginning of ischemia. Moderate hypothermia with 33°C poses most therapeutic effect by viability maintaining and reduction of reactive oxygen species release. Application of local hypothermia to myocardiocytes can be applied to infarcted myocardiocytes, anginal and to the cardiomyopathies.

Graphical Abstract

[1]
Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics-2022 Update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[2]
Marzoog, B.A.; Vlasova, T.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt. J. Med. Hum. Genet., 2022, 23(1), 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[3]
Marzoog, B.A. Transcription factors - the essence of heart regeneration: A potential novel therapeutic strategy. Curr. Mol. Med., 2023, 23(3), 232-238.
[http://dx.doi.org/10.2174/1566524022666220216123650] [PMID: 35170408]
[4]
O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E., Jr; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; Granger, C.B.; Krumholz, H.M.; Linderbaum, J.A.; Morrow, D.A.; Newby, L.K.; Ornato, J.P.; Ou, N.; Radford, M.J.; Tamis-Holland, J.E.; Tommaso, J.E.; Tracy, C.M.; Woo, Y.J.; Zhao, D.X. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: Executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation, 2013, 127(4), 529-555.
[http://dx.doi.org/10.1161/CIR.0b013e3182742c84] [PMID: 23247303]
[5]
Neumann, J.T.; Goßling, A.; Sörensen, N.A.; Blankenberg, S.; Magnussen, C.; Westermann, D. Temporal trends in incidence and outcome of acute coronary syndrome. Clin. Res. Cardiol., 2020, 109(9), 1186-1192.
[http://dx.doi.org/10.1007/s00392-020-01612-1] [PMID: 32034482]
[6]
Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; Jüni, P.; Kastrati, A.; Koller, A.; Kristensen, S.D.; Niebauer, J.; Richter, D.J.; Seferović, P.M.; Sibbing, D.; Stefanini, G.G.; Windecker, S.; Yadav, R.; Zembala, M.O.; Wijns, W.; Glineur, D.; Aboyans, V.; Achenbach, S.; Agewall, S.; Andreotti, F.; Barbato, E.; Baumbach, A.; Brophy, J.; Bueno, H.; Calvert, P.A.; Capodanno, D.; Davierwala, P.M.; Delgado, V.; Dudek, D.; Freemantle, N.; Funck-Brentano, C.; Gaemperli, O.; Gielen, S.; Gilard, M.; Gorenek, B.; Haasenritter, J.; Haude, M.; Ibanez, B.; Iung, B.; Jeppsson, A.; Katritsis, D.; Knuuti, J.; Kolh, P.; Leite-Moreira, A.; Lund, L.H.; Maisano, F.; Mehilli, J.; Metzler, B.; Montalescot, G.; Pagano, D.; Petronio, A.S.; Piepoli, M.F.; Popescu, B.A.; Sádaba, R.; Shlyakhto, E.; Silber, S.; Simpson, I.A.; Sparv, D.; Tavilla, G.; Thiele, H.; Tousek, P.; Van Belle, E.; Vranckx, P.; Witkowski, A.; Zamorano, J.L.; Roffi, M.; Windecker, S.; Aboyans, V.; Agewall, S.; Barbato, E.; Bueno, H.; Coca, A.; Collet, J-P.; Coman, I.M.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gaemperli, O.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Knuuti, J.; Lancellotti, P.; Leclercq, C.; McDonagh, T.A.; Piepoli, M.F.; Ponikowski, P.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Sousa-Uva, M.; Simpson, I.A.; Zamorano, J.L.; Pagano, D.; Freemantle, N.; Sousa-Uva, M.; Chettibi, M.; Sisakian, H.; Metzler, B.; İbrahimov, F.; Stelmashok, V.I.; Postadzhiyan, A.; Skoric, B.; Eftychiou, C.; Kala, P.; Terkelsen, C.J.; Magdy, A.; Eha, J.; Niemelä, M.; Kedev, S.; Motreff, P.; Aladashvili, A.; Mehilli, J.; Kanakakis, I-G.; Becker, D.; Gudnason, T.; Peace, A.; Romeo, F.; Bajraktari, G.; Kerimkulova, A.; Rudzītis, A.; Ghazzal, Z.; Kibarskis, A.; Pereira, B.; Xuereb, R.G.; Hofma, S.H.; Steigen, T.K.; Witkowski, A.; de Oliveira, E.I.; Mot, S.; Duplyakov, D.; Zavatta, M.; Beleslin, B.; Kovar, F.; Bunc, M.; Ojeda, S.; Witt, N.; Jeger, R.; Addad, F.; Akdemir, R.; Parkhomenko, A.; Henderson, R. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J., 2019, 40(2), 87-165.
[http://dx.doi.org/10.1093/eurheartj/ehy394] [PMID: 30165437]
[7]
Hausenloy, D.J.; Yellon, D.M. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J. Clin. Invest., 2013, 123(1), 92-100.
[http://dx.doi.org/10.1172/JCI62874] [PMID: 23281415]
[8]
Maruyama, T.; Noda, N.N. Autophagy-regulating protease Atg4: Structure, function, regulation and inhibition. J. Antibiot., 2018, 71(1), 72-78.
[http://dx.doi.org/10.1038/ja.2017.104] [PMID: 28901328]
[9]
El Farissi, M.; Keulards, D.C.J.; Zelis, J.M.; van ’t Veer, M.; Zimmermann, F.M.; Pijls, N.H.J.; Otterspoor, L.C. Hypothermia for reduction of myocardial reperfusion injury in acute myocardial infarction: Closing the translational gap. Circ. Cardiovasc. Interv., 2021, 14(8), e010326.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.120.010326] [PMID: 34266310]
[10]
Hale, S.L.; Kloner, R.A. Mild hypothermia as a cardioprotective approach for acute myocardial infarction: Laboratory to clinical application. J. Cardiovasc. Pharmacol. Ther., 2011, 16(2), 131-139.
[http://dx.doi.org/10.1177/1074248410387280] [PMID: 21149829]
[11]
Erlinge, D.; Götberg, M.; Grines, C.; Dixon, S.; Baran, K.; Kandzari, D.; Olivecrona, G.K. A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction. EuroIntervention, 2013, 8(12), 1435-1440.
[http://dx.doi.org/10.4244/EIJV8I12A217] [PMID: 23164721]
[12]
Marzoog, B.A.; Vlasova, T.I. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett., 2022, 43(2), 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[13]
Marzoog, B.A. The metabolic syndrome puzzles; Possible pathogenesis and management. Curr. Diabetes Rev., 2023, 19(4), e290422204258.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[14]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[15]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[16]
Yin, Z.; Pascual, C.; Klionsky, D. Autophagy: Machinery and regulation. Microb. Cell, 2016, 3(12), 588-596.
[http://dx.doi.org/10.15698/mic2016.12.546] [PMID: 28357331]
[17]
Shao, Z.H.; Sharp, W.W.; Wojcik, K.R.; Li, C.Q.; Han, M.; Chang, W.T.; Ramachandran, S.; Li, J.; Hamann, K.J.; Vanden Hoek, T.L. Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(6), H2164-H2173.
[http://dx.doi.org/10.1152/ajpheart.00994.2009] [PMID: 20382860]
[18]
Ren, J.; Yang, L.; Zhu, L.; Xu, X.; Ceylan, A.F.; Guo, W.; Yang, J.; Zhang, Y. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: Role of Sirt1-mediated autophagy regulation. Aging Cell, 2017, 16(5), 976-987.
[http://dx.doi.org/10.1111/acel.12616] [PMID: 28681509]
[19]
Chen, J.; Bian, X.; Li, Y.; Xiao, X.; Yin, Y.; Du, X.; Wang, C.; Li, L.; Bai, Y.; Liu, X. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol. Med. Rep., 2020, 22(4), 2617-2626.
[http://dx.doi.org/10.3892/mmr.2020.11374] [PMID: 32945433]
[20]
Cheng, B.C.; Huang, H.S.; Chao, C.M.; Hsu, C.C.; Chen, C.Y.; Chang, C.P. Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy. Int. J. Cardiol., 2013, 168(3), 2064-2069.
[http://dx.doi.org/10.1016/j.ijcard.2013.01.162] [PMID: 23453869]
[21]
Dai, W.; Herring, M.J.; Hale, S.L.; Kloner, R.A. Rapid surface cooling by thermosuit system dramatically reduces scar size, prevents post‐infarction adverse left ventricular remodeling, and improves cardiac function in rats. J. Am. Heart Assoc., 2015, 4(7), e002265.
[http://dx.doi.org/10.1161/JAHA.115.002265] [PMID: 26116692]
[22]
Erlinge, D.; Götberg, M.; Noc, M.; Lang, I.; Holzer, M.; Clemmensen, P.; Jensen, U.; Metzler, B.; James, S.; Bøtker, H.E.; Omerovic, E.; Koul, S.; Engblom, H.; Carlsson, M.; Arheden, H.; Östlund, O.; Wallentin, L.; Klos, B.; Harnek, J.; Olivecrona, G.K. Therapeutic hypothermia for the treatment of acute myocardial infarction-combined analysis of the RAPID MI-ICE and the CHILL-MI trials. Ther. Hypothermia Temp. Manag., 2015, 5(2), 77-84.
[http://dx.doi.org/10.1089/ther.2015.0009] [PMID: 25985169]
[23]
Vásquez-Trincado, C.; García-Carvajal, I.; Pennanen, C.; Parra, V.; Hill, J.A.; Rothermel, B.A.; Lavandero, S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol., 2016, 594(3), 509-525.
[http://dx.doi.org/10.1113/JP271301] [PMID: 26537557]
[24]
Marek-Iannucci, S.; Thomas, A.; Hou, J.; Crupi, A.; Sin, J.; Taylor, D.J.; Czer, L.S.; Esmailian, F.; Mentzer, R.M., Jr; Andres, A.M.; Gottlieb, R.A. Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Sci. Rep., 2019, 9(1), 10001.
[http://dx.doi.org/10.1038/s41598-019-46452-w] [PMID: 31292486]
[25]
Morrison, L.J.; Thoma, B. Translating targeted temperature management trials into postarrest care. N. Engl. J. Med., 2021, 384(24), 2344-2345.
[http://dx.doi.org/10.1056/NEJMe2106969] [PMID: 34133865]
[26]
Yang, D.; Guo, S.; Zhang, T.; Li, H. Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling. FEBS Lett., 2009, 583(15), 2500-2506.
[http://dx.doi.org/10.1016/j.febslet.2009.07.006] [PMID: 19596001]
[27]
Kaneko, T.; Kibayashi, K. Mild hypothermia facilitates the expression of cold-inducible RNA-binding protein and heat shock protein 70.1 in mouse brain. Brain Res., 2012, 1466, 128-136.
[http://dx.doi.org/10.1016/j.brainres.2012.05.001] [PMID: 22609236]
[28]
Physiology, C.; Yang, D.; Zeng, Y.; Tian, C.; Liu, J.; Guo, S-B.; Zheng, Y-H.; Li, H-H.; Li, H.; Zheng, Y. Transcriptomic analysis of mild hypothermia-dependent alterations during endothelial reperfusion injury. Cell. Physiol. Biochem., 2010, 25(6), 605-614.
[http://dx.doi.org/10.1159/000315079] [PMID: 20511705]
[29]
Frink, M.; Flohé, S.; van Griensven, M.; Mommsen, P.; Hildebrand, F. Facts and fiction: The impact of hypothermia on molecular mechanisms following major challenge. Mediators Inflamm., 2012, 2012, 1-13.
[http://dx.doi.org/10.1155/2012/762840] [PMID: 22481864]
[30]
Chip, S.; Zelmer, A.; Ogunshola, O.O.; Felderhoff-Mueser, U.; Nitsch, C.; Bührer, C.; Wellmann, S. The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiol. Dis., 2011, 43(2), 388-396.
[http://dx.doi.org/10.1016/j.nbd.2011.04.010] [PMID: 21527344]
[31]
Marzoog, B.A. Autophagy behavior in post-myocardial infarction injury. Cardiovasc. Hematol. Disord. Drug Targets, 2023, 23.
[http://dx.doi.org/10.2174/1871529X23666230503123612] [PMID: 37138481]
[32]
Erlinge, D.; Götberg, M.; Lang, I.; Holzer, M.; Noc, M.; Clemmensen, P.; Jensen, U.; Metzler, B.; James, S.; Bötker, H.E.; Omerovic, E.; Engblom, H.; Carlsson, M.; Arheden, H.; Östlund, O.; Wallentin, L.; Harnek, J.; Olivecrona, G.K. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: A randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J. Am. Coll. Cardiol., 2014, 63(18), 1857-1865.
[http://dx.doi.org/10.1016/j.jacc.2013.12.027] [PMID: 24509284]
[33]
Nichol, G.; Strickland, W.; Shavelle, D.; Maehara, A.; Ben-Yehuda, O.; Genereux, P.; Dressler, O.; Parvataneni, R.; Nichols, M.; McPherson, J.; Barbeau, G.; Laddu, A.; Elrod, J.A.; Tully, G.W.; Ivanhoe, R.; Stone, G.W. Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-segment- elevation myocardial infarction. Circ. Cardiovasc. Interv., 2015, 8(3), e001965.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001965] [PMID: 25699687]
[34]
Schacham, Y.N.; Cohen, B.; Bajracharya, G.R.; Walters, M.; Zimmerman, N.; Mao, G.; Tanios, M.A.; Sessler, D.I. Mild perioperative hypothermia and myocardial injury. Anesth. Analg., 2018, 127(6), 1335-1341.
[http://dx.doi.org/10.1213/ANE.0000000000003840] [PMID: 30300173]
[35]
Otterspoor, L.C.; van Nunen, L.X.; Rosalina, T.T.; Veer, M.V.; Tuijl, S.V.; Stijnen, M.; Rutten, M.C.M.; van de Vosse, F.N.; Pijls, N.H.J. Intracoronary hypothermia for acute myocardial infarction in the isolated beating pig heart. Am. J. Transl. Res., 2017, 9(2), 558-568.
[PMID: 28337283]
[36]
Alushi, B.; Ndrepepa, G.; Lauten, A.; Lahmann, A.L.; Bongiovanni, D.; Kufner, S.; Xhepa, E.; Laugwitz, K.L.; Joner, M.; Landmesser, U.; Thiele, H.; Kastrati, A.; Cassese, S. Hypothermia in patients with acute myocardial infarction: A meta-analysis of randomized trials. Clin. Res. Cardiol., 2021, 110(1), 84-92.
[http://dx.doi.org/10.1007/s00392-020-01652-7] [PMID: 32303830]
[37]
Dash, R.; Mitsutake, Y.; Pyun, W.B.; Dawoud, F.; Lyons, J.; Tachibana, A.; Yahagi, K.; Matsuura, Y.; Kolodgie, F.D.; Virmani, R.; McConnell, M.V.; Illindala, U.; Ikeno, F.; Yeung, A. Dose-dependent cardioprotection of moderate (32°C) Versus Mild (35°C) therapeutic hypothermia in porcine acute myocardial infarction. JACC Cardiovasc. Interv., 2018, 11(2), 195-205.
[http://dx.doi.org/10.1016/j.jcin.2017.08.056] [PMID: 29348013]
[38]
Kang, I.S.; Fumiaki, I.; Pyun, W.B. Therapeutic hypothermia for cardioprotection in acute myocardial infarction. Yonsei Med. J., 2016, 57(2), 291-297.
[http://dx.doi.org/10.3349/ymj.2016.57.2.291] [PMID: 26847278]
[39]
Kohlhauer, M.; Pell, V.R.; Burger, N.; Spiroski, A.M.; Gruszczyk, A.; Mulvey, J.F.; Mottahedin, A.; Costa, A.S.H.; Frezza, C.; Ghaleh, B.; Murphy, M.P.; Tissier, R.; Krieg, T. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res. Cardiol., 2019, 114(3), 18.
[http://dx.doi.org/10.1007/s00395-019-0727-0] [PMID: 30877396]
[40]
Woodall, B.P.; Gustafsson, Å.B. Autophagy-A key pathway for cardiac health and longevity. Acta Physiol., 2018, 223(4), e13074.
[http://dx.doi.org/10.1111/apha.13074] [PMID: 29660243]
[41]
Dai, D.F.; Karunadharma, P.P.; Chiao, Y.A.; Basisty, N.; Crispin, D.; Hsieh, E.J.; Chen, T.; Gu, H.; Djukovic, D.; Raftery, D.; Beyer, R.P.; MacCoss, M.J.; Rabinovitch, P.S. Altered proteome turnover and remodeling by short‐term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell, 2014, 13(3), 529-539.
[http://dx.doi.org/10.1111/acel.12203] [PMID: 24612461]
[42]
Lee, I.H.; Cao, L.; Mostoslavsky, R.; Lombard, D.B.; Liu, J.; Bruns, N.E.; Tsokos, M.; Alt, F.W.; Finkel, T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci., 2008, 105(9), 3374-3379.
[http://dx.doi.org/10.1073/pnas.0712145105] [PMID: 18296641]
[43]
Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol., 2010, 5(1), 253-295.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092250] [PMID: 20078221]
[44]
Hariharan, N.; Maejima, Y.; Nakae, J.; Paik, J.; DePinho, R.A.; Sadoshima, J. Deacetylation of foxo by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res., 2010, 107(12), 1470-1482.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.227371] [PMID: 20947830]
[45]
Barger, J.L.; Kayo, T.; Vann, J.M.; Arias, E.B.; Wang, J.; Hacker, T.A.; Wang, Y.; Raederstorff, D.; Morrow, J.D.; Leeuwenburgh, C.; Allison, D.B.; Saupe, K.W.; Cartee, G.D.; Weindruch, R.; Prolla, T.A. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One, 2008, 3(6), e2264.
[http://dx.doi.org/10.1371/journal.pone.0002264] [PMID: 18523577]
[46]
Yamamoto, T.; Byun, J.; Zhai, P.; Ikeda, Y.; Oka, S.; Sadoshima, J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6), e98972.
[http://dx.doi.org/10.1371/journal.pone.0098972] [PMID: 24905194]
[47]
Onken, B.; Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One, 2010, 5(1), e8758.
[http://dx.doi.org/10.1371/journal.pone.0008758] [PMID: 20090912]
[48]
Hsu, C.P.; Oka, S.; Shao, D.; Hariharan, N.; Sadoshima, J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ. Res., 2009, 105(5), 481-491.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.203703] [PMID: 19661458]
[49]
Galluzzi, L.; Bravo-San Pedro, J.M.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov., 2017, 16(7), 487-511.
[http://dx.doi.org/10.1038/nrd.2017.22] [PMID: 28529316]
[50]
Cohen, H.Y.; Miller, C.; Bitterman, K.J.; Wall, N.R.; Hekking, B.; Kessler, B.; Howitz, K.T.; Gorospe, M.; de Cabo, R.; Sinclair, D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305(5682), 390-392.
[http://dx.doi.org/10.1126/science.1099196] [PMID: 15205477]
[51]
Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; Michaud, M.; Madeo, F.; Tavernarakis, N.; Kroemer, G. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis., 2010, 1(1), e10.
[http://dx.doi.org/10.1038/cddis.2009.8] [PMID: 21364612]
[52]
Fryer, L.G.D.; Parbu-Patel, A.; Carling, D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem., 2002, 277(28), 25226-25232.
[http://dx.doi.org/10.1074/jbc.M202489200] [PMID: 11994296]
[53]
Calvert, J.W.; Gundewar, S.; Jha, S.; Greer, J.J.M.; Bestermann, W.H.; Tian, R.; Lefer, D.J. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes, 2008, 57(3), 696-705.
[http://dx.doi.org/10.2337/db07-1098] [PMID: 18083782]
[54]
Sun, D.; Yang, F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem. Biophys. Res. Commun., 2017, 486(2), 329-335.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.036] [PMID: 28302481]
[55]
Alvers, A.L.; Wood, M.S.; Hu, D.; Kaywell, A.C.; Dunn, W.A., Jr; Aris, J.P. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy, 2009, 5(6), 847-849.
[http://dx.doi.org/10.4161/auto.8824] [PMID: 19458476]
[56]
Wu, X.; Liu, Z.; Yu, X.Y.; Xu, S.; Luo, J. Autophagy and cardiac diseases: Therapeutic potential of natural products. Med. Res. Rev., 2021, 41(1), 314-341.
[http://dx.doi.org/10.1002/med.21733] [PMID: 32969064]
[57]
Abdullah Marzoog, B. Pathophysiology of cardiac cell injury in post-Covid-19 syndrome. Emir. Med. J., 2023, 4.
[http://dx.doi.org/10.2174/0250688204666230428120808]
[58]
Marzoog, B.A. Autophagy behavior in endothelial cell regeneration. Curr. Mol. Med., 2022.
[59]
Marzoog, B. Lipid behavior in metabolic syndrome pathophysiology. Curr. Diabetes Rev., 2022, 18(6), e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[60]
Marzoog, B.A.; Vlasova, T.I. Membrane lipids under norm and pathology. Eur. J. Clini. Experimen. Med., 2021, 19(1), 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[61]
Marzoog, B.A. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat. Cell Biol., 2023, 56(2), 166-178.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]
[62]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[63]
Wirawan, E.; Berghe, T.V.; Lippens, S.; Agostinis, P.; Vandenabeele, P. Autophagy: For better or for worse. Cell Res., 2012, 22(1), 43-61.
[http://dx.doi.org/10.1038/cr.2011.152] [PMID: 21912435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy