Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review

Author(s): Seyed Mahdi Zarezadeh, Amir Mohammad Sharafi, Gisou Erabi, Arefeh Tabashiri, Navid Teymouri, Hoda Mehrabi, Seyyed Amirhossein Golzan, Arezoo Faridzadeh, Zahra Abdollahifar, Nafiseh Sami, Javad Arabpour, Zahra Rahimi, Arina Ansari, Mohammad Reza Abbasi, Nima Azizi, Amirhossein Tamimi, Mohadeseh Poudineh and Niloofar Deravi*

Volume 19, Issue 4, 2024

Published on: 26 September, 2023

Page: [403 - 502] Pages: 100

DOI: 10.2174/1574892818666230803100554

Price: $65

conference banner
Abstract

Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.

Next »
[1]
Sengupta S, Nagalingam A, Muniraj N, et al. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene 2017; 36(41): 5709-21.
[http://dx.doi.org/10.1038/onc.2017.164] [PMID: 28581518]
[2]
(a) Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health 2019; 9(4): 217-22.;
(b) Xu M, Ni H, Xu L, Shen H, Deng H, Wang Y, et al. B14 ameliorates bone cancer pain through downregulating spinal interleukin-1β via suppressing neuron JAK2/STAT3 pathway. Mollecular Pain 2019; 15: 1744806919886498.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[3]
Gaston TE, Mendrick DL, Paine MF, Roe AL, Yeung CK. “Natural” is not synonymous with “Safe”: Toxicity of natural products alone and in combination with pharmaceutical agents. Regul Toxicol Pharmacol 2020; 113: 104642.
[http://dx.doi.org/10.1016/j.yrtph.2020.104642] [PMID: 32197968]
[4]
Swiatek-Machado K, Mieczkowski J, Ellert-Miklaszewska A, et al. Novel small molecular inhibitors disrupt the JAK/STAT3 and FAK signaling pathways and exhibit a potent antitumor activity in glioma cells. Cancer Biol Ther 2012; 13(8): 657-70.
[http://dx.doi.org/10.4161/cbt.20083] [PMID: 22555804]
[5]
Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998; 334(2): 297-314.
[http://dx.doi.org/10.1042/bj3340297] [PMID: 9716487]
[6]
Boeuf H, Hauss C, Graeve FD, Baran N, Kedinger C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J Cell Biol 1997; 138(6): 1207-17.
[http://dx.doi.org/10.1083/jcb.138.6.1207] [PMID: 9298977]
[7]
Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998; 12(13): 2048-60.
[http://dx.doi.org/10.1101/gad.12.13.2048] [PMID: 9649508]
[8]
Raz R, Lee CK, Cannizzaro LA, d’Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 1999; 96(6): 2846-51.
[http://dx.doi.org/10.1073/pnas.96.6.2846] [PMID: 10077599]
[9]
Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol Cell Biol 2001; 21(5): 1621-32.
[http://dx.doi.org/10.1128/MCB.21.5.1621-1632.2001] [PMID: 11238899]
[10]
Levy DE, Gilliland DG. Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 2000; 19(21): 2505-10.
[http://dx.doi.org/10.1038/sj.onc.1203480] [PMID: 10851049]
[11]
Tulp M, Bohlin L. Rediscovery of known natural compounds: Nuisance or goldmine? Bioorg Med Chem 2005; 13(17): 5274-82.
[http://dx.doi.org/10.1016/j.bmc.2005.05.067] [PMID: 16019216]
[12]
(a) Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71(10): 1397-421.;
(b) Deng J, Grande F, Neamati N. Small molecule inhibitors of Stat3 signaling pathway. Current cancer drug targets 2007; 7(1): 91-107.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[13]
Braumann C, Koplin G, Geier C, et al. Dose-dependent role of novel agents emodin and BTB14431 in colonic cancer treatment in rats. Acta Chir Belg 2017; 117(6): 376-84.
[http://dx.doi.org/10.1080/00015458.2017.1341145] [PMID: 28669313]
[14]
Li Y, Xiong W, Yang J, et al. Attenuation of inflammation by emodin in lipopolysaccharide-induced acute kidney injury via inhibition of toll-like receptor 2 signal pathway. Iran J Kidney Dis 2015; 9(3): 202-8.
[PMID: 25957424]
[15]
Patel V, Senderowicz AM, Pinto D Jr, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest 1998; 102(9): 1674-81.
[http://dx.doi.org/10.1172/JCI3661] [PMID: 9802881]
[16]
(a) Darnell JE Jr. STATs and gene regulation. Science 1997; 277(5332): 1630-5.;
(b) Hu Y, Zhao C, Zheng H, Lu K, Shi D, Liu Z, et al. A novel STAT3 inhibitor HO-3867 induces cell apoptosis by reactive oxygen species-dependent endoplasmic reticulum stress in human pancreatic cancer cells. Anti-cancer drugs 2017; 28(4): 392-400.
[http://dx.doi.org/10.1126/science.277.5332.1630] [PMID: 9287210]
[17]
(a) Mitsuyama K, Matsumoto S, Masuda J, et al. T herapeutic strategies for targeting the IL-6/STAT3 cytokine signaling pathway in inflammatory bowel disease. Anticancer Res 2007; 27(6A): 3749-56.;
(b) Jang H-j, Park E-j, Lee S-j, Lim H-j, Jo JH, Lee SW, et al. Diarylheptanoids from Curcuma phaeocaulis Suppress IL-6-Induced STAT3 Activation Authors. 2019.
[PMID: 17970038]
[18]
(a) Lo HW, Hsu SC, Ali-Seyed M, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7(6): 575-89.;
(b) Ji P, Yuan C, Ma S, Fan J, Fu W, Qiao C. 4-Carbonyl-2, 6-dibenzylidenecyclohexanone derivatives as small molecule inhibitors of STAT3 signaling pathway. Bioorganic & Medicinal Chemistry 2016; 24(23): 6174-82.
[http://dx.doi.org/10.1016/j.ccr.2005.05.007] [PMID: 15950906]
[19]
Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: Recent advances towards specific inhibition. Curr Opin Immunol 2015; 34: 75-82.
[http://dx.doi.org/10.1016/j.coi.2015.02.008] [PMID: 25749511]
[20]
Hashemi V, Masjedi A, Hazhir-karzar B, et al. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J Cell Physiol 2019; 234(5): 5478-87.
[http://dx.doi.org/10.1002/jcp.26912] [PMID: 30417346]
[21]
Yu-Wai-Man C, Tagalakis AD, Meng J, et al. Genotype-phenotype associations of IL6 and PRG4 with conjunctival fibrosis after glaucoma surgery. JAMA Ophthalmol 2017; 135(11): 1147-55.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.3407] [PMID: 28975281]
[22]
Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem 2004; 279(2): 821-4.
[http://dx.doi.org/10.1074/jbc.R300030200] [PMID: 14607831]
[23]
Herrmann A, Vogt M, Mönnigmann M, et al. Nucleocytoplasmic shuttling of persistently activated STAT3. J Cell Sci 2007; 120(18): 3249-61.;
(b) Liu Y, Fuchs J, Li C, Lin J. IL-6, a risk factor for hepatocellular carcinoma: FLLL32 inhibits IL-6-induced STAT3 phosphorylation in human hepatocellular cancer cells. Cell cycle 2010; 9(17): 3423-7.
[http://dx.doi.org/10.1242/jcs.03482] [PMID: 17726064]
[24]
(a) Shuai K. Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 2006; 16(2): 196-202.;
(b) Alexandrow MG, Song LJ, Altiok S, Gray J, Haura EB, Kumar NB. Curcumin: A novel stat 3 pathway inhibitor for chemoprevention of lung cancer. European Journal of Cancer Prevention 2012; 21(5): 407.
[http://dx.doi.org/10.1038/sj.cr.7310027] [PMID: 16474434]
[25]
(a) Johnston PA, Grandis JR. STAT3 signaling: Anticancer strategies and challenges. Mol Interv 2011; 11(1): 18-26.;
(b) Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3–NFκB signaling. Anticancer research 2015; 35(1): 39-46.
[http://dx.doi.org/10.1124/mi.11.1.4] [PMID: 21441118]
[26]
(a) Liao FH, Hsiao WY, Lin YC, Chan YC, Huang CY. T cell proliferation and adaptive immune responses are critically regulated by protein phosphatase 4. Cell Cycle 2016; 15(8): 1073-83.;
(b) Zuo M, Li C, Lin J, Javle M. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy. Oncotarget 2015; 6(13): 10940.
[http://dx.doi.org/10.1080/15384101.2016.1156267] [PMID: 26940341]
[27]
Tavares MR, Hrabánková K, Konefał R. et al. HPMA-based copolymers carrying STAT3 inhibitor cucurbitacin-D as stimulus-sensitive nanomedicines for oncotherapy. Pharmaceutics 2021; 13(2): 179.
[http://dx.doi.org/10.3390/pharmaceutics13020179] [PMID: 33525658]
[28]
(a) Bromberg J, Wrzeszczynska M, Devgan G, et al. Stat3 as an oncogene cell. Cell 1999; 99(2): 238-9.;
(b) Chung SS, Dutta P, Chard N, Wu Y, Chen Q-H, Chen G, et al. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget 2019; 10(44): 4516.
[29]
Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19(1): 1-11.
[http://dx.doi.org/10.1128/MCB.19.1.1] [PMID: 9858526]
[30]
(a) Leduc I, Karsunky H, Mathieu N, et al. The Pim-1 kinase stimulates maturation of TCRβ-deficient T cell progenitors: Implications for the mechanism of Pim-1 action. Int Immunol 2000; 12(10): 1389-96.;
(b) Yang C-L, Liu Y-Y, Ma Y-G, et al. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PloS one 2012; 7(5): e37960.
[http://dx.doi.org/10.1093/intimm/12.10.1389] [PMID: 11007756]
[31]
Ren M, Wang Y, Wu X, Ge S, Wang B. Curcumin synergistically increases effects of β-interferon and retinoic acid on breast cancer cells in vitro and in vivo by up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways. Journal of drug targeting 2017; 25(3): 247-54.
[http://dx.doi.org/10.1016/S0092-8674(00)81959-5] [PMID: 10458605 ]
[32]
Niu G, Wright KL, Ma Y, et al. Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 2005; 25(17): 7432-40.
[http://dx.doi.org/10.1128/MCB.25.17.7432-7440.2005] [PMID: 16107692]
[33]
(a) Dechow TN, Pedranzini L, Leitch A, et al. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci USA 2004; 101(29): 10602-7.;
(b) Selvendiran K, Ahmed S, Dayton A, Kuppusamy ML, Rivera BK, Kálai T, et al. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer biology & therapy 2011; 12(9): 837-45.
[http://dx.doi.org/10.1073/pnas.0404100101] [PMID: 15249664]
[34]
Huang C, Yang G, Jiang T, Cao J, Huang K-J, Qiu Z-J. Down-regulation of STAT3 expression by vector-based small interfering RNA inhibits pancreatic cancer growth. World J Gastroenterol 2011; 17(25): 2992-3001.
[http://dx.doi.org/10.3748/wjg.v17.i25.2992] [PMID: 21799645]
[35]
(a) Itoh M, Murata T, Suzuki T, et al. Requirement of STAT3 activation for maximal collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer cells. Oncogene 2006; 25(8): 1195-204.;
(b) Zhang W, Guo J, Li S, Ma T, Xu D, Han C, et al. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Scientific reports 2017; 7: 46352.
[http://dx.doi.org/10.1038/sj.onc.1209149] [PMID: 16205632]
[36]
(a) Sano S, Itami S, Takeda K, et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J 1999; 18(17): 4657-68.;
(b) Tian M, Tian D, Qiao X, Li J, Zhang L. Modulation of Myb-induced NF-kB-STAT3 signaling and resulting cisplatin resistance in ovarian cancer by dietary factors. Journal of cellular physiology 2019; 234(11): 21126-34.
[http://dx.doi.org/10.1093/emboj/18.17.4657] [PMID: 10469645]
[37]
(a) Silver DL, Naora H, Liu J, Cheng W, Montell DJ. Activated signal transducer and activator of transcription (STAT) 3: Localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64(10): 3550-8.;
(b) Tierney BJ, McCann GA, Cohn DE, Eisenhauer E, Sudhakar M, Kuppusamy P, et al. HO-3867, a STAT3 inhibitor induces apoptosis by inactivation of STAT3 activity in BRCA1-mutated ovarian cancer cells. Cancer biology & therapy 2012; 13(9): 766-75.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3959] [PMID: 15150111]
[38]
(a) Nguyen DX, Bos PD, Massagué J. Metastasis: From dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9(4): 274-84.;
(b) Tierney BJ, McCann GA, Naidu S, Rath KS, Saini U, Wanner R, et al. Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecologic oncology 2014; 135(1): 133-41.
[http://dx.doi.org/10.1038/nrc2622] [PMID: 19308067]
[39]
(a) Chen Z, Han ZC. STAT3: A critical transcription activator in angiogenesis. Med Res Rev 2008; 28(2): 185-200.;
(b) Tomida M, Ohtake H, Yokota T, Kobayashi Y, Kurosumi M. Stat3 up-regulates expression of nicotinamide N-methyltransferase in human cancer cells. Journal of cancer research and clinical oncology 2008; 134(5): 551-9.
[http://dx.doi.org/10.1002/med.20101] [PMID: 17457812]
[40]
(a) Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3(10): 721-32.;
(b) Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer 2015; 18(4): 774-83.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[41]
Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10(1): 48-54.
[http://dx.doi.org/10.1038/nm976] [PMID: 14702634]
[42]
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 2009; 9(11): 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[43]
Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 2013; 4(3): 176-85.
[http://dx.doi.org/10.1007/s13238-013-2084-3] [PMID: 23483479]
[44]
(a) Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol 2018; 18(5): 309-24.;
(b) Du J, Zhao Q, Liu K, Li Z, Fu F, Zhang K, et al. FGFR2/STAT3 Signaling Pathway Involves in the Development of MMTV-Related Spontaneous Breast Cancer in TA2 Mice. Frontiers in Oncology 2020; 10: 652.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[45]
Morales EE, Aggarwal BB, Kamat AM. Natural compounds targeting STAT3 mediated inflammation. Eur Urol 2016; 69(3): 405-6.
[http://dx.doi.org/10.1016/j.eururo.2015.09.033] [PMID: 26454706]
[46]
Sahin K, Orhan C, Tuzcu M, et al. Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev Res 2018; 11(1): 59-67.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0289] [PMID: 29089332]
[47]
Golonko A, Lewandowska H, Świsłocka R, Jasińska UT, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181: 111512.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.015] [PMID: 31404861]
[48]
Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A. Curcumin: A naturally occurring autophagy modulator. J Cell Physiol 2019; 234(5): 5643-54.
[http://dx.doi.org/10.1002/jcp.27404] [PMID: 30239005]
[49]
(a) Bao B, Ali S, Banerjee S, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 2012; 72(1): 335-45.;
(b) Kim S-L, Choi HS, Kim J-H, Jeong DK, Kim K-S, Lee D-S. Dihydrotanshinone-induced NOX5 activation inhibits breast cancer stem cell through the ROS/Stat3 signaling pathway. Oxidative Medicine and Cellular Longevity 2019.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2182] [PMID: 22108826]
[50]
(a) Fong D, Yeh A, Naftalovich R, Choi TH, Chan MM. Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: Towards targeting of cancer stem cells with phytochemicals. Cancer Lett 2010; 293(1): 65-72.;
(b) Li W, Saud SM, Young MR, Colburn NH, Hua B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Molecular and cellular biochemistry 2015; 406(1-2): 63-73.
[http://dx.doi.org/10.1016/j.canlet.2009.12.018] [PMID: 20089354]
[51]
(a) Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG. A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 2011; 11(5): 464-73.;
(b) Li Y, Zhang Y, Liu J. NETO2 promotes pancreatic cancer cell proliferation, invasion and migration via activation of the STAT3 signaling pathway. Cancer Management and Research 2019; 11: 5147.
[http://dx.doi.org/10.4161/cbt.11.5.14410] [PMID: 21193839]
[52]
Kakarala M, Brenner DE, Korkaya H, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2010; 122(3): 777-85.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[53]
(a) Lin L, Liu Y, Li H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer 2011; 105(2): 212-20.;
(b) Chen Z, Zhu R, Zheng J, Chen C, Huang C, Ma J, et al. Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget 2017; 8(30): 50023.
[http://dx.doi.org/10.1038/bjc.2011.200] [PMID: 21694723]
[54]
Kuttikrishnan S, Siveen KS, Prabhu KS, et al. Curcumin induces apoptotic cell death via inhibition of PI3-kinase/AKT pathway in B-precursor acute lymphoblastic leukemia. Front Oncol 2019; 9: 484.
[http://dx.doi.org/10.3389/fonc.2019.00484] [PMID: 31275848]
[55]
(a) Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 2019; 215(10): 152556.;
(b) Qin W, Tian Y, Zhang J, Liu W, Zhou Q, Hu S, et al. The double inhibition of PDK1 and STAT3-Y705 prevents liver metastasis in colorectal cancer. Scientific reports 2019; 9(1): 1-12.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[56]
(a) Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients 2019; 11(12): 2989.;
(b) Shen L, Zhang G, Lou Z, Xu G, Zhang G. Cryptotanshinone enhances the effect of Arsenic trioxide in treating liver cancer cell by inducing apoptosis through downregulating phosphorylated-STAT3 in vitro and in vivo. BMC complementary and alternative medicine 2017; 17(1): 1-9.
[http://dx.doi.org/10.3390/nu11122989] [PMID: 31817718]
[57]
Seo SU, Woo SM, Lee HS, Kim SH, Min K, Kwon TK. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene 2018; 37(38): 5205-20.
[http://dx.doi.org/10.1038/s41388-018-0345-6] [PMID: 29849119]
[58]
(a) Liu Y, Wang X, Zeng S, et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2018; 37(1): 303.;
(b) Wang Y, Lu H-l, Liu Y-d, Yang L-y, Jiang Q-k, Zhu X-j, et al. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway. Biomedicine & Pharmacotherapy 2017; 95: 1388-96.
[http://dx.doi.org/10.1186/s13046-018-0959-0] [PMID: 30518397]
[59]
(a) Chiablaem K, Lirdprapamongkol K, Keeratichamroen S, Surarit R, Svasti J. Curcumin suppresses vasculogenic mimicry capacity of hepatocellular carcinoma cells through STAT3 and PI3K/AKT inhibition. Anticancer Res 2014; 34(4): 1857-64.;
(b) Wang J, Zhang G, Dai C, Gao X, Wu J, Shen L, et al. Cryptotanshinone potentiates the antitumor effects of doxorubicin on gastric cancer cells via inhibition of STAT3 activity. Journal of International Medical Research 2017; 45(1): 220-30.
[PMID: 24692720]
[60]
Gong QZ, Xiao D, Feng F, Wen XD, Qu W. ent -Sauchinone as potential anticancer agent inhibiting migration and invasion of human liver cancer cells via suppressing the STAT3 signaling pathway. Chem Biodivers 2018; 15(4): e1800024.
[http://dx.doi.org/10.1002/cbdv.201800024] [PMID: 29495104]
[61]
Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 2003; 171(7): 3863-71.
[http://dx.doi.org/10.4049/jimmunol.171.7.3863] [PMID: 14500688]
[62]
Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3(5): 391-400.
[http://dx.doi.org/10.1038/nrd1381] [PMID: 15136787]
[63]
Yu H, Jove R. The STATs of cancer — new molecular targets come of age. Nat Rev Cancer 2004; 4(2): 97-105.
[http://dx.doi.org/10.1038/nrc1275] [PMID: 14964307]
[64]
Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21(13): 2000-8.
[http://dx.doi.org/10.1038/sj.onc.1205260] [PMID: 11960372]
[65]
(a) Xu Q, Briggs J, Park S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005; 24(36): 5552-60.;
(b) Zhang W, Yu W, Cai G, Zhu J, Zhang C, Li S, et al. A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell death & disease 2018; 9(11): 1-11.
[http://dx.doi.org/10.1038/sj.onc.1208719] [PMID: 16007214]
[66]
(a) Xu X, Zhu Y. Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. Am J Transl Res 2017; 9(8): 3633-41.;
(b) Zhang X-P, Jiang Y-B, Zhong C-Q, Ma N, Zhang E-B, Zhang F, et al. PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 Signalling pathway. Cellular Physiology and Biochemistry 2018; 47(4): 1643-54.
[PMID: 28861154]
[67]
Wu L, Guo L, Liang Y, Liu X, Jiang L, Wang L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep 2015; 34(6): 3311-7.
[http://dx.doi.org/10.3892/or.2015.4279] [PMID: 26397387]
[68]
Wang Y, Shan X, Dai Y, et al. Curcumin analog L48H37 prevents lipopolysaccharide-induced TLR4 signaling pathway activation and sepsis via targeting MD2. J Pharmacol Exp Ther 2015; 353(3): 539-50.
[http://dx.doi.org/10.1124/jpet.115.222570] [PMID: 25862641]
[69]
Liang G, Shao L, Wang Y, et al. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem 2009; 17(6): 2623-31.
[http://dx.doi.org/10.1016/j.bmc.2008.10.044] [PMID: 19243951]
[70]
Feng C, Xia Y, Zou P, et al. Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells. Mol Carcinog 2017; 56(7): 1765-77.
[http://dx.doi.org/10.1002/mc.22633] [PMID: 28218464]
[71]
Wang X, Zhang Y, Zhang X, Tian W, Feng W, Chen T. The curcumin analogue hydrazinocurcumin exhibits potent suppressive activity on carcinogenicity of breast cancer cells via STAT3 inhibition. Int J Oncol 2012; 40(4): 1189-95.
[http://dx.doi.org/10.3892/ijo.2011.1298] [PMID: 22179587]
[72]
Cucuzza LS, Motta M, Miretti S, Accornero P, Baratta M. Curcuminoid-phospholipid complex induces apoptosis in mammary epithelial cells by STAT-3 signaling. Exp Mol Med 2008; 40(6): 647-57.
[http://dx.doi.org/10.3858/emm.2008.40.6.647] [PMID: 19116450]
[73]
Glienke W, Maute L, Wicht J, Bergmann L. Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Invest 2009; 28(2): 166-71.
[http://dx.doi.org/10.3109/07357900903287006] [PMID: 20121547]
[74]
Lin L, Hutzen B, Zuo M, et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res 2010; 70(6): 2445-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2468] [PMID: 20215512]
[75]
Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech 2018; 19(1): 166-75.
[http://dx.doi.org/10.1208/s12249-017-0833-y] [PMID: 28639178]
[76]
Hanif R, Qiao L, Shiff SJ, Rigas B. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 1997; 130(6): 576-84.
[http://dx.doi.org/10.1016/S0022-2143(97)90107-4] [PMID: 9422331]
[77]
Chauhan D. Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des 2002; 8(19): 1695-706.
[http://dx.doi.org/10.2174/1381612023394016] [PMID: 12171541]
[78]
(a) Kawamori T, Lubet R, Steele VE, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 1999; 59(3): 597-601.;
(b) Sun X, Xu Q, Zeng L, Xie L, Zhao Q, Xu H, et al. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3Tyr705 phosphorylation. Cancer medicine 2020; 9(22): 8685-700.
[PMID: 9973206]
[79]
(a) Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett 2007; 255(2): 170-81.;
(b) Wang W, Zhao C, Jou D, LÜ J, Zhang C, Lin L. et al. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer research 2013; 33(10): 4279-84.
[http://dx.doi.org/10.1016/j.canlet.2007.03.005] [PMID: 17448598]
[80]
Ohori H, Yamakoshi H, Tomizawa M, et al. Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther 2006; 5(10): 2563-71.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0174] [PMID: 17041101]
[81]
Lin L, Fuchs J, Li C, Olson V, Bekaii-Saab T, Lin J. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells. Biochem Biophys Res Commun 2011; 416(3-4): 246-51.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.112] [PMID: 22074823]
[82]
(a) Bixel K, Saini U, Kumar Bid H, et al. Targeting STAT3 by HO3867 induces apoptosis in ovarian clear cell carcinoma. Int J Cancer 2017; 141(9): 1856-66.;
(b) Chelsky ZL, Yue P, Kondratyuk TP, Paladino D, Pezzuto JM, Cushman M, et al. A Resveratrol analogue promotes ERKMAPK–dependent Stat3 serine and tyrosine phosphorylation alterations and antitumor effects in vitro against human tumor cells. Molecular pharmacology 2015; 88(3): 524-33.
[http://dx.doi.org/10.1002/ijc.30847] [PMID: 28646535]
[83]
Saydmohammed M, Joseph D, Syed V. Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem 2010; 110(2): 447-56.
[http://dx.doi.org/10.1002/jcb.22558] [PMID: 20235152]
[84]
Seo JH, Jeong KJ, Oh WJ, et al. Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: Their inhibition by curcumin. Cancer Lett 2010; 288(1): 50-6.
[http://dx.doi.org/10.1016/j.canlet.2009.06.023] [PMID: 19647363]
[85]
Khan AQ, Ahmed EI, Elareer N, et al. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int J Mol Sci 2020; 21(2): 438.
[http://dx.doi.org/10.3390/ijms21020438] [PMID: 31936675]
[86]
(a) Bill MA, Nicholas C, Mace TA, et al. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines. Plose One 2012.;
(b) Kim JE, Kim HS, Shin Y-J, Lee CS, Won C, Lee S-A, et al. LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression. Experimental & molecular medicine 2008; 40(5): 514-22.
[http://dx.doi.org/10.1371/journal.pone.0040724]
[87]
(a) Dabir S, Kluge A, Kresak A, et al. Low PIAS3 expression in malignant mesothelioma is associated with increased STAT3 activation and poor patient survival. Clin Cancer Res 2014; 20(19): 5124-32.;
(b) Kotha A, Sekharam M, Cilenti L, Siddiquee K, Khaled A, Zervos AS, et al. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Molecular cancer therapeutics 2006; 5(3): 621-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1233] [PMID: 25124686]
[88]
Rajamanickam V, Zhu H, Feng C, et al. Novel allylated monocarbonyl analogs of curcumin induce mitotic arrest and apoptosis by reactive oxygen species-mediated endoplasmic reticulum stress and inhibition of STAT3. Oncotarget 2017; 8(60): 101112-29.
[http://dx.doi.org/10.18632/oncotarget.20924] [PMID: 29254150]
[89]
Pandey A, Vishnoi K, Mahata S, et al. Berberine and curcumin target survivin and STAT3 in gastric cancer cells and synergize actions of standard chemotherapeutic 5-fluorouracil. Nutr Cancer 2015; 67(8): 1295-306.
[http://dx.doi.org/10.1080/01635581.2015.1085581] [PMID: 26492225]
[90]
Wu B, Yao H, Wang S, Xu R. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspa-se-3 activation. Biochem Biophys Res Commun 2013; 434(1): 75-80.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.063] [PMID: 23545262]
[91]
Xia Z, Gu J, Ansley DM, Xia F, Yu J. Antioxidant therapy with Salvia miltiorrhiza decreases plasma endothelin-1 and thromboxane B2 after cardiopulmonary bypass in patients with congenital heart disease. J Thorac Cardiovasc Surg 2003; 126(5): 1404-10.
[http://dx.doi.org/10.1016/S0022-5223(03)00970-X] [PMID: 14666012]
[92]
Fish JM, Welchons DR, Kim YS, Lee SH, Ho WK, Antzelevitch C. Dimethyl lithospermate B, an extract of Danshen, suppresses arrhythmogenesis associated with the Brugada syndrome. Circulation 2006; 113(11): 1393-400.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.601690] [PMID: 16534004]
[93]
(a) Zhou L, Zuo Z, Chow MSS. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 2005; 45(12): 1345-59.;
(b) Li S, Zhang W, Yang Y, Ma T, Guo J, Wang S, et al. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. European journal of medicinal chemistry 2016; 124: 1006-18.
[http://dx.doi.org/10.1177/0091270005282630] [PMID: 16291709]
[94]
Boon H, Wong J. Botanical medicine and cancer: A review of the safety and efficacy. Expert Opin Pharmacother 2004; 5(12): 2485-501.
[http://dx.doi.org/10.1517/14656566.5.12.2485] [PMID: 15571467]
[95]
Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lü J. Tanshinones: Sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 2012; 13(12): 13621-66.
[http://dx.doi.org/10.3390/ijms131013621] [PMID: 23202971]
[96]
Lin YY, Lee IY, Huang WS, et al. Danshen improves survival of patients with colon cancer and dihydroisotanshinone I inhibit the proliferation of colon cancer cells via apoptosis and skp2 signaling pathway. J Ethnopharmacol 2017; 209: 305-16.
[http://dx.doi.org/10.1016/j.jep.2017.08.011] [PMID: 28807849]
[97]
Liu JJ, Liu WD, Yang HZ, et al. Inactivation of PI3k/Akt signaling pathway and activation of caspase-3 are involved in tanshinone I-induced apoptosis in myeloid leukemia cells in vitro. Ann Hematol 2010; 89(11): 1089-97.
[http://dx.doi.org/10.1007/s00277-010-0996-z] [PMID: 20512574]
[98]
Nizamutdinova IT, Lee GW, Lee JS, et al. Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 2008; 29(10): 1885-92.
[http://dx.doi.org/10.1093/carcin/bgn151] [PMID: 18586687]
[99]
Tung Y-T, Chen H-L, Lee C-Y, et al. Active component of Danshen (Salvia miltiorrhiza Bunge), tanshinone I, attenuates lung tumorigenesis via inhibitions of VEGF, cyclin A, and cyclin B expressions. Evid Based Complementary Altern 2013.
[100]
Wang Y, Li JX, Wang YQ, Miao ZH. Tanshinone I inhibits tumor angiogenesis by reducing STAT3 phosphorylation at TYR705 and hypoxia-induced HIF-1α accumulation in both endothelial and tumor cells. Oncotarget 2015; 6(18): 16031-42.
[http://dx.doi.org/10.18632/oncotarget.3648] [PMID: 26202747]
[101]
Wang W, Li J, Ding Z, et al. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J Cell Mol Med 2019; 23(9): 6454-65.
[http://dx.doi.org/10.1111/jcmm.14539] [PMID: 31293090]
[102]
(a) Li Y, Gong Y, Li L, Abdolmaleky HM, Zhou JR. Bioactive tanshinone I inhibits the growth of lung cancer in part via downregulation of Aurora A function. Mol Carcinog 2013; 52(7): 535-43.;
(b) Boykin C, Zhang G, Chen Y, Zhang R, Fan X, Yang W, et al. Cucurbitacin IIa: a novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation. British journal of cancer 2011; 104(5): 781-9.
[http://dx.doi.org/10.1002/mc.21888] [PMID: 22389266]
[103]
Lo HW, Hsu SC, Xia W, et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 2007; 67(19): 9066-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0575] [PMID: 17909010]
[104]
Tang C, Xue H, Huang H, Wang X. Tanshinone IIA inhibits constitutive STAT3 activation, suppresses proliferation, and induces apoptosis in rat C6 glioma cells. Neurosci Lett 2010; 470(2): 126-9.
[http://dx.doi.org/10.1016/j.neulet.2009.12.069] [PMID: 20045721]
[105]
Zhang Y, Guo S, Fang J, Peng B, Zhang Y, Cao T. Tanshinone IIA inhibits cell proliferation and tumor growth by downregulating STAT3 in human gastric cancer. Exp Ther Med 2018; 16(4): 2931-7.
[http://dx.doi.org/10.3892/etm.2018.6562] [PMID: 30214513]
[106]
(a) Guo C, Su J, Li Z, et al. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. Oncotarget 2015; 6(33): 34402-13.;
(b) Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 2010; 31(12): 2097-104.
[http://dx.doi.org/10.18632/oncotarget.5353] [PMID: 26417930]
[107]
(a) Park E, Park J, Han SW, et al. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations. Int J Oncol 2012; 40(4): 1259-66.;
(b) Guo H, Kuang S, Song Q-l, Liu M, Sun X-x, Yu Q. Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacologica Sinica 2018; 39(3): 425-37.
[http://dx.doi.org/10.3892/ijo.2011.1290] [PMID: 22159814]
[108]
Yang J, Chatterjee-Kishore M, Staugaitis SM, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 2005; 65(3): 939-47.
[http://dx.doi.org/10.1158/0008-5472.939.65.3] [PMID: 15705894]
[109]
Sansone P, Storci G, Tavolari S, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117(12): 3988-4002.
[http://dx.doi.org/10.1172/JCI32533] [PMID: 18060036]
[110]
(a) Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139(4): 693-706.;
(b) Liu T, Peng H, Zhang M, Deng Y, Wu Z. Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. European journal of pharmacology 2010; 641(1): 15-22.
[http://dx.doi.org/10.1016/j.cell.2009.10.014] [PMID: 19878981]
[111]
Yoon S, Woo SU, Kang JH, et al. NF-κB and STAT3 cooperatively induce IL6 in starved cancer cells. Oncogene 2012; 31(29): 3467-81.
[http://dx.doi.org/10.1038/onc.2011.517] [PMID: 22105366]
[112]
Lin C, Wang L, Wang H, Yang L, Guo H, Wang X. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem 2013; 114(9): 2061-70.
[http://dx.doi.org/10.1002/jcb.24553] [PMID: 23553622]
[113]
Huang SY, Chang SF, Liao KF, Chiu SC. Tanshinone IIA inhibits epithelial-mesenchymal transition in bladder cancer cells via modulation of STAT3-CCL2 signaling. Int J Mol Sci 2017; 18(8): 1616.
[http://dx.doi.org/10.3390/ijms18081616] [PMID: 28757590]
[114]
Cragg GM, Newman DJ. Nature: A vital source of leads for anticancer drug development. Phytochem Rev 2009; 8(2): 313-31.
[http://dx.doi.org/10.1007/s11101-009-9123-y]
[115]
Zhou T, Shi Q, Chen CH, et al. Anti-AIDS agents 85. Design, synthesis, and evaluation of 1R,2R-dicamphanoyl-3,3-dimethyldihydropyrano-[2,3-c]xanthen-7(1H)-one (DCX) derivatives as novel anti-HIV agents. Eur J Med Chem 2012; 47(1): 86-96.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.025] [PMID: 22063755]
[116]
Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 2020; 9(1): 217.
[http://dx.doi.org/10.3390/cells9010217] [PMID: 31952344]
[117]
Pallandre JR, Brillard E, Créhange G, et al. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: Implications in graft-versus-host disease and antitumor immunity. J Immunol 2007; 179(11): 7593-604.
[http://dx.doi.org/10.4049/jimmunol.179.11.7593] [PMID: 18025205]
[118]
Noori S, Nourbakhsh M, Imani H, Deravi N, Salehi N, Abdolvahabi Z. Naringenin and cryptotanshinone shift the immune response towards Th1 and modulate T regulatory cells via JAK2/STAT3 pathway in breast cancer. BMC Complementary Medicine and Therapies 2022; 22(1): 145.
[http://dx.doi.org/10.1186/s12906-022-03625-x] [PMID: 35606804]
[119]
Guo S, Luo W, Liu L, et al. Isocryptotanshinone, a STAT3 inhibitor, induces apoptosis and pro-death autophagy in A549 lung cancer cells. J Drug Target 2016; 24(10): 934-42.
[http://dx.doi.org/10.3109/1061186X.2016.1157882] [PMID: 26904961]
[120]
Shin DS, Kim HN, Shin KD, et al. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 2009; 69(1): 193-202.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2575] [PMID: 19118003]
[121]
(a) Yang Y, Cao Y, Chen L, et al. Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells. Cancer Med 2018; 7(9): 4610-8.;
(b) Shen G-N, Wang C, Luo Y-H, Wang J-R, Wang R, Xu W-T, et al. 2-(6-Hydroxyhexylthio)-5, 8-dimethoxy-1, 4-naphthoquinone Induces Apoptosis through ROS-Mediated MAPK, STAT3, and NF-κB Signalling Pathways in Lung Cancer A549 Cells. Evidence-Based Complementary and Alternative Medicine 2020.
[http://dx.doi.org/10.1002/cam4.1691] [PMID: 30094960]
[122]
Yan H, Guo BY, Zhang S. Cancer-associated fibroblasts attenuate Cisplatin-induced apoptosis in ovarian cancer cells by promoting STAT3 signaling. Biochem Biophys Res Commun 2016; 470(4): 947-54.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.131] [PMID: 26826383]
[123]
(a) Zhao Z, Xiong S, Wang R, et al. Peri-tumor fibroblasts promote tumorigenesis and metastasis of hepatocellular carcinoma via Interleukin6/STAT3 signaling pathway. Cancer Manag Res 2019; 11: 2889-901.;
(b) Wang J-R, Shen G-N, Luo Y-H, Piao X-J, Zhang Y, Wang H, et al. 2-(4-methoxyphenylthio)-5, 8-dimethoxy-1, 4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells. Journal of Chemotherapy 2019; 31(4): 214-26.
[http://dx.doi.org/10.2147/CMAR.S192263] [PMID: 31118769]
[124]
Kang JH, Li MJ, Luan PP, et al. NLRC3 silencing accelerates the invasion of hepatocellular carcinoma cell via IL-6/JAK2/STAT3 pathway activation. Cell Biol Int 2020; 44(10): 2053-64.
[http://dx.doi.org/10.1002/cbin.11414] [PMID: 32584509]
[125]
(a) Ge Y, Yang B, Chen Z, Cheng R. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway. Mol Med Rep 2015; 12(5): 7782-8.;
(b) Thaper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, et al. Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Scientific reports 2018; 8(1): 1-9.
[http://dx.doi.org/10.3892/mmr.2015.4379] [PMID: 26459366]
[126]
Wang H, Liu Z, Guan L, et al. LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppresses colorectal cancer growth and metastasis. Pharmacol Res 2020; 153: 104661.
[http://dx.doi.org/10.1016/j.phrs.2020.104661] [PMID: 31982491]
[127]
(a) Chen L, Yang Q, Zhang H. Wan L, Xin B, Cao Y, Zhang J, Guo C Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway. Journal of ethnopharmacology 2020; 260: 113066.;
(b) Busker S, Page B, Arnér ES. To inhibit TrxR1 is to inactivate STAT3-Inhibition of TrxR1 enzymatic function by STAT3 small molecule inhibitors. Redox biology 2020; 36: 101646.
[http://dx.doi.org/10.3389/fonc.2020.00491] [PMID: 32328465]
[128]
Kim LH, Khadka S, Shin JA, et al. Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3. Oncotarget 2017 Oct 10; 8(53): 91306.
[http://dx.doi.org/10.1016/j.canlet.2017.12.007] [PMID: 29247826]
[129]
Don-Doncow N, Escobar Z, Johansson M, Kjellström S, Garcia V, Munoz E, et al. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. Journal of Biological Chemistry 2014; 289(23): 15969-78.
[http://dx.doi.org/10.18632/oncotarget.20444] [PMID: 29207645]
[130]
(a) Zhou M, Zhao J, Zhang Q, et al. Nicotine upregulates the level of Mcl-1 through STAT3 in H1299 cells. J Cancer 2020; 11(5): 1270-6.;
(b) Escobar Z, Bjartell A, Canesin G, Evans-Axelsson S, Sterner O, Hellsten R, et al. Preclinical characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ, 3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. Journal of medicinal chemistry 2016; 59(10): 4551-62.
[http://dx.doi.org/10.7150/jca.35453] [PMID: 31956373]
[131]
(a) Yang IH, Hong SH, Jung M, et al. Cryptotanshinone chemosensitivity potentiation by TW-37 in human oral cancer cell lines by targeting STAT3–Mcl-1 signaling. Cancer Cell Int 2020; 20(1): 405.;
(b) Handle F, Puhr M, Schaefer G, Lorito N, Hoefer J, Gruber M, et al. The STAT3 inhibitor galiellalactone reduces IL6-mediated AR activity in benign and malignant prostate models. Molecular cancer therapeutics 2018; 17(12): 2722-31.
[http://dx.doi.org/10.1186/s12935-020-01495-2] [PMID: 32863764]
[132]
(a) Dong B, Liang Z, Chen Z, et al. Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. Sci China Life Sci 2018; 61(9): 999-1009.;
(b) Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. The Prostate 2008; 68(3): 269-80.
[http://dx.doi.org/10.1007/s11427-018-9324-y] [PMID: 30054832]
[133]
(a) Chen YT, Kao CJ, Huang HY, et al. Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in melanoma. J Funct Foods 2017; 31: 20-31.;
(b) Hellsten R, Lilljebjörn L, Johansson M, Leandersson K, Bjartell A. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. The Prostate 2019; 79(14): 1611-21.
[http://dx.doi.org/10.1016/j.jff.2017.01.005]
[134]
Ji Y, Liu Y, Xue N, et al. Cryptotanshinone inhibits esophageal squamous-cell carcinoma in vitro and in vivo through the suppression of STAT3 activation. OncoTargets Ther 2019; 12: 883-96.
[http://dx.doi.org/10.2147/OTT.S187777] [PMID: 30774375]
[135]
Ko JH, Sethi G, Um JY, et al. The role of resveratrol in cancer therapy. Int J Mol Sci 2017; 18(12): 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[136]
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis Oncol 2017; 1(1): 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[137]
Byrd JC, Shinn C, Waselenko JK, et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood 1998; 92(10): 3804-16.
[http://dx.doi.org/10.1182/blood.V92.10.3804.422k36_3804_3816] [PMID: 9808574]
[138]
(a) Wang H, Jia R, Lv T, Wang M, He S, Zhang X. Resveratrol suppresses tumor progression via inhibiting STAT3/HIF-1α/VEGF pathway in an orthotopic rat model of non-small-cell lung cancer (NSCLC). OncoTargets Ther 2020; 13: 7057-63.;
(b) Qiu HY, Fu JY, Yang MK, Han HW, Wang PF, Zhang YH, et al. Identification of new shikonin derivatives as STAT3 inhibitors. Biochem Pharmacol 2017; 146: 74-86.
[http://dx.doi.org/10.2147/OTT.S259016] [PMID: 32801741]
[139]
(a) Li X, Wang D, Zhao QC, Shi T, Chen J. Resveratrol inhibited non–small cell lung cancer through inhibiting STAT-3 signaling. Am J Med Sci 2016; 352(5): 524-30.;
(b) Qiu HY, Zhu X, Luo YL, Lin HY, Tang CY, Qi JL, et al. Identification of New Shikonin Derivatives as Antitumor Agents Targeting STAT3 SH2 Domain. Sci Rep 2017; 7(1): 2863.
[http://dx.doi.org/10.1016/j.amjms.2016.08.027] [PMID: 27865301]
[140]
Zhang P, Yang B, Yao YY, et al. PIAS3, SHP2 and SOCS3 Expression patterns in Cervical Cancers: Relevance with activation and resveratrol-caused inactivation of STAT3 signaling. Gynecol Oncol 2015; 139(3): 529-35.
[http://dx.doi.org/10.1016/j.ygyno.2015.09.087] [PMID: 26432044]
[141]
Zhang P, Li H, Yang B, et al. Biological significance and therapeutic implication of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. Genes Cancer 2014; 5(5-6): 154-64.
[http://dx.doi.org/10.18632/genesandcancer.15] [PMID: 25061499]
[142]
Rodriguez-Smith JJ, Verweyen EL, Clay GM, et al. Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: A cohort study. Lancet Rheumatol 2021; 3(8): e574-84.
[http://dx.doi.org/10.1016/S2665-9913(21)00139-9] [PMID: 34124694]
[143]
(a) Li D, Wang G, Jin G, et al. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int J Mol Med 2019; 43(1): 630-40.;
(b) Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M, et al. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother 2019; 68(3): 489-502.
[PMID: 30387805]
[144]
Chung SS, Dutta P, Austin D, Wang P, Awad A, Vadgama JV. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget 2018; 9(68): 32943-57.
[http://dx.doi.org/10.18632/oncotarget.25993] [PMID: 30250641]
[145]
Peng L, Jiang D. Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. PLoS One 2018; 13(10): e0205918.
[http://dx.doi.org/10.1371/journal.pone.0205918] [PMID: 30356255]
[146]
Lu J, Zhang L, Chen X, et al. SIRT1 counteracted the activation of STAT3 and NF-κB to repress the gastric cancer growth. Int J Clin Exp Med 2014; 7(12): 5050-8.
[PMID: 25664004]
[147]
Zhong LX, Li H, Wu ML, et al. Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells. J Ovarian Res 2015; 8(1): 25.
[http://dx.doi.org/10.1186/s13048-015-0152-4] [PMID: 25896424]
[148]
Zhong LX, Nie JH, Liu J, Lin LZ. Correlation of ARHI upregulation with growth suppression and STAT3 inactivation in resveratrol-treated ovarian cancer cells. Cancer Biomark 2018; 21(4): 787-95.
[http://dx.doi.org/10.3233/CBM-170483] [PMID: 29504523]
[149]
Wen W, Lowe G, Roberts C, et al. Pterostilbene suppresses ovarian cancer growth via induction of apoptosis and blockade of cell cycle progression involving inhibition of the STAT3 pathway. Int J Mol Sci 2018; 19(7): 1983.
[http://dx.doi.org/10.3390/ijms19071983] [PMID: 29986501]
[150]
Baek SH, Ko JH, Lee H, et al. Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine 2016; 23(5): 566-77.
[http://dx.doi.org/10.1016/j.phymed.2016.02.011] [PMID: 27064016]
[151]
Quoc Trung L, Espinoza JL, Takami A, Nakao S. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS One 2013; 8(1): e55183.
[http://dx.doi.org/10.1371/journal.pone.0055183] [PMID: 23372833]
[152]
(a) Duan J, Yue W, e JY. et al. In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFκB signaling in pancreatic cancer cells. Sci Rep 2016; 6(1): 31672.;
(b) Yu C, Zhang Q, Zhang HY, Zhang X, Huo X, Cheng E, et al. Targeting the intrinsic inflammatory pathway: honokiol exerts proapoptotic effects through STAT3 inhibition in transformed Barrett's cells. Am J Physiol Gastrointest Liver Physiol 2012; 303(5): G561-9.
[http://dx.doi.org/10.1038/srep31672] [PMID: 28442746]
[153]
Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: Spotlight on nonalcoholic fatty liver disease. Ann Transl Med 2017; 5(13): 270.
[http://dx.doi.org/10.21037/atm.2017.04.41] [PMID: 28758096]
[154]
Li Y, Zhu W, Li J, Liu M, Wei M. Resveratrol suppresses the STAT3 signaling pathway and inhibits proliferation of high glucose-exposed HepG2 cells partly through SIRT1. Oncol Rep 2013; 30(6): 2820-8.
[http://dx.doi.org/10.3892/or.2013.2748] [PMID: 24064760]
[155]
(a) Sun H, Zhang Z, Zhang T, et al. Resveratrol reverses cigarette smoke-induced urocystic epithelial–mesenchymal transition via suppression of STAT3 phosphorylation in SV-HUC-1-immortalized human urothelial cells. OncoTargets Ther 2019; 12: 10227-37.;
(b) Ahmad B, Gamallat Y, Su P, Husain A, Rehman AU, Zaky MY, et al. Alantolactone induces apoptosis in THP-1 cells through STAT3, survivin inhibition, and intrinsic apoptosis pathway. Chem Biol Drug Des 2020.
[http://dx.doi.org/10.2147/OTT.S226580] [PMID: 32063715]
[156]
(a) Yang YP, Chang YL, Huang PI, et al. Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 2012; 227(3): 976-93.;
(b) Chen W, Li P, Liu Y, Yang Y, Ye X, Zhang F, et al. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J Exp Clin Cancer Res 2018; 37(1): 309.
[http://dx.doi.org/10.1002/jcp.22806] [PMID: 21503893]
[157]
Lee MH, Kundu JK, Keum YS, Cho YY, Surh YJ, Choi BY. Resveratrol inhibits IL-6-induced transcriptional activity of AR and STAT3 in human prostate cancer LNCaP-FGC cells. Biomol Ther (Seoul) 2014; 22(5): 426-30.
[http://dx.doi.org/10.4062/biomolther.2014.061] [PMID: 25414773]
[158]
Wu J, Li YT, Tian XT, et al. STAT3 signaling statuses determine the fate of resveratrol-treated anaplastic thyroid cancer cells. Cancer Biomark 2020; 27(4): 461-9.
[http://dx.doi.org/10.3233/CBM-191010] [PMID: 31958078]
[159]
Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016; 17(10): 1374-85.
[http://dx.doi.org/10.1016/S1470-2045(16)30364-3] [PMID: 27592805]
[160]
Zhang ZR, Gao MX, Yang K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp Ther Med 2017; 14(1): 805-12.
[http://dx.doi.org/10.3892/etm.2017.4547] [PMID: 28673003]
[161]
Kim SR, Seo HS, Choi H-S, et al. Trichosanthes kirilowii ethanol extract and cucurbitacin D inhibit cell growth and induce apoptosis through inhibition of STAT3 activity in breast cancer cells. Evid Based Complementary Altern Med 2013; 2013: 975350.
[162]
Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM. Erratum: Cucurbitacin Q: A selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 2008; 27(9): 1344-4.
[http://dx.doi.org/10.1038/sj.onc.1211028]
[163]
Xu J, Chen Y, Yang R, et al. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch Biochem Biophys 2020; 684: 108314.
[http://dx.doi.org/10.1016/j.abb.2020.108314] [PMID: 32088220]
[164]
(a) Zhang M, Bian ZG, Zhang Y, et al. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells. Mol Med Rep 2014; 10(6): 2905-11.;
(b) Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proceedings of the National Academy of Sciences 2005; 102(17): 5998-6003.
[http://dx.doi.org/10.3892/mmr.2014.2581] [PMID: 25242136]
[165]
Tian T, Li X, Zhang J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci 2019; 20(3): 755.
[http://dx.doi.org/10.3390/ijms20030755] [PMID: 30754640]
[166]
Ni Y, Wu S, Wang X, et al. Cucurbitacin I induces pro-death autophagy in A549 cells via the ERK‐mTOR‐STAT3 signaling pathway. J Cell Biochem 2018; 119(7): 6104-12.
[http://dx.doi.org/10.1002/jcb.26808] [PMID: 29575175]
[167]
Chan KT, Li K, Liu SL, Chu KH, Toh M, Xie WD. Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Lett 2010; 289(1): 46-52.
[http://dx.doi.org/10.1016/j.canlet.2009.07.015] [PMID: 19700240]
[168]
Qi J, Xia G, Huang CR, Wang JX, Zhang J. JSI-124 (Cucurbitacin I) inhibits tumor angiogenesis of human breast cancer through reduction of STAT3 phosphorylation. Am J Chin Med 2015; 43(2): 337-47.
[http://dx.doi.org/10.1142/S0192415X15500226] [PMID: 25787299]
[169]
Ku JM, Kim SR, Hong SH, et al. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol Cell Biochem 2015; 409(1-2): 33-43.
[http://dx.doi.org/10.1007/s11010-015-2509-9] [PMID: 26169986]
[170]
(a) Chau MN, Banerjee PP. Development of a STAT3 reporter prostate cancer cell line for high throughput screening of STAT3 activators and inhibitors. Biochem Biophys Res Commun 2008; 377(2): 627-31.;
(b) Kim YH, Yoon YJ, Lee Y-J, Kim C-H, Lee S, Choung DH, et al. Piperlongumine derivative, CG-06, inhibits STAT3 activity by direct binding to STAT3 and regulating the reactive oxygen species in DU145 prostate carcinoma cells. Bioorganic & Medicinal Chemistry Letters 2018; 28(14): 2566-72.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.025] [PMID: 18930029]
[171]
(a) Liu Y, Yang H, Guo Q, et al. Cucurbitacin E inhibits Huh7 hepatoma carcinoma cell proliferation and metastasis via suppressing MAPKs and JAK/STAT3 pathways. Molecules 2020; 25(3): 560.;
(b) Lee Y-J, Song H, Yoon YJ, Park S-J, Kim S-Y, Cho Han D, et al. Ethacrynic acid inhibits STAT3 activity through the modulation of SHP2 and PTP1B tyrosine phosphatases in DU145 prostate carcinoma cells. Biochemical Pharmacology 2020; 175.
[http://dx.doi.org/10.3390/molecules25030560] [PMID: 32012950]
[172]
Sun C, Zhang M, Shan X, et al. Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling. J Cancer Res Clin Oncol 2010; 136(4): 603-10.
[http://dx.doi.org/10.1007/s00432-009-0698-x] [PMID: 19816711]
[173]
Zhou J, Zhao T, Ma L, Liang M, Guo YJ, Zhao LM. Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget 2017; 8(61): 103167-81.
[http://dx.doi.org/10.18632/oncotarget.21704] [PMID: 29262554]
[174]
Yang MH, Jung SH, Chinnathambi A, et al. Attenuation of STAT3 signaling cascade by daidzin can enhance the apoptotic potential of bortezomib against multiple myeloma. Biomolecules 2019; 10(1): 23.
[http://dx.doi.org/10.3390/biom10010023] [PMID: 31878046]
[175]
Chang CJ, Chiang CH, Song WS, et al. Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells. Child's Nervous System 2012 Mar; 28: 363-73.
[http://dx.doi.org/10.1002/cmdc.202000872] [PMID: 33278061]
[176]
Xu WT, Shen GN, Luo YH, et al. New naphthalene derivatives induce human lung cancer A549 cell apoptosis via ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Chem Biol Interact 2019; 304: 148-57.
[http://dx.doi.org/10.1016/j.cbi.2019.03.004] [PMID: 30871965]
[177]
Kawazoe A, Kuboki Y, Bando H, et al. Phase 1 study of napabucasin, a cancer stemness inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85(5): 855-62.
[http://dx.doi.org/10.1007/s00280-020-04059-3] [PMID: 32236642]
[178]
(a) Jonker DJ, Nott L, Yoshino T, et al. Napabucasin versus placebo in refractory advanced colorectal cancer: A randomised phase 3 trial. Lancet Gastroenterol Hepatol 2018; 3(4): 263-70.;
(b) Yao X, Zhu F, Zhao Z, Liu C, Luo L, Yin Z. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway. Journal of cellular biochemistry 2011; 112(10): 2837-49.
[http://dx.doi.org/10.1016/S2468-1253(18)30009-8] [PMID: 29397354]
[179]
Yan W, Tu B, Liu Y, et al. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expressions. Bone Res 2013; 1(4): 362-70.
[http://dx.doi.org/10.4248/BR201304007] [PMID: 26273514]
[180]
Löcken H, Clamor C, Müller K. Napabucasin and related heterocycle-fused naphthoquinones as STAT3 inhibitors with antiproliferative activity against cancer cells. J Nat Prod 2018; 81(7): 1636-44.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00247] [PMID: 30003778]
[181]
Cao Y, Yin X, Jia Y, Liu B, Wu S, Shang M. Plumbagin, a natural naphthoquinone, inhibits the growth of esophageal squamous cell carcinoma cells through inactivation of STAT3. Int J Mol Med 2018; 42(3): 1569-76.
[http://dx.doi.org/10.3892/ijmm.2018.3722] [PMID: 29901084]
[182]
(a) Cao HH, Liu DY, Lai YC, et al. Inhibition of the STAT3 signaling pathway contributes to the anti-melanoma activities of shikonin. Front Pharmacol 2020; 11: 748.;
(b) Lee KC, Chang HH, Chung YH, Lee TY. Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-κB pathway. Journal of ethnopharmacology 2011; 135(3): 678-84.
[http://dx.doi.org/10.3389/fphar.2020.00748] [PMID: 32536866]
[183]
Hafeez BB, Zhong W, Mustafa A, Fischer JW, Witkowsky O, Verma AK. Plumbagin inhibits prostate cancer development in TRAMP mice via targeting PKC, Stat3 and neuroendocrine markers. Carcinogenesis 2012; 33(12): 2586-92.
[http://dx.doi.org/10.1093/carcin/bgs291] [PMID: 22976928]
[184]
Hafeez BB, Fischer JW, Singh A, et al. Plumbagin inhibits prostate carcinogenesis in intact and castrated PTEN knockout mice via targeting PKCϵ, Stat3, and epithelial-to-mesenchymal transition markers. Cancer Prev Res 2015; 8(5): 375-86.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0231] [PMID: 25627799]
[185]
(a) Sandur SK, Pandey MK, Sung B, Aggarwal BB. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: Potential role in chemosensitization. Mol Cancer Res 2010; 8(1): 107-18.;
(b) Chen SR, Li F, Ding MY, Wang D, Zhao Q, Wang Y, et al. Andrographolide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorganic & medicinal chemistry 2018; 26(18): 5053-61.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0257] [PMID: 20068065]
[186]
Wang H, Luo YH, Shen GN, et al. Two novel 1,4 naphthoquinone derivatives induce human gastric cancer cell apoptosis and cell cycle arrest by regulating reactive oxygen species mediated MAPK/Akt/STAT3 signaling pathways. Mol Med Rep 2019; 20(3): 2571-82.
[http://dx.doi.org/10.3892/mmr.2019.10500] [PMID: 31322207]
[187]
(a) Liu, Liu P, Mao H, Wanga A, Zhang X. Emodin sensitizes paclitaxel-resistant human ovarian cancer cells to paclitaxel-induced apoptosis in vitro. Oncol Rep 2009; 21(6): 1605-10.;
(b) Song X, Wang M, Zhang L, Zhang J, Wang X, Liu W, et al. Changes in cell ultrastructure and inhibition of JAK1/STAT3 signaling pathway in CBRH-7919 cells with astaxanthin. Toxicology mechanisms and methods 2012; 22(9): 679-86.
[http://dx.doi.org/10.3892/or_00000394] [PMID: 19424643]
[188]
Canesin G, Evans-Axelsson S, Hellsten R, et al. The STAT3 inhibitor galiellalactone effectively reduces tumor growth and metastatic spread in an orthotopic xenograft mouse model of prostate cancer. Eur Urol 2016; 69(3): 400-4.
[http://dx.doi.org/10.1016/j.eururo.2015.06.016] [PMID: 26144873]
[189]
Ko H, Lee JH, Kim HS, et al. Novel galiellalactone analogues can target STAT3 phosphorylation and cause apoptosis in triple-negative breast cancer. Biomolecules 2019 May 3; 9(5): 170.
[http://dx.doi.org/10.1001/jamaoncol.2018.5441] [PMID: 30570649]
[190]
Kim HS, Kim T, Ko H, Lee J, Kim YS, Suh YG. Identification of galiellalactone-based novel STAT3-selective inhibitors with cytotoxic activities against triple-negative breast cancer cell lines. Bioorg Med Chem 2017; 25(19): 5032-40.
[http://dx.doi.org/10.1016/j.bmc.2017.06.036] [PMID: 28705432]
[191]
Thasni KAA, Rojini G, Rakesh SN, et al. Genistein induces apoptosis in ovarian cancer cells via different molecular pathways depending on Breast Cancer Susceptibility gene-1 (BRCA1) status. Eur J Pharmacol 2008; 588(2-3): 158-64.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.041] [PMID: 18514188]
[192]
Thakur R, Trivedi R, Rastogi N, Singh M, Mishra DP. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep 2015; 5(1): 10194.
[http://dx.doi.org/10.1038/srep10194] [PMID: 25973915]
[193]
Pan T, Zhang F, Li F, et al. Shikonin blocks human lung adenocarcinoma cell migration and invasion in the inflammatory microenvironment via the IL 6/STAT3 signaling pathway. Oncol Rep 2020; 44(3): 1049-63.
[http://dx.doi.org/10.3892/or.2020.7683] [PMID: 32705271]
[194]
Li S, Zhang W, Yang Y, Ma T, Guo J, Wang S, et al. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. European journal of medicinal chemistry 2016; 124: 1006-18.
[http://dx.doi.org/10.1016/j.lfs.2018.05.012] [PMID: 29738778]
[195]
Guo ZL, Li JZ, Ma YY, et al. Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. BMC Cell Biol 2018; 19(1): 29.
[http://dx.doi.org/10.1186/s12860-018-0179-7] [PMID: 30594131]
[196]
Bharadwaj U, Eckols TK, Kolosov M, et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene 2015; 34(11): 1341-53.
[http://dx.doi.org/10.1038/onc.2014.72] [PMID: 24681959]
[197]
Chen D, Ma Y, Li P, et al. Piperlongumine induces apoptosis and synergizes with doxorubicin by inhibiting the JAK2-STAT3 pathway in triple-negative breast cancer. Molecules 2019; 24(12): 2338.
[http://dx.doi.org/10.3390/molecules24122338] [PMID: 31242627]
[198]
Song B, Zhan H, Bian Q, Gu J. Piperlongumine inhibits gastric cancer cells via suppression of the JAK1,2/STAT3 signaling pathway. Mol Med Rep 2016; 13(5): 4475-80.
[http://dx.doi.org/10.3892/mmr.2016.5091] [PMID: 27053336]
[199]
Yuan H, Houck KL, Tian Y, et al. Piperlongumine blocks JAK2-STAT3 to inhibit collagen-induced platelet reactivity independent of reactive oxygen species. PLoS One 2015; 10(12): e0143964.
[http://dx.doi.org/10.1371/journal.pone.0143964] [PMID: 26645674]
[200]
Kaur M, Velmurugan B, Rajamanickam S, Agarwal R, Agarwal C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm Res 2009; 26(9): 2133-40.
[http://dx.doi.org/10.1007/s11095-009-9926-y] [PMID: 19543955]
[201]
Chen D, Ma Y, Guo Z, et al. Two natural alkaloids synergistically induce apoptosis in breast cancer cells by inhibiting STAT3 activation. Molecules 2020; 25(1): 216.
[http://dx.doi.org/10.3390/molecules25010216] [PMID: 31948057]
[202]
Xiao Z, Hao Y, Liu B, Qian L. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk Lymphoma 2002; 43(9): 1763-8.
[http://dx.doi.org/10.1080/1042819021000006295] [PMID: 12685829]
[203]
Chang MT, Lee SP, Fang CY, et al. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/Stat3 signaling. Environ Toxicol 2018; 33(11): 1105-12.
[http://dx.doi.org/10.1002/tox.22587] [PMID: 30076764]
[204]
Pan J, Lee Y, Zhang Q, et al. Honokiol decreases lung cancer metastasis through inhibition of the STAT3 signaling pathway. Cancer Prev Res 2017; 10(2): 133-41.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0129] [PMID: 27849557]
[205]
Xia L, Kang D, Wan D, et al. Honokiol-chlorambucil co-prodrugs selectively enhance the killing effect through STAT3 binding on lymphocytic leukemia cells in vitro and in vivo. ACS Omega 2020; 5(31): 19844-52.
[http://dx.doi.org/10.1021/acsomega.0c02832] [PMID: 32803080]
[206]
Zhang Y, Ren X, Shi M, et al. Downregulation of STAT3 and activation of MAPK are involved in the induction of apoptosis by HNK in glioblastoma cell line U87. Oncol Rep 2014; 32(5): 2038-46.
[http://dx.doi.org/10.3892/or.2014.3434] [PMID: 25175884]
[207]
Fan Y, Xue W, Schachner M, Zhao W. Honokiol eliminates glioma/glioblastoma stem cell-like cells via JAK-STAT3 signaling and inhibits tumor progression by targeting epidermal growth factor receptor. Cancers 2018; 11(1): 22.
[http://dx.doi.org/10.3390/cancers11010022] [PMID: 30587839]
[208]
Liu L, Kritsanida M, Magiatis P, et al. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Cancer Biol Ther 2012; 13(13): 1255-61.
[http://dx.doi.org/10.4161/cbt.21781] [PMID: 22895078]
[209]
Rasul A, Khan M, Ali M, Li J, Li X. Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. Sci World J 2013.
[http://dx.doi.org/10.1155/2013/248532]
[210]
(a) Ahmad B, Gamallat Y, Su P, et al. Alantolactone induces apoptosis in THP-1 cells through STAT3, survivin inhibition, and intrinsic apoptosis pathway. Chem Biol Drug Des 2021; 97(2): 266-72.;
(b) Lee JY, Talhi O, Jang D, Cerella C, Gaigneaux A, Kim KW, et al. Cytostatic hydroxycoumarin OT52 induces ER/Golgi stress and STAT3 inhibition triggering non-canonical cell death and synergy with BH3 mimetics in lung cancer. Cancer letters 2018; 416: 94-108.
[http://dx.doi.org/10.1111/cbdd.13778] [PMID: 32780548]
[211]
Chun J, Li RJ, Cheng MS, Kim YS. Alantolactone selectively suppresses STAT3 activation and exhibits potent anticancer activity in MDA-MB-231 cells. Cancer Lett 2015; 357(1): 393-403.
[http://dx.doi.org/10.1016/j.canlet.2014.11.049] [PMID: 25434800]
[212]
Cai G, Yu W, Song D, Zhang W, Guo J, Zhu J, et al. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. European journal of medicinal chemistry 2019; 174: 236-51.
[http://dx.doi.org/10.1177/0960327119855128] [PMID: 31203647]
[213]
(a) Maryam A, Mehmood T, Zhang H, Li Y, Khan M, Ma T. Alantolactone induces apoptosis, promotes STAT3 glutathionylation and enhances chemosensitivity of A549 lung adenocarcinoma cells to doxorubicin via oxidative stress. Sci Rep 2017; 7(1): 6242.;
(b) Wu J, Tang Q, Yang L, Chen Y, Zheng F, Hann SS. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to β-elemene-inhibited growth of nasopharyngeal carcinoma cells. Scientific reports 2017; 7(1): 509.
[http://dx.doi.org/10.1038/s41598-017-06535-y] [PMID: 28740138]
[214]
Yan YY, Zhang Q, Zhang B, Yang B, Lin NM. Active ingredients of Inula helenium L. exhibits similar anti-cancer effects as isoalantolactone in pancreatic cancer cells. Nat Prod Res 2020; 34(17): 2539-44.
[http://dx.doi.org/10.1080/14786419.2018.1543676] [PMID: 30661396]
[215]
Zhang Y, Weng Q, Han J, Chen J. Alantolactone suppresses human osteosarcoma through the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21(2): 675-84.
[PMID: 31974628]
[216]
Zheng H, Yang L, Kang Y, et al. Alantolactone sensitizes human pancreatic cancer cells to EGFR inhibitors through the inhibition of STAT3 signaling. Molecular Carcinogenesis 2019 Apr; 58(4): 565-76.
[http://dx.doi.org/10.1016/j.cytogfr.2019.10.005] [PMID: 31677966]
[217]
Khan M, Li T, Ahmad Khan MK, et al. Alantolactone induces apoptosis in HepG2 cells through GSH depletion, inhibition of STAT3 activation, and mitochondrial dysfunction. Biomed Res Int 2013.
[http://dx.doi.org/10.1155/2013/719858]
[218]
Davis EM, Croteau R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes.In: Biosynthesis Topics in Current Chemistry. Berlin, Heidelberg: Springer 2000; p. 209.
[219]
Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 2007; 7(5): 357-69.
[http://dx.doi.org/10.1038/nrc2129] [PMID: 17446857]
[220]
Li L, Lin J, Sun G, et al. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways. Mol Med Rep 2016; 13(6): 5276-82.
[http://dx.doi.org/10.3892/mmr.2016.5171] [PMID: 27108756]
[221]
Zerbini G, Lorenzi M, Palini A. Tumor angiogenesis. N Engl J Med 2008; 359(7): 763.
[222]
Song Y, Gao L, Tang Z, et al. Anticancer effect of SZC015 on pancreatic cancer via mitochondria-dependent apoptosis and the constitutive suppression of activated nuclear factor κB and STAT3 in vitro and in vivo. J Cell Physiol 2019; 234(1): 777-88.
[http://dx.doi.org/10.1002/jcp.26892] [PMID: 30078206]
[223]
Chan TO, Rodeck U, Chan AM, et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 2002; 1(2): 181-91.
[http://dx.doi.org/10.1016/S1535-6108(02)00033-8] [PMID: 12086876]
[224]
Rabi T, Catapano CV. Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells. Tumour Biol 2016; 37(9): 12455-64.
[http://dx.doi.org/10.1007/s13277-016-5102-2] [PMID: 27333990]
[225]
Song Y, Kong L, Sun B, et al. Induction of autophagy by an oleanolic acid derivative, SZC017, promotes ROS-dependent apoptosis through Akt and JAK2/STAT3 signaling pathway in human lung cancer cells. Cell Biol Int 2017; 41(12): 1367-78.
[http://dx.doi.org/10.1002/cbin.10868] [PMID: 28880428]
[226]
Scazzocchio F, Cometa MF, Tomassini L, Palmery M. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med 2001; 67(6): 561-4.
[http://dx.doi.org/10.1055/s-2001-16493] [PMID: 11509983]
[227]
Liu X, Ji Q, Ye N, et al. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLoS One 2015; 10(5): e0123478.
[http://dx.doi.org/10.1371/journal.pone.0123478] [PMID: 25954974]
[228]
Tsang CM, Cheung YC, Lui VWY, et al. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts. BMC Cancer 2013; 13(1): 619.
[http://dx.doi.org/10.1186/1471-2407-13-619] [PMID: 24380387]
[229]
(a) Zhu T, Li LL, Xiao GF, et al. Berberine increases doxorubicin sensitivity by suppressing STAT3 in lung cancer. Am J Chin Med 2015; 43(7): 1487-502.;
(b) Wang Z, Chen H, Chen J, Hong Z, Liao Y, Zhang Q, et al. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer management and research 2019; 11: 8463-73.
[http://dx.doi.org/10.1142/S0192415X15500846] [PMID: 26503561]
[230]
(a) Bhattacharya SK, Satyan KS, Ghosal S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol 1997; 35(3): 236-9.;
(b) Andrés RM, Montesinos MC, Navalón P, Payá M, Terencio MC. NF-κBκB and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. The Journal of investigative dermatology 2013; 133(10): 2362-71.
[PMID: 9332168]
[231]
Malik F, Kumar A, Bhushan S, et al. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 2007; 12(11): 2115-33.
[http://dx.doi.org/10.1007/s10495-007-0129-x] [PMID: 17874299]
[232]
Choi BY, Kim BW. Withaferin-A inhibits colon cancer cell growth by blocking STAT3 transcriptional activity. J Cancer Prev 2015; 20(3): 185-92.
[http://dx.doi.org/10.15430/JCP.2015.20.3.185] [PMID: 26473157]
[233]
Chung SS, Wu Y, Okobi Q, et al. Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediat Inflamm 2017; 2017(4): 1-11.
[234]
Um HJ, Min K, Kim DE, Kwon TK. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun 2012; 427(1): 24-9.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.133] [PMID: 22982675]
[235]
Yco LP, Mocz G, Opoku-Ansah J, Bachmann AS. Withaferin A inhibits STAT3 and induces tumor cell death in neuroblastoma and multiple myeloma. Biochem 2014; 7: 1-13.
[http://dx.doi.org/10.4137/BCI.S18863]
[236]
Chen L, Wang J, Wu J, Zheng Q, Hu J. Indirubin suppresses ovarian cancer cell viabilities through the STAT3 signaling pathway. Drug Des Devel Ther 2018; 12: 3335-42.
[http://dx.doi.org/10.2147/DDDT.S174613] [PMID: 30323565]
[237]
Nam S, Wen W, Schroeder A, et al. Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol Oncol 2013; 7(3): 369-78.
[http://dx.doi.org/10.1016/j.molonc.2012.10.013] [PMID: 23206899]
[238]
(a) Barker D. Lignans. Molecules 2019; 24(7): 1424.;
(b) Lee MM, Chan BD, Wong WY, Qu Z, Chan MS, Leung TW, et al. Anti-cancer Activity of Centipeda minima Extract in Triple Negative Breast Cancer via Inhibition of AKT, NF-κB, and STAT3 Signaling Pathways. Frontiers in oncology 2020; 10: 491.
[239]
Zhou Y, Zheng J, Li Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016; 8(8): 515.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[240]
Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med 2015; 4(1): 6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[241]
Mahecha AM, Wang H. The influence of vascular endothelial growth factor-A and matrix metalloproteinase-2 and -9 in angiogenesis, metastasis, and prognosis of endometrial cancer. OncoTargets Ther 2017; 10: 4617-24.
[http://dx.doi.org/10.2147/OTT.S132558] [PMID: 29033580]
[242]
Rycaj K, Plummer JB, Yin B, et al. Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells. Clin Cancer Res 2015; 21(2): 471-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0388] [PMID: 25370465]
[243]
Olguín-Reyes S, Camacho-Carranza R, Hernández-Ojeda S, Elinos-Baez M, Espinosa-Aguirre JJ. Bergamottin is a competitive inhibitor of CYP1A1 and is antimutagenic in the Ames test. Food Chem Toxicol 2012; 50(9): 3094-9.
[http://dx.doi.org/10.1016/j.fct.2012.05.058] [PMID: 22705772]
[244]
Huang K, Li L, Meng Y, You Y, Fu X, Song L. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling. Basic Clin Pharmacol Toxicol 2014; 115(6): 507-11.
[http://dx.doi.org/10.1111/bcpt.12270] [PMID: 24842412]
[245]
Feng T, Cao W, Shen W, et al. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 2017; 8(1): 329-44.
[http://dx.doi.org/10.18632/oncotarget.13393] [PMID: 27861147]
[246]
Abu-Ghefreh AA, Canatan H, Ezeamuzie CI. In vitro and in vivo anti-inflammatory effects of andrographolide. Int Immunopharmacol 2009; 9(3): 313-8.
[http://dx.doi.org/10.1016/j.intimp.2008.12.002] [PMID: 19110075]
[247]
Calabrese C, Berman SH, Babish JG, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 2000; 14(5): 333-8.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<333::AID-PTR584>3.0.CO;2-D] [PMID: 10925397]
[248]
Gabrielian ES, Shukarian AK, Goukasova GI, et al. A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine 2002; 9(7): 589-97.
[http://dx.doi.org/10.1078/094471102321616391] [PMID: 12487322]
[249]
Lee TY, Lee KC, Chang HH. Modulation of the cannabinoid receptors by andrographolide attenuates hepatic apoptosis following bile duct ligation in rats with fibrosis. Apoptosis 2010; 15(8): 904-14.
[http://dx.doi.org/10.1007/s10495-010-0502-z] [PMID: 20446039]
[250]
Parichatikanond W, Suthisisang C, Dhepakson P, Herunsalee A. Study of anti-inflammatory activities of the pure compounds from Andrographis paniculata (burm.f.) Nees and their effects on gene expression. Int Immunopharmacol 2010; 10(11): 1361-73.
[http://dx.doi.org/10.1016/j.intimp.2010.08.002] [PMID: 20728594]
[251]
Zhou J, Ong CN, Hur GM, Shen HM. Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol 2010; 79(9): 1242-50.
[http://dx.doi.org/10.1016/j.bcp.2009.12.014] [PMID: 20026083]
[252]
Bao GQ, Shen BY, Pan CP, Zhang YJ, Shi MM, Peng CH. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer. Toxicol Lett 2013; 222(1): 23-35.
[http://dx.doi.org/10.1016/j.toxlet.2013.06.241] [PMID: 23845849]
[253]
Ambati R, Phang SM, Ravi S, Aswathanarayana R. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs 2014; 12(1): 128-52.
[http://dx.doi.org/10.3390/md12010128] [PMID: 24402174]
[254]
Sacconi L, Dombeck DA, Webb WW. Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials. Proc Natl Acad Sci USA 2006; 103(9): 3124-9.
[http://dx.doi.org/10.1073/pnas.0511338103] [PMID: 16488972]
[255]
Kowshik J, Nivetha R, Ranjani S, et al. Astaxanthin inhibits hallmarks of cancer by targeting the PI3K/NF‐κΒ/STAT3 signalling axis in oral squamous cell carcinoma models. IUBMB Life 2019; 71(10): 1595-610.
[http://dx.doi.org/10.1002/iub.2104] [PMID: 31251469]
[256]
(a) Sun SQ, Zhao YX, Li SY, Qiang JW, Ji YZ. Anti-tumor effects of astaxanthin by inhibition of the expression of STAT3 in prostate cancer. Mar Drugs 2020; 18(8): 415.;
(b) Yamashita S, Yamashita T, Yamada K, Tachibana H. Flavones suppress type I IL-4 receptor signaling by down-regulating the expression of common gamma chain. FEBS letters 2010; 584(4): 775-9.
[http://dx.doi.org/10.3390/md18080415] [PMID: 32784629]
[257]
Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell 2007; 130(5): 769-74.
[http://dx.doi.org/10.1016/j.cell.2007.08.021] [PMID: 17803898]
[258]
Qiu D, Kao PN. Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D 2003; 4(1): 1-18.
[http://dx.doi.org/10.2165/00126839-200304010-00001] [PMID: 12568630]
[259]
Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 2007; 3(7): 360-6.
[http://dx.doi.org/10.1038/nchembio0707-360] [PMID: 17576417]
[260]
Lin N, Liu C, Xiao C, et al. Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochem Pharmacol 2007; 73(1): 136-46.
[http://dx.doi.org/10.1016/j.bcp.2006.08.027] [PMID: 17097618]
[261]
Wei X, Gong J, Zhu J, et al. The suppressive effect of triptolide on chronic colitis and TNF-α/TNFR2 signal pathway in interleukin-10 deficient mice. Clin Immunol 2008; 129(2): 211-8.
[http://dx.doi.org/10.1016/j.clim.2008.07.018] [PMID: 18757245]
[262]
Niu F, Li Y, Lai FF, et al. LB-1 exerts antitumor activity in pancreatic cancer by inhibiting HIF-1α and Stat3 signaling. J Cell Physiol 2015; 230(9): 2212-23.
[http://dx.doi.org/10.1002/jcp.24949] [PMID: 25655308]
[263]
Wang Z, Jin H, Xu R, Mei Q, Fan D. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression. Exp Mol Med 2009; 41(10): 717-27.
[http://dx.doi.org/10.3858/emm.2009.41.10.078] [PMID: 19561401]
[264]
Hong H, Cao W, Wang Q, Liu C, Huang C. Synergistic antitumor effect of Andrographolide and cisplatin through ROS-mediated ER stress and STAT3 inhibition in colon cancer. Med Oncol 2022; 39(8): 101.
[http://dx.doi.org/10.1007/s12032-022-01691-2] [PMID: 35599281]
[265]
Kim JH, Park B. Triptolide blocks the STAT3 signaling pathway through induction of protein tyrosine phosphatase SHP-1 in multiple myeloma cells. Int J Mol Med 2017; 40(5): 1566-72.
[http://dx.doi.org/10.3892/ijmm.2017.3122] [PMID: 28901387]
[266]
Li L, Zhao P, Hu J, et al. Synthesis, in vitro and in vivo antitumor activity of scopoletin-cinnamic acid hybrids. Eur J Med Chem 2015; 93: 300-7.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.040] [PMID: 25703298]
[267]
Nardini M, Pisu P, Gentili V, et al. Effect of caffeic acid on tert-butyl hydroperoxide-induced oxidative stress in U937. Free Radic Biol Med 1998; 25(9): 1098-105.
[http://dx.doi.org/10.1016/S0891-5849(98)00180-4] [PMID: 9870564]
[268]
Huang Q, Li S, Zhang L, et al. CAPE-p NO2 inhibited the growth and metastasis of triple-negative breast cancer via the EGFR/STAT3/Akt/E-cadherin signaling pathway. Front Oncol 2019; 9: 461.
[http://dx.doi.org/10.3389/fonc.2019.00461] [PMID: 31214503]
[269]
Ahmed AA, Goldsmith J, Fokt I, et al. A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer. Cancer Chemother Pharmacol 2011; 68(4): 1033-44.
[http://dx.doi.org/10.1007/s00280-011-1575-2] [PMID: 21340606]
[270]
Allred CD, Allred KF, Ju YH, Virant SM, Helferich WG. Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer Res 2001; 61(13): 5045-50.
[PMID: 11431339]
[271]
Liu Y, Zou T, Wang S, et al. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. Int J Oncol 2016; 48(3): 1063-72.
[http://dx.doi.org/10.3892/ijo.2016.3351] [PMID: 26794366]
[272]
Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol 2005; 26(1): 185-9.
[http://dx.doi.org/10.3892/ijo.26.1.185] [PMID: 15586239]
[273]
Ning Y, Feng W, Cao X, et al. RETRACTED ARTICLE: Genistein inhibits stemness of SKOV3 cells induced by macrophages co-cultured with ovarian cancer stem-like cells through IL-8/STAT3 axis. J Exp Clin Cancer Res 2019; 38(1): 19.
[http://dx.doi.org/10.1186/s13046-018-1010-1] [PMID: 30646963]
[274]
Canesin G, Maggio V, Palominos M, et al. STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Sci Rep 2020; 10(1): 13958.
[http://dx.doi.org/10.1038/s41598-020-70948-5] [PMID: 32811873]
[275]
Bi Y, Min M, Shen W, Liu Y. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G 0/G 1 cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 2018; 39: 10-6.
[http://dx.doi.org/10.1016/j.phymed.2017.12.001] [PMID: 29433670]
[276]
Lian JP, Word B, Taylor S, Hammons GJ, Lyn-Cook BD. Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: Effects of indole-3-carbinol (I3C) and genistein. Anticancer Res 2004; 24(1): 133-7.
[PMID: 15015587]
[277]
Calvisi D, Pascale R, Feo F. Dissection of signal transduction pathways as a tool for the development of targeted therapies of hepatocellular carcinoma. Rev Recent Clin Trials 2007; 2(3): 217-36.
[http://dx.doi.org/10.2174/157488707781662715] [PMID: 18474008]
[278]
Hu J, Zhang WD, Liu RH, et al. Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb.) DC, and their analgesic and anti-inflammatory activities. Chem Biodivers 2006; 3(9): 990-5.
[http://dx.doi.org/10.1002/cbdv.200690108] [PMID: 17193331]
[279]
Iwasaki H, Okabe T, Takara K, Toda T, Shimatani M, Oku H. Tumor-selective cytotoxicity of benzo[c]phenanthridine derivatives from Toddalia asiatica Lam. Cancer Chemother Pharmacol 2010; 65(4): 719-26.
[http://dx.doi.org/10.1007/s00280-009-1077-7] [PMID: 19629483]
[280]
Liao J, Xu T, Zheng JX, et al. Nitidine chloride inhibits hepatocellular carcinoma cell growth in vivo through the suppression of the JAK1/STAT3 signaling pathway. Int J Mol Med 2013; 32(1): 79-84.
[http://dx.doi.org/10.3892/ijmm.2013.1358] [PMID: 23613111]
[281]
Chen J, Wang J, Lin L, et al. Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther 2012; 11(2): 277-87.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0648] [PMID: 22203730]
[282]
Sakao K, Desineni S, Hahm ER, Singh SV. Phenethyl isothiocyanate suppresses inhibitor of apoptosis family protein expression in prostate cancer cells in culture and in vivo. Prostate 2012; 72(10): 1104-16.
[http://dx.doi.org/10.1002/pros.22457] [PMID: 22161756]
[283]
Xiao D, Singh SV. Phenethyl isothiocyanate sensitizes androgen-independent human prostate cancer cells to docetaxel-induced apoptosis in vitro and in vivo. Pharm Res 2010; 27(4): 722-31.
[http://dx.doi.org/10.1007/s11095-010-0079-9] [PMID: 20182772]
[284]
Shao WY, Yang YL, Yan H, Huang Q, Liu KJ, Zhang S. Phenethyl isothiocyanate suppresses the metastasis of ovarian cancer associated with the inhibition of CRM1-mediated nuclear export and mTOR-STAT3 pathway. Cancer Biol Ther 2017; 18(1): 26-35.
[http://dx.doi.org/10.1080/15384047.2016.1264540] [PMID: 27981892]
[285]
Wang H, Wang L, Cao L, et al. Inhibition of autophagy potentiates the anti-metastasis effect of phenethyl isothiocyanate through JAK2/STAT3 pathway in lung cancer cells. Mol Carcinog 2018; 57(4): 522-35.
[http://dx.doi.org/10.1002/mc.22777] [PMID: 29278657]
[286]
Gong A, He M, Krishna Vanaja D, Yin P, Karnes RJ, Young CYF. Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells. Mol Nutr Food Res 2009; 53(7): 878-86.
[http://dx.doi.org/10.1002/mnfr.200800253] [PMID: 19437484]
[287]
Dong R, Guo J, Zhang Z, Zhou Y, Hua Y. Polyphyllin I inhibits gastric cancer cell proliferation by downregulating the expression of fibroblast activation protein alpha (FAP) and hepatocyte growth factor (HGF) in cancer-associated fibroblasts. Biochem Biophys Res Commun 2018; 497(4): 1129-34.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.193] [PMID: 29499193]
[288]
Kong M, Fan J, Dong A, Cheng H, Xu R. Effects of polyphyllin I on growth inhibition of human non-small lung cancer cells and in xenograft. Acta Biochim Biophys Sin 2010; 42(11): 827-33.
[http://dx.doi.org/10.1093/abbs/gmq091] [PMID: 20978038]
[289]
Lou W, Chen Y, Zhu K, Deng H, Wu T, Wang J. Polyphyllin I overcomes EMT-associated resistance to erlotinib in lung cancer cells via IL-6/STAT3 pathway inhibition. Biol Pharm Bull 2017; 40(8): 1306-13.
[http://dx.doi.org/10.1248/bpb.b17-00271] [PMID: 28515374]
[290]
Cheng H, Su JJ, Hou HJ, Li QL. [Effect and mechanism of polyphyllin I on human cervical cancer cell HeLa in vitro] Zhong Yao Cai 2013; 36(11): 1815-9.
[PMID: 24956825]
[291]
Liang Y, Li X, He X, et al. Polyphyllin I induces cell cycle arrest and apoptosis in human myeloma cells via modulating β-catenin signaling pathway. Eur J Haematol 2016; 97(4): 371-8.
[http://dx.doi.org/10.1111/ejh.12741] [PMID: 26821882]
[292]
Li HS, Xu Y. Inhibition of EZH2 via the STAT3/HOTAIR signalling axis contributes to cell cycle arrest and apoptosis induced by polyphyllin I in human non-small cell lung cancer cells. Steroids 2020; 164: 108729.
[http://dx.doi.org/10.1016/j.steroids.2020.108729] [PMID: 32941921]
[293]
Yang Q, Chen W, Xu Y, Lv X, Zhang M, Jiang H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol Appl Pharmacol 2018; 356: 1-7.
[http://dx.doi.org/10.1016/j.taap.2018.07.031] [PMID: 30076870]
[294]
Silva Ferreira AC, Rodrigues P, Hogg T, Guedes de Pinho P. Influence of some technological parameters on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in port wines. J Agric Food Chem 2003; 51(3): 727-32.
[http://dx.doi.org/10.1021/jf025934g] [PMID: 12537449]
[295]
Caron JM, Bannon M, Rosshirt L, et al. Methyl sulfone induces loss of metastatic properties and reemergence of normal phenotypes in a metastatic cloudman S-91 (M3) murine melanoma cell line. PLoS One 2010; 5(8): e11788.
[http://dx.doi.org/10.1371/journal.pone.0011788] [PMID: 20694196]
[296]
Caron JM, Bannon M, Rosshirt L, O’Donovan L. Methyl sulfone manifests anticancer activity in a metastatic murine breast cancer cell line and in human breast cancer tissue--part I: Murine 4T1 (66cl-4) cell line. Chemotherapy 2013; 59(1): 14-23.
[http://dx.doi.org/10.1159/000351100] [PMID: 23816666]
[297]
Joung YH, Na YM, Yoo YB, et al. Combination of AG490, a Jak2 inhibitor, and methylsulfonylmethane synergistically suppresses bladder tumor growth via the Jak2/STAT3 pathway. Int J Oncol 2014; 44(3): 883-95.
[http://dx.doi.org/10.3892/ijo.2014.2250] [PMID: 24402583]
[298]
Beilke MA, Collins-Lech C, Sohnle PG. Effects of dimethyl sulfoxide on the oxidative function of human neutrophils. J Lab Clin Med 1987; 110(1): 91-6.
[PMID: 3598341]
[299]
Barrager E, Veltmann JR Jr, Schauss AG, Schiller RN. A multicentered, open-label trial on the safety and efficacy of methylsulfonylmethane in the treatment of seasonal allergic rhinitis. J Altern Complement Med 2002; 8(2): 167-73.
[http://dx.doi.org/10.1089/107555302317371451] [PMID: 12006124]
[300]
Kim LS, Axelrod LJ, Howard P, Buratovich N, Waters RF. Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: A pilot clinical trial. Osteoarthritis Cartilage 2006; 14(3): 286-94.
[http://dx.doi.org/10.1016/j.joca.2005.10.003] [PMID: 16309928]
[301]
Lim EJ, Hong DY, Park JH, et al. Methylsulfonylmethane suppresses breast cancer growth by down-regulating STAT3 and STAT5b pathways. PLoS One 2012; 7(4): e33361.
[http://dx.doi.org/10.1371/journal.pone.0033361] [PMID: 22485142]
[302]
Seo IA, Lee HK, Shin YK, et al. Janus kinase 2 inhibitor AG490 inhibits the STAT3 signaling pathway by suppressing protein translation of gp130. Korean J Physiol Pharmacol 2009; 13(2): 131-8.
[http://dx.doi.org/10.4196/kjpp.2009.13.2.131] [PMID: 19885008]
[303]
Erukainure OL, Mesaik MA, Atolani O, Muhammad A, Chukwuma CI, Islam MS. Pectolinarigenin from the leaves of Clerodendrum volubile shows potent immunomodulatory activity by inhibiting T - cell proliferation and modulating respiratory oxidative burst in phagocytes. Biomed Pharmacother 2017; 93: 529-35.
[http://dx.doi.org/10.1016/j.biopha.2017.06.060] [PMID: 28686966]
[304]
Lim H, Son KH, Chang HW, Bae K, Kang SS, Kim HP. Antiinflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol Pharm Bull 2008; 31(11): 2063-7.
[http://dx.doi.org/10.1248/bpb.31.2063] [PMID: 18981574]
[305]
Yoo YM, Nam JH, Kim MY, Choi J, Park HJ. Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull 2008; 31(4): 760-4.
[http://dx.doi.org/10.1248/bpb.31.760] [PMID: 18379079]
[306]
Li Y, Gan C, Zhang Y, et al. Inhibition of Stat3 signaling pathway by natural product pectolinarigenin attenuates breast cancer metastasis. Front Pharmacol 2019; 10: 1195.
[http://dx.doi.org/10.3389/fphar.2019.01195] [PMID: 31649548]
[307]
Zhang T, Li S, Li J, et al. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis 2016; 7(10): e2421-1.
[http://dx.doi.org/10.1038/cddis.2016.305] [PMID: 27735939]
[308]
D’Orazio N, Gemello E, Gammone M, de Girolamo M, Ficoneri C, Riccioni G. Fucoxantin: A treasure from the sea. Mar Drugs 2012; 10(12): 604-16.
[http://dx.doi.org/10.3390/md10030604] [PMID: 22611357]
[309]
Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar Drugs 2011; 9(10): 1806-28.
[http://dx.doi.org/10.3390/md9101806] [PMID: 22072997]
[310]
Heo SJ, Yoon WJ, Kim KN, et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol 2010; 48(8-9): 2045-51.
[http://dx.doi.org/10.1016/j.fct.2010.05.003] [PMID: 20457205]
[311]
Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res 2009; 53(12): 1603-11.
[http://dx.doi.org/10.1002/mnfr.200900079] [PMID: 19842104]
[312]
Nishino H, Tokuda H, Murakoshi M, et al. Cancer prevention by natural carotenoids. Biofactors 1999; 13(1-4): 89-94.
[313]
Nishino H. Cancer chemoprevention by natural carotenoids and their related compounds. J Cell Biochem 1995; 59(S22): 231-5.
[http://dx.doi.org/10.1002/jcb.240590829] [PMID: 8538203]
[314]
Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 2012; 17(3): 3202-42.
[http://dx.doi.org/10.3390/molecules17033202] [PMID: 22418926]
[315]
Wang J, Chen S, Xu S, et al. In vivo induction of apoptosis by fucoxanthin, a marine carotenoid, associated with down-regulating STAT3/EGFR signaling in sarcoma 180 (S180) xenografts-bearing mice. Mar Drugs 2012; 10(12): 2055-68.
[http://dx.doi.org/10.3390/md10092055] [PMID: 23118721]
[316]
Yu R, Yu R, Liu Z. Inhibition of two gastric cancer cell lines induced by fucoxanthin involves downregulation of Mcl-1 and STAT3. Hum Cell 2018; 31(1): 50-63.
[http://dx.doi.org/10.1007/s13577-017-0188-4] [PMID: 29110251]
[317]
Chang YJ, Hsu SL, Liu YT, et al. Gallic acid induces necroptosis via TNF-α signaling pathway in activated hepatic stellate cells. PLoS One 2015; 10(3): e0120713.
[http://dx.doi.org/10.1371/journal.pone.0120713] [PMID: 25816210]
[318]
Wang R, Ma L, Weng D, Yao J, Liu X, Jin F. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol Rep 2016; 35(5): 3075-83.
[http://dx.doi.org/10.3892/or.2016.4690] [PMID: 26987028]
[319]
Zhang T, Ma L, Wu P, et al. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol Rep 2019; 41(3): 1779-88.
[http://dx.doi.org/10.3892/or.2019.6976] [PMID: 30747218]
[320]
Phan ANH, Hua TNM, Kim MK, et al. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 2016; 7(34): 54702-13.
[http://dx.doi.org/10.18632/oncotarget.10581] [PMID: 27419630]
[321]
Liang C, Ju W, Pei S, Tang Y, Xiao Y. Pharmacological activities and synthesis of esculetin and its derivatives: A mini-review. Molecules 2017; 22(3): 387.
[http://dx.doi.org/10.3390/molecules22030387] [PMID: 28257115]
[322]
Park S-S, Park S-K, Lim J-H, Choi YH, Kim W-J, Moon S-K. Esculetin inhibits cell proliferation through the Ras/ERK1/2 pathway in human colon cancer cells. Oncol Rep 2011; 25(1): 223-30.
[PMID: 21109980]
[323]
Wang C, Pei A, Chen J, et al. A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. J Neurochem 2012; 121(6): 1007-13.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07744.x] [PMID: 22458555]
[324]
Hu Y, Chen X, Duan H, Hu Y, Mu X. Chinese herbal medicinal ingredients inhibit secretion of IL-6, IL-8, E-selectin and TXB 2 in LPS-induced rat intestinal microvascular endothelial cells. Immunopharmacol Immunotoxicol 2009; 31(4): 550-5.
[http://dx.doi.org/10.3109/08923970902814129] [PMID: 19874221]
[325]
Zhang G, Xu Y, Zhou H. Esculetin inhibits proliferation, invasion, and migration of laryngeal cancer in vitro and in vivo by inhibiting Janus kinas (JAK)-signal transducer and activator of transcription-3 (STAT3) activation. Med Sci Monit 2019; 25: 7853-63.
[http://dx.doi.org/10.12659/MSM.916246] [PMID: 31630150]
[326]
Cai G, Yu W, Song D, et al. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur J Med Chem 2019; 174: 236-51.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[327]
Wang S, Liu Q, Zhang Y, et al. Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer 2009; 8(1): 81.
[http://dx.doi.org/10.1186/1476-4598-8-81] [PMID: 19796390]
[328]
Hou ZB, Lu KJ, Wu XL, Chen C, Huang XE, Yin HT. In vitro and in vivo antitumor evaluation of berbamine for lung cancer treatment. Asian Pac J Cancer Prev 2014; 15(4): 1767-9.
[http://dx.doi.org/10.7314/APJCP.2014.15.4.1767] [PMID: 24641406]
[329]
Wang GY, Lv QH, Dong Q, Xu RZ, Dong QH. Berbamine induces Fas-mediated apoptosis in human hepatocellular carcinoma HepG2 cells and inhibits its tumor growth in nude mice. J Asian Nat Prod Res 2009; 11(3): 219-28.
[http://dx.doi.org/10.1080/10286020802675076] [PMID: 19408145]
[330]
Xu R, Dong Q, Yu Y, et al. Berbamine: A novel inhibitor of bcr/abl fusion gene with potent anti-leukemia activity. Leuk Res 2006; 30(1): 17-23.
[http://dx.doi.org/10.1016/j.leukres.2005.05.023] [PMID: 16023722]
[331]
Hu B, Cai H, Yang S, Tu J, Huang X, Chen G. Berbamine enhances the efficacy of gefitinib by suppressing STAT3 signaling in pancreatic cancer cells. OncoTargets Ther 2019; 12: 11437-51.
[http://dx.doi.org/10.2147/OTT.S223242] [PMID: 31920333]
[332]
Nam S, Xie J, Perkins A, et al. Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol Oncol 2012; 6(5): 484-93.
[http://dx.doi.org/10.1016/j.molonc.2012.05.002] [PMID: 22717603]
[333]
Liu M, Chen X, Ma J, et al. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress. Biomed Pharmacother 2017; 95: 1789-98.
[http://dx.doi.org/10.1016/j.biopha.2017.08.092] [PMID: 28962084]
[334]
Wang Z, Li Y, Zhou F, Piao Z, Hao J. Elemene enhances anticancer bone neoplasms efficacy of paclitaxel through regulation of GPR124 in bone neoplasms cells. Oncol Lett 2018; 16(2): 2143-50.
[http://dx.doi.org/10.3892/ol.2018.8909] [PMID: 30008912]
[335]
Purkait S, Sharma V, Kumar A, et al. Expression of DNA methyltransferases 1 and 3B correlates with EZH2 and this 3-marker epigenetic signature predicts outcome in glioblastomas. Exp Mol Pathol 2016; 100(2): 312-20.
[http://dx.doi.org/10.1016/j.yexmp.2016.02.002] [PMID: 26892683]
[336]
Chen Y, Zhu Z, Chen J, et al. Terpenoids from CurcumaeRhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed Pharmacother 2021; 138: 111350.
[http://dx.doi.org/10.1016/j.biopha.2021.111350] [PMID: 33721752]
[337]
Carbajo-Pescador S, Mauriz JL, García-Palomo A, González-Gallego J. FoxO proteins: Regulation and molecular targets in liver cancer. Curr Med Chem 2014; 21(10): 1231-46.
[http://dx.doi.org/10.2174/0929867321666131228205703] [PMID: 24372208]
[338]
Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 2007; 120(15): 2479-87.
[http://dx.doi.org/10.1242/jcs.001222] [PMID: 17646672]
[339]
Bigarella CL, Li J, Rimmelé P, Liang R, Sobol RW, Ghaffari S. FOXO3 transcription factor is essential for protecting hematopoietic stem and progenitor cells from oxidative DNA damage. J Biol Chem 2017; 292(7): 3005-15.
[http://dx.doi.org/10.1074/jbc.M116.769455] [PMID: 27994057]
[340]
Liu Y, Ao X, Ding W, et al. Critical role of FOXO3a in carcinogenesis. Mol Cancer 2018; 17(1): 104.
[http://dx.doi.org/10.1186/s12943-018-0856-3] [PMID: 30045773]
[341]
Wang X, Hu S, Liu L. Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol Lett 2017; 13(5): 2867-72.
[http://dx.doi.org/10.3892/ol.2017.5851] [PMID: 28521392]
[342]
Ni D, Ma X, Li HZ, et al. Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res 2014; 20(7): 1779-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1687] [PMID: 24486593]
[343]
Zheng F, Wu J, Zhao S, et al. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. J Exp Clin Cancer Res 2015; 34(1): 41.
[http://dx.doi.org/10.1186/s13046-015-0160-7]
[344]
Bertoli G, Cava C, Castiglioni I. The potential of miRNAs for diagnosis, treatment and monitoring of breast cancer. Scand J Clin Lab Invest Suppl 2016; 245: S34-9.
[http://dx.doi.org/10.1080/00365513.2016.1208444]
[345]
Al-Haidari AA, Syk I, Thorlacius H. MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA. Oncotarget 2017; 8(9): 14887-96.
[http://dx.doi.org/10.18632/oncotarget.14841] [PMID: 28146427]
[346]
Fu X, Wen H, Jing L, et al. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci 2017; 108(4): 620-31.
[http://dx.doi.org/10.1111/cas.13177] [PMID: 28132399]
[347]
Zheng F, Tang Q, Zheng X, et al. Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer. Exp Mol Med 2018; 50(9): 1-14.
[http://dx.doi.org/10.1038/s12276-018-0146-6] [PMID: 30209296]
[348]
Yang NY, Qian SH, Duan JA, Li P, Tian LJ. Cytotoxic sesquiterpene lactones from Eupatorium lindleyanum. J Asian Nat Prod Res 2007; 9(4): 339-45.
[http://dx.doi.org/10.1080/10286020600727673] [PMID: 17613619]
[349]
Yan G, Ji L, Luo Y, Hu Y. Antioxidant activities of extracts and fractions from Eupatorium lindleyanum DC. Molecules 2011; 16(7): 5998-6009.
[http://dx.doi.org/10.3390/molecules16075998] [PMID: 21772232]
[350]
Xu R, Weng J, Hu L, et al. Anti-NDV activity of 9-oxo10,11-dehydroageraphorone extracted from Eupatorium adenophorum Spreng in vitro. Nat Prod Res 2018; 32(18): 2244-7.
[http://dx.doi.org/10.1080/14786419.2017.1371158] [PMID: 28880111]
[351]
Wang F, Zhong H, Fang S, et al. Potential anti-inflammatory sesquiterpene lactones from Eupatorium lindleyanum. Planta Med 2018; 84(2): 123-8.
[http://dx.doi.org/10.1055/s-0043-117742] [PMID: 28793356]
[352]
Yang B, Zhao Y, Lou C, Zhao H. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol Rep 2016; 36(5): 2807-13.
[http://dx.doi.org/10.3892/or.2016.5115] [PMID: 27666560]
[353]
Scragg A, Allan E. Picrasma quassioides Bennet (Japanese quassia tree): in vitro culture and production of quassin. Med Aromat Plants 1993; IV: 249-68.
[354]
Yang B, Shen JW, Zhou DH, et al. Precise discovery of a STAT3 inhibitor from Eupatorium lindleyanum and evaluation of its activity of anti-triple-negative breast cancer. Nat Prod Res 2019; 33(4): 477-85.
[http://dx.doi.org/10.1080/14786419.2017.1396596] [PMID: 29086600]
[355]
Wang Y, Ma X, Yan S, et al. 17-hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells. Cancer Res 2009; 69(18): 7302-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0462] [PMID: 19706767]
[356]
Lou C, Chen Y, Zhang J, Yang B, Zhao H. Eupalinolide J suppresses the growth of triple-negative breast cancer cells via targeting STAT3 signaling pathway. Front Pharmacol 2019; 10: 1071.
[http://dx.doi.org/10.3389/fphar.2019.01071] [PMID: 31607920]
[357]
Wang Z, Wang H, Wu J, et al. Enhanced co-expression of β-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chem Biol Interact 2009; 179(2-3): 375-85.
[http://dx.doi.org/10.1016/j.cbi.2008.12.007] [PMID: 19135036]
[358]
Wang Z, Zhang X, Wang H, Qi L, Lou Y. Neuroprotective amyloid-induced neuronal cells effects of icaritin against beta neurotoxicity in primary cultured rat via estrogen-depen dent pathway. Neuroscience 2007; 145(911): e922.
[359]
Wo Y, Zhu D, Hu Y, Wang ZQ, Liu J, Lou YJ. Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells. J Cell Biochem 2008; 103(5): 1536-50.
[http://dx.doi.org/10.1002/jcb.21541] [PMID: 17985362]
[360]
Huang J, Yuan L, Wang X, Zhang TL, Wang K. Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life Sci 2007; 81(10): 832-40.
[http://dx.doi.org/10.1016/j.lfs.2007.07.015] [PMID: 17764702]
[361]
Guo Y, Zhang X, Meng J, Wang ZY. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol 2011; 658(2-3): 114-22.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.005] [PMID: 21376032]
[362]
Tong JS, Zhang QH, Huang X, et al. Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS One 2011; 6(3): e16781.
[http://dx.doi.org/10.1371/journal.pone.0016781] [PMID: 21408143]
[363]
Li S, Priceman SJ, Xin H, et al. Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS One 2013; 8(12): e81657.
[http://dx.doi.org/10.1371/journal.pone.0081657] [PMID: 24324713]
[364]
Zhao H, Guo Y, Li S, et al. A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget 2015; 6(31): 31927-43.
[http://dx.doi.org/10.18632/oncotarget.5578] [PMID: 26376676]
[365]
Sun F, Zhang ZW, Tan EM, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis 2016; 37(7): 701-11.
[http://dx.doi.org/10.1093/carcin/bgw044] [PMID: 27207661]
[366]
Yang Z, Li X, Han W, et al. Galangin suppresses human osteosarcoma cells: An exploration of its underlying mechanism. Oncol Rep 2017; 37(1): 435-41.
[http://dx.doi.org/10.3892/or.2016.5224] [PMID: 27840963]
[367]
Zhang HT, Luo H, Wu J, et al. Galangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathway. World J Gastroenterol 2010; 16(27): 3377-84.
[http://dx.doi.org/10.3748/wjg.v16.i27.3377] [PMID: 20632439]
[368]
Kim DA, Jeon YK, Nam MJ. Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P. Food Chem Toxicol 2012; 50(3-4): 684-8.
[http://dx.doi.org/10.1016/j.fct.2011.11.039] [PMID: 22142694]
[369]
Yu S, Gong L, Li N, Pan Y, Zhang L. Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomed Pharmacother 2018; 97: 213-24.
[http://dx.doi.org/10.1016/j.biopha.2017.10.059] [PMID: 29091869]
[370]
Lee H, Oh W, Kim B, et al. Inhibition of phospholipase C γ 1 activity by amentoflavone isolated from Selaginella tamariscina. Planta Med 1996; 62(4): 293-6.
[http://dx.doi.org/10.1055/s-2006-957887] [PMID: 8792657]
[371]
Aryappalli P, Shabbiri K, Masad RJ, et al. Inhibition of tyrosine-phosphorylated STAT3 in human breast and lung cancer cells by manuka honey is mediated by selective antagonism of the IL-6 receptor. Int J Mol Sci 2019; 20(18): 4340.
[http://dx.doi.org/10.3390/ijms20184340] [PMID: 31491838]
[372]
Evans L, Ferguson B. Emodin attenuates pathological cardiac hypertrophy by regulating gene expression through acetyl-histone-mediated actions (P06-036-19). Curr Dev Nutr 2019; 3 (Supplement_1): nzz031.
[373]
Ma JW, Hung CM, Lin YC, Ho CT, Kao JY, Way TD. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells. Oncotarget 2016; 7(37): 58915-30.
[http://dx.doi.org/10.18632/oncotarget.10410] [PMID: 27391337]
[374]
Saunders IT, Mir H, Kapur N, Singh S. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int 2019; 19(1): 98.
[http://dx.doi.org/10.1186/s12935-019-0820-3] [PMID: 31011292]
[375]
Mandal C, Pal BC, Bhattacharya K, Samanta SK, Sarkar S, Das R. Process for the isolation of organic compounds useful for the treatment of cancer. US8637679B2, 2014.
[376]
Maduro JH, Pras E, Willemse PHB, de Vries EGE. Acute and long-term toxicity following radiotherapy alone or in combination with chemotherapy for locally advanced cervical cancer. Cancer Treat Rev 2003; 29(6): 471-88.
[http://dx.doi.org/10.1016/S0305-7372(03)00117-8] [PMID: 14585258]
[377]
Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22(47): 7265-79.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[378]
Das R, Bhattacharya K, Samanta SK, Pal BC, Mandal C. Improved chemosensitivity in cervical cancer to cisplatin: Synergistic activity of mahanine through STAT3 inhibition. Cancer Lett 2014; 351(1): 81-90.
[http://dx.doi.org/10.1016/j.canlet.2014.05.005] [PMID: 24831030]
[379]
Brüsselbach S, Nettelbeck DM, Sedlacek HH, Müller R. Cell cycle-independent induction of apoptosis by the anti-tumor drug flavopiridol in endothelial cells. Int J Cancer 1998; 77(1): 146-52.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980703)77:1<146::AID-IJC22>3.0.CO;2-B] [PMID: 9639406]
[380]
Parker BW, Kaur G, Nieves-Neira W, et al. Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 1998; 91(2): 458-65.
[http://dx.doi.org/10.1182/blood.V91.2.458] [PMID: 9427698]
[381]
Arguello F, Alexander M, Sterry JA, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts. Blood 1998; 91(7): 2482-90.
[PMID: 9516149]
[382]
Shapiro GI, Koestner DA, Matranga CB, Rollins BJ. Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin Cancer Res 1999; 5(10): 2925-38.
[PMID: 10537362]
[383]
Bible KC, Kaufmann SH. Flavopiridol: A cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells. Cancer Res 1996; 56(21): 4856-61.
[PMID: 8895733]
[384]
König A, Schwartz GK, Mohammad RM, Al-Katib A, Gabrilove JL. The novel cyclin-dependent kinase inhibitor flavopiridol downregulates Bcl-2 and induces growth arrest and apoptosis in chronic B-cell leukemia lines. Blood 1997; 90(11): 4307-12.
[http://dx.doi.org/10.1182/blood.V90.11.4307] [PMID: 9373241]
[385]
Schwartz GK, Farsi K, Maslak P, Kelsen DP, Spriggs D. Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells. Clin Cancer Res 1997; 3(9): 1467-72.
[PMID: 9815832]
[386]
Bible KC, Bible RH Jr, Kottke TJ, et al. Flavopiridol binds to duplex DNA. Cancer Res 2000; 60(9): 2419-28.
[PMID: 10811119]
[387]
Lee YK, Isham CR, Kaufman SH, Bible KC. Flavopiridol disrupts STAT3/DNA interactions, attenuates STAT3-directed transcription, and combines with the Jak kinase inhibitor AG490 to achieve cytotoxic synergy. Mol Cancer Ther 2006; 5(1): 138-48.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0235] [PMID: 16432172]
[388]
Qi F, Li A, Inagaki Y, et al. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. Int Immunopharmacol 2011; 11(3): 342-9.
[http://dx.doi.org/10.1016/j.intimp.2010.12.007] [PMID: 21185919]
[389]
Cao-Hong , Shibayama-Imazu T, Masuda Y, Shinki T, Nakajo S, Nakaya K. Involvement of Tiam1 in apoptosis induced by bufalin in HeLa cells. Anticancer Res 2007; 27(1A): 245-9.
[PMID: 17352239]
[390]
Wang J, Jin Y, Xu Z, Zheng Z, Wan S. Involvement of caspase-3 activity and survivin downregulation in cinobufocini-induced apoptosis in A 549 cells. Exp Biol Med 2009; 234(5): 566-72.
[http://dx.doi.org/10.3181/0811-RM-326] [PMID: 19244543]
[391]
Xie RF, Li ZC, Chen PP, Zhou X. Bufothionine induced the mitochondria-mediated apoptosis in H22 liver tumor and acute liver injury. Chin Med 2015; 10(1): 5.
[http://dx.doi.org/10.1186/s13020-015-0033-1] [PMID: 25806084]
[392]
Yu CH, Kan SF, Pu HF, Jea Chien E, Wang PS. Apoptotic signaling in bufalin- and cinobufagin-treated androgen-dependent and -independent human prostate cancer cells. Cancer Sci 2008; 99(12): 2467-76.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00966.x] [PMID: 19037992]
[393]
Zhu Z, Li E, Liu Y, et al. Bufalin induces the apoptosis of acute promyelocytic leukemia cells via the downregulation of survivin expression. Acta Haematol 2012; 128(3): 144-50.
[http://dx.doi.org/10.1159/000339424] [PMID: 22890165]
[394]
Zhang C, Ma K, Li WY. Cinobufagin suppresses the characteristics of osteosarcoma cancer cells by inhibiting the IL-6-OPN-STAT3 pathway. Drug Des Devel Ther 2019; 13: 4075-90.
[http://dx.doi.org/10.2147/DDDT.S224312] [PMID: 31824138]
[395]
Willett WC. Diet and health: What should we eat? Science 1994; 264(5158): 532-7.
[http://dx.doi.org/10.1126/science.8160011] [PMID: 8160011]
[396]
Harapu CD, Miron A, Cuciureanu M, Cuciureanu R. [Flavonoids--bioactive compounds in fruits juice] Rev Med Chir Soc Med Nat Iasi 2010; 114(4): 1209-14.
[PMID: 21500482]
[397]
Girennavar B, Poulose SM, Jayaprakasha GK, Bhat NG, Patil BS. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes. Bioorg Med Chem 2006; 14(8): 2606-12.
[http://dx.doi.org/10.1016/j.bmc.2005.11.039] [PMID: 16338240]
[398]
Kim SM, Lee JH, Sethi G, et al. Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett 2014; 354(1): 153-63.
[http://dx.doi.org/10.1016/j.canlet.2014.08.002] [PMID: 25130169]
[399]
Ko YC, Choi HS, Liu R, et al. Inhibitory effects of tangeretin, a citrus peel-derived flavonoid, on breast cancer stem cell formation through suppression of Stat3 signaling. Molecules 2020; 25(11): 2599.
[http://dx.doi.org/10.3390/molecules25112599] [PMID: 32503228]
[400]
Meiyanto E, Hermawan A. Anindyajati. Natural products for cancer-targeted therapy: Citrus flavonoids as potent chemopreventive agents. APJCP 2012; 13(2): 427-36.
[PMID: 22524801]
[401]
Zheng J, Shao Y, Jiang Y, et al. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. Cancer Manag Res 2019; 11: 5231-42.
[http://dx.doi.org/10.2147/CMAR.S200974] [PMID: 31239776]
[402]
Chang HS, Bae SM, Kim YW, et al. Comparison of diarsenic oxide and tetraarsenic oxide on anticancer effects: Relation to the apoptosis molecular pathway. Int J Oncol 2007; 30(5): 1129-35.
[http://dx.doi.org/10.3892/ijo.30.5.1129] [PMID: 17390014]
[403]
Park SG, Jung JJ, Won HJ, et al. Tetra-arsenic oxide (Tetras) enhances radiation sensitivity of solid tumors by anti-vascular effect. Cancer Lett 2009; 277(2): 212-7.
[http://dx.doi.org/10.1016/j.canlet.2008.12.012] [PMID: 19155124]
[404]
Cai Q, Lin J, Wei L, et al. Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway. Int J Mol Sci 2012; 13(5): 6117-28.
[http://dx.doi.org/10.3390/ijms13056117] [PMID: 22754353]
[405]
Chen R, He J, Tong X, Tang L, Liu M. The Hedyotis diffusa Willd.(Rubiaceae): A review on phytochemistry, pharmacology, quality control and pharmacokinetics. Molecules 2016; 21(6): 710.
[http://dx.doi.org/10.3390/molecules21060710] [PMID: 27248992]
[406]
Chen Y, Lin Y, Li Y, Li C. Total flavonoids of Hedyotis diffusa Willd inhibit inflammatory responses in LPS-activated macrophages via suppression of the NF-κB and MAPK signaling pathways. Exp Ther Med 2016; 11(3): 1116-22.
[http://dx.doi.org/10.3892/etm.2015.2963] [PMID: 26998046]
[407]
Gao X, Li C, Tang Y-L, Zhang H, Chan S-W. Effect of Hedyotis diffusa water extract on protecting human hepatocyte cells (LO2) from H2O2-induced cytotoxicity. Pharm Biol 2016; 54(7): 1148-55.
[PMID: 26095111]
[408]
Behl T, Kotwani A. Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 2017; 69(3): 223-35.
[http://dx.doi.org/10.1111/jphp.12683] [PMID: 28124440]
[409]
Gong Y, Li Y, Lu Y, et al. Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer 2011; 129(5): 1042-52.
[http://dx.doi.org/10.1002/ijc.25678] [PMID: 20848589]
[410]
Liu B, Du Y. Danshen (Salvia miltiorrhiza) compounds improve the biochemical indices of the patients with coronary heart disease. Evid Based Complementary Altern Med 2016.
[411]
Lee H, Lee HJ, Bae IJ, Kim JJ, Kim SH. Inhibition of STAT3/VEGF/CDK2 axis signaling is critically involved in the antiangiogenic and apoptotic effects of arsenic herbal mixture PROS in non-small lung cancer cells. Oncotarget 2017; 8(60): 101771-83.
[http://dx.doi.org/10.18632/oncotarget.21973] [PMID: 29254203]
[412]
Zhang J, Li L, Kim SH, Hagerman AE, Lü J. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res 2009; 26(9): 2066-80.
[http://dx.doi.org/10.1007/s11095-009-9932-0] [PMID: 19575286]
[413]
Hu H, Lee HJ, Jiang C, et al. Penta-1,2,3,4,6- O -galloyl-β- d -glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol Cancer Ther 2008; 7(9): 2681-91.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0456] [PMID: 18790750]
[414]
Lee HJ, Seo NJ, Jeong SJ, et al. Oral administration of penta-O-galloyl- -D-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 2011; 32(6): 804-11.
[http://dx.doi.org/10.1093/carcin/bgr015] [PMID: 21289371]
[415]
Carbone M, Irace C, Costagliola F, et al. A new cytotoxic tambjamine alkaloid from the Azorean nudibranch Tambja ceutae. Bioorg Med Chem Lett 2010; 20(8): 2668-70.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.020] [PMID: 20227875]
[416]
Martínez-García D, Pérez-Hernández M, Korrodi-Gregório L, et al. The natural-based antitumor compound T21 decreases survivin levels through potent STAT3 inhibition in lung cancer models. Biomolecules 2019; 9(8): 361.
[http://dx.doi.org/10.3390/biom9080361] [PMID: 31412593]
[417]
Pouyfung P, Choonate S, Wongnoppavich A, Rongnoparut P, Chairatvit K. Anti-proliferative effect of 8α--tigloyloxyhirsutinolide-13-O-acetate (8αTGH) isolated from Vernonia cinerea on oral squamous cell carcinoma through inhibition of STAT3 and STAT2 phosphorylation. Phytomedicine 2019; 52: 238-46.
[http://dx.doi.org/10.1016/j.phymed.2018.09.211] [PMID: 30599904]
[418]
Wang L, Liu X, Chen R. inventors; Natrogen Therapeutics Inc, assignee. Derivative of isoindigo, indigo and indirubin for the treatment of cancer. United States patent US 6,566,341, 2003 May 20;
[419]
Tegethoff J, Bischoff R, Saleh S, Blagojevic B, Merz KH, Cheng X. Methylisoindigo and its bromo-derivatives are selective tyrosine kinase inhibitors, repressing cellular stat3 activity, and target CD133+ cancer stem cells in PDAC. Molecules 2017; 22(9): 1546.
[http://dx.doi.org/10.3390/molecules22091546] [PMID: 32961646]
[420]
Dou YX, Zhou JT, Wang TT, et al. Self-nanoemulsfiying drug delivery system of bruceine D: A new approach for anti-ulcerative colitis. Int J Nanomedicine 2018; 13: 5887-907.
[http://dx.doi.org/10.2147/IJN.S174146] [PMID: 30319255]
[421]
Yang Y, Kong F, Ding Q, Cai Y, Hao Y, Tang B. Bruceine D elevates Nrf2 activation to restrain Parkinson’s disease in mice through suppressing oxidative stress and inflammatory response. Biochem Biophys Res Commun 2020; 526(4): 1013-20.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.097] [PMID: 32321640]
[422]
Zhang R, Gilbert S, Yao X, et al. Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses. Pharmacol Res Perspect 2015; 3(2): e00118.
[http://dx.doi.org/10.1002/prp2.118] [PMID: 26038694]
[423]
Zhao Z, Jia Q, Wu MS, et al. Degalactotigonin, a natural compound from Solanum nigrum L., inhibits growth and metastasis of osteosarcoma through GSK3β inactivation–mediated repression of the hedgehog/gli1 pathway. Clin Cancer Res 2018; 24(1): 130-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0692] [PMID: 28951519]
[424]
Wang S, Hu H, Zhong B, et al. Bruceine D inhibits tumor growth and stem cell-like traits of osteosarcoma through inhibition of STAT3 signaling pathway. Cancer Med 2019; 8(17): 7345-58.
[http://dx.doi.org/10.1002/cam4.2612] [PMID: 31631559]
[425]
Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA. Phytochemistry, traditional use and pharmacological activity of Picrasma quassioides: A critical reviews. Nutrients 2020; 12(9): 2584.
[http://dx.doi.org/10.3390/nu12092584] [PMID: 32858812]
[426]
De Sousa Falcão H, Leite J, Barbosa-Filho J, et al. Gastric and duodenal antiulcer activity of alkaloids: A review. Molecules 2008; 13(12): 3198-223.
[http://dx.doi.org/10.3390/molecules13123198] [PMID: 19104486]
[427]
Houël E, Bertani S, Bourdy G, et al. Quassinoid constituents of Quassia amara L. leaf herbal tea. Impact on its antimalarial activity and cytotoxicity. J Ethnopharmacol 2009; 126(1): 114-8.
[http://dx.doi.org/10.1016/j.jep.2009.07.037] [PMID: 19665539]
[428]
Houël E, Stien D, Bourdy G, Deharo E. Quassinoids: anticancer and antimalarial activities natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes berlin. heidelberg: Springer Berlin Heidelberg 2013; pp. 3775-802.
[429]
Yamashita N, Kondo M, Zhao S, et al. Picrasidine G decreases viability of MDA-MB 468 EGFR-overexpressing triple-negative breast cancer cells through inhibition of EGFR/STAT3 signaling pathway. Bioorg Med Chem Lett 2017; 27(11): 2608-12.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.061] [PMID: 28427809]
[430]
Díaz J, Carmona A, Torres F, Quintana J, Estévez F, Herz W. Cytotoxic activities of flavonoid glycoside acetates from Consolida oliveriana. Planta Med 2008; 74(2): 171-4.
[http://dx.doi.org/10.1055/s-2008-1034278] [PMID: 18214815]
[431]
He W, Sun H, Yang B, Zhang D, Kabelitz D. Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung 1995; 45(8): 910-3.
[PMID: 7575760]
[432]
Hung AC, Lo S, Hou MF, et al. Extracellular visfatin-promoted malignant behavior in breast cancer is mediated through c-Abl and STAT3 activation. Clin Cancer Res 2016; 22(17): 4478-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2704] [PMID: 27036136]
[433]
Pan Y, Kong LD, Li YC, Xia X, Kung HF, Jiang FX. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav 2007; 87(1): 130-40.
[http://dx.doi.org/10.1016/j.pbb.2007.04.009] [PMID: 17509675]
[434]
Gu ZF, Zhang ZT, Wang JY, Xu BB. Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ Toxicol Pharmacol 2017; 54: 7-13.
[http://dx.doi.org/10.1016/j.etap.2017.06.004] [PMID: 28667862]
[435]
Banerjee T, Van der Vliet A, Ziboh VA. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot Essent Fatty Acids 2002; 66(5-6): 485-92.
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[436]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750]
[437]
Hsin CH, Wu BC, Chuang CY, et al. Selaginella tamariscina extract suppresses TPA-induced invasion and metastasis through inhibition of MMP-9 in human nasopharyngeal carcinoma HONE-1 cells. BMC Complement Altern Med 2013; 13(1): 234.
[http://dx.doi.org/10.1186/1472-6882-13-234] [PMID: 24053256]
[438]
Jung HJ, Sung WS, Yeo SH, et al. Antifungal effect of amentoflavone derived fromSelaginella tamariscina. Arch Pharm Res 2006; 29(9): 746-51.
[http://dx.doi.org/10.1007/BF02974074] [PMID: 17024847]
[439]
Phi-Hung N, Bing-Tian Z, Yousof AM, et al. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J Nat Prod 2015; 78(1): 34-42.
[440]
Wu KJ, Huang JM, Zhong HJ, et al. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS One 2017; 12(6): e0177123.
[http://dx.doi.org/10.1371/journal.pone.0177123] [PMID: 28570563]
[441]
Fok TF. Neonatal jaundice--traditional Chinese medicine approach. J Perinatol 2001; 21(S1) (Suppl. 1): S98-S100.
[http://dx.doi.org/10.1038/sj.jp.7210643] [PMID: 11803427]
[442]
Huang W, Zhang J, Moore DD. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J Clin Invest 2004; 113(1): 137-43.
[http://dx.doi.org/10.1172/JCI200418385] [PMID: 14702117]
[443]
Huang HC, Weng YI, Lee CR, Jan TR, Chen YL, Lee YT. Protection by scoparone against the alterations of plasma lipoproteins, vascular morphology and vascular reactivity in hyperlipidaemic diabetic rabbit. Br J Pharmacol 1993; 110(4): 1508-14.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13993.x] [PMID: 8306094]
[444]
Huei-Chen H, Shu-Hsun C, Chao P-DL. Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties. Eur J Pharmacol 1991; 198(2-3): 211-3.
[http://dx.doi.org/10.1016/0014-2999(91)90624-Y] [PMID: 1830846]
[445]
Jang SI, Kim YJ, Kim HJ, et al. Scoparone inhibits PMA-induced IL-8 and MCP-1 production through suppression of NF-κB activation in U937 cells. Life Sci 2006; 78(25): 2937-43.
[http://dx.doi.org/10.1016/j.lfs.2005.11.020] [PMID: 16376386]
[446]
Lee YM, Hsiao G, Chang JW, Sheu JR, Yen MH. Scoparone inhibits tissue factor expression in lipopolysaccharide-activated human umbilical vein endothelial cells. J Biomed Sci 2003; 10(5): 518-25.
[http://dx.doi.org/10.1007/BF02256113] [PMID: 12928592]
[447]
Kim JK, Kim JY, Kim HJ, et al. Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity. PLoS One 2013; 8(11): e80391.
[http://dx.doi.org/10.1371/journal.pone.0080391] [PMID: 24260381]
[448]
Noori S, Rezaei Tavirani M, Deravi N, Mahboobi Rabbani MI, Zarghi A. Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the STAT3 signaling pathway. Iran J Pharm Res 2020; 19(3): 122-33.
[PMID: 33680016]
[449]
Afshari H, Nourbakhsh M, Salehi N, Mahboubi-Rabbani M, Zarghi A, Noori S. STAT3-mediated apoptotic-enhancing function of sclareol against breast cancer cells and cell sensitization to cyclophosphamide. Iran J Pharm Res 2020; 19(1): 398-412.
[PMID: 32922496]
[450]
Sonoki H, Tanimae A, Endo S, et al. Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients 2017; 9(6): 597.
[http://dx.doi.org/10.3390/nu9060597] [PMID: 28608828]
[451]
Lirdprapamongkol K, Sakurai H, Abdelhamed S, et al. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol Rep 2013; 30(5): 2357-64.
[http://dx.doi.org/10.3892/or.2013.2667] [PMID: 23969634]
[452]
Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. In: Oxygen transport to tissue XLI 2020; 131-43.
[453]
Moghadam ER, Ang HL, Asnaf SE, et al. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives. Biomolecules 2020; 10(10): 1374.
[http://dx.doi.org/10.3390/biom10101374] [PMID: 32992587]
[454]
Xu Y, Tong Y, Ying J, et al. Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett 2018; 15(6): 9117-25.
[http://dx.doi.org/10.3892/ol.2018.8522] [PMID: 29805643]
[455]
Lee SJ, Yoon JH, Song KS. Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells. Biochem Pharmacol 2007; 74(2): 215-25.
[http://dx.doi.org/10.1016/j.bcp.2007.04.011] [PMID: 17493588]
[456]
Lin CM, Shyu KG, Wang BW, Chang H, Chen YH, Chiu JH. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: An in vitro and in ovo approach. J Agric Food Chem 2010; 58(11): 7082-7.
[http://dx.doi.org/10.1021/jf100421w] [PMID: 20443595]
[457]
Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16(5): 448-57.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[458]
Kruyt FAE. TRAIL and cancer therapy. Cancer Lett 2008; 263(1): 14-25.
[http://dx.doi.org/10.1016/j.canlet.2008.02.003] [PMID: 18329793]
[459]
Wang S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 2008; 27(48): 6207-15.
[http://dx.doi.org/10.1038/onc.2008.298] [PMID: 18931688]
[460]
Mahalingam D, Szegezdi E, Keane M, Jong S, Samali A. TRAIL receptor signalling and modulation: Are we on the right TRAIL? Cancer Treat Rev 2009; 35(3): 280-8.
[http://dx.doi.org/10.1016/j.ctrv.2008.11.006] [PMID: 19117685]
[461]
Ishibashi M, Ohtsuki T. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med Res Rev 2008; 28(5): 688-714.
[http://dx.doi.org/10.1002/med.20123] [PMID: 18273883]
[462]
Lirdprapamongkol K, Sakurai H, Abdelhamed S, et al. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol 2013; 43(1): 329-37.
[http://dx.doi.org/10.3892/ijo.2013.1926] [PMID: 23636231]
[463]
Meng XW, Lee SH, Dai H, et al. Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: A mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 2007; 282(41): 29831-46.
[http://dx.doi.org/10.1074/jbc.M706110200] [PMID: 17698840]
[464]
Fang Y, DeMarco VG, Nicholl MB. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci 2012; 103(6): 1090-8.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02272.x] [PMID: 22417066]
[465]
Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci 2011; 1215(1): 161-9.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05853.x] [PMID: 21261655]
[466]
Li H, Cai M, Cao F, et al. S3I-201 derivative incorporating naphthoquinone unit as effective STAT3 inhibitors: Design, synthesis and anti-gastric cancer evaluation. Bioorg Med Chem 2022; 71: 116941.
[http://dx.doi.org/10.1016/j.bmc.2022.116941] [PMID: 35944386]
[467]
Zhao C, Li H, Lin HJ, Yang S, Lin J, Liang G. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol Sci 2016; 37(1): 47-61.
[http://dx.doi.org/10.1016/j.tips.2015.10.001] [PMID: 26576830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy