Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

REST-restrained lncRNA EPB41L4A-AS2 Modulates Laryngeal Squamous Cell Carcinoma Development via Regulating miR-1254/HIPK2 Pathway

Author(s): Huijun Yang*, Gang Yu, Yan Wang and Xing Guo

Volume 24, Issue 9, 2023

Published on: 12 September, 2023

Page: [737 - 757] Pages: 21

DOI: 10.2174/1389203724666230803094028

Price: $65

Abstract

Background: LncRNAs have been corroborated to exert crucial effects in malignancies, including laryngeal squamous cell carcinoma (LSCC). Nevertheless, the role and mechanism of EPB41L4A- AS2 in LSCC are inadequately investigated and warrant further exploration.

Methods: Relevant database was adopted to analyze the relationship between EPB41L4A-AS2 expression level and tumors. The expressions and relationships of EPB41L4A-AS2, RE-1 silencing transcription factor (REST), miR-1254, and homeodomain interacting protein kinase 2 (HIPK2) in LSCC cells were evaluated by qRT-PCR, Pearson’s correlation tests, RNA immunoprecipitation, RNA pull-down assay, chromatin immunoprecipitation, database, and dual-luciferase reporter assay. Following the required transfection, the biological behaviors of LSCC cells were examined using cell function experiments. Meanwhile, the levels of Ki-67 and apoptosis-, and epithelial-mesenchymal transition (EMT) pathway-related proteins were quantified with Western blot. Moreover, xenografts in nude mice were constructed, and the tumor volume and weight were measured. Ki-67 positivity was determined by immunohistochemical staining.

Results: EPB41L4A-AS2 and HIPK2 were lower-expressed, yet miR-1254 and REST were higher- expressed in LSCC cells. Pearson’s correlation assay results exhibited a positive correlation between HIPK2 and EPB41L4A-AS2 and a negative correlation between HIPK2 and miR-1254. Overexpressed EPB41L4A-AS2 diminished the biological behavior, and repressed the levels of Ki-67 and EMT-related markers in LSCC cells whilst enhancing those of apoptosis-related markers. These aforementioned effects were counteracted by miR-1254 mimic. Moreover, EPB41L4A- AS2 overexpression suppressed the growth of tumors and reduced the positive expression of Ki-67 in nude mice. Besides, miR-1254 aggravated the biological behaviors and elevated the levels of Ki-67 and EMT-related proteins in LSCC cells while reducing the levels of apoptosis-related markers via targeting HIPK2.

Conclusion: REST-restrained EPB41L4A-AS2 modulates LSCC development via regulating miR-1254/HIPK2 pathway.

Graphical Abstract

[1]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M.J. Cancer Statistics, 2008. CA Cancer J. Clin., 2008, 58(2), 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Praud, D.; Rota, M.; Rehm, J.; Shield, K.; Zatoński, W.; Hashibe, M.; La Vecchia, C.; Boffetta, P. Cancer incidence and mortality attributable to alcohol consumption. Int. J. Cancer, 2016, 138(6), 1380-1387.
[http://dx.doi.org/10.1002/ijc.29890] [PMID: 26455822]
[4]
Menach, O.P.; Patel, A.; Oburra, H.O. Demography and histologic pattern of laryngeal squamous cell carcinoma in kenya. Int. J. Otolaryngol., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/507189] [PMID: 24672554]
[5]
Yang, D.; Shi, Y.; Tang, Y.; Yin, H.; Guo, Y.; Wen, S.; Wang, B.; An, C.; Wu, Y.; Gao, W. Effect of HPV infection on the occurrence and development of laryngeal cancer: A review. J. Cancer, 2019, 10(19), 4455-4462.
[http://dx.doi.org/10.7150/jca.34016] [PMID: 31528209]
[6]
Ang, K.K.; Zhang, Q.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Sherman, E.J.; Weber, R.S.; Galvin, J.M.; Bonner, J.A.; Harris, J.; El-Naggar, A.K.; Gillison, M.L.; Jordan, R.C.; Konski, A.A.; Thorstad, W.L.; Trotti, A.; Beitler, J.J.; Garden, A.S.; Spanos, W.J.; Yom, S.S.; Axelrod, R.S. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol., 2014, 32(27), 2940-2950.
[http://dx.doi.org/10.1200/JCO.2013.53.5633] [PMID: 25154822]
[7]
Steuer, C.E.; El-Deiry, M.; Parks, J.R.; Higgins, K.A.; Saba, N.F. An update on larynx cancer. CA Cancer J. Clin., 2017, 67(1), 31-50.
[http://dx.doi.org/10.3322/caac.21386] [PMID: 27898173]
[8]
Palumbo, A., Jr; De Martino, M.; Esposito, F.; Fraggetta, F.; Neto, P.N.; Valverde Fernandes, P.; Santos, I.C.; Dias, F.L.; Nasciutti, L.E.; Meireles Da Costa, N.; Fusco, A.; Ribeiro Pinto, L.F. HMGA2, but not HMGA1, is overexpressed in human larynx carcinomas. Histopathology, 2018, 72(7), 1102-1114.
[http://dx.doi.org/10.1111/his.13456] [PMID: 29266325]
[9]
Lavorgna, G.; Vago, R.; Sarmini, M.; Montorsi, F.; Salonia, A.; Bellone, M. Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacol. Res., 2016, 110, 131-138.
[http://dx.doi.org/10.1016/j.phrs.2016.05.018] [PMID: 27210721]
[10]
Kornienko, A.E.; Guenzl, P.M.; Barlow, D.P.; Pauler, F.M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol., 2013, 11(1), 59.
[http://dx.doi.org/10.1186/1741-7007-11-59] [PMID: 23721193]
[11]
Arriaga-Canon, C.; Fonseca-Guzmán, Y.; Valdes-Quezada, C.; Arzate-Mejía, R.; Guerrero, G.; Recillas-Targa, F. A long non-coding RNA promotes full activation of adult gene expression in the chicken α-globin domain. Epigenetics, 2014, 9(1), 173-181.
[http://dx.doi.org/10.4161/epi.27030] [PMID: 24196393]
[12]
Peter, S.; Borkowska, E.; Drayton, R.M.; Rakhit, C.P.; Noon, A.; Chen, W.; Catto, J.W.F. Identification of differentially expressed long noncoding RNAs in bladder cancer. Clin. Cancer Res., 2014, 20(20), 5311-5321.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0706] [PMID: 25165097]
[13]
Filippov-Levy, N.; Cohen-Schussheim, H.; Tropé, C.G.; Hetland Falkenthal, T.E.; Smith, Y.; Davidson, B.; Reich, R. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol. Oncol., 2018, 148(3), 559-566.
[http://dx.doi.org/10.1016/j.ygyno.2018.01.004] [PMID: 29310950]
[14]
Li, X.; Xu, F.; Meng, Q.; Gong, N.; Teng, Z.; Xu, R.; Zhao, M.; Xia, M. Long noncoding RNA DLEU2 predicts a poor prognosis and enhances malignant properties in laryngeal squamous cell carcinoma through the miR-30c-5p/PIK3CD/Akt axis. Cell Death Dis., 2020, 11(6), 472.
[http://dx.doi.org/10.1038/s41419-020-2581-2] [PMID: 32555190]
[15]
Shu, J.; Li, S.; Chen, Y.B.; Zhu, Q.F.; Yu, X.H. Long non-coding RNA EPB41L4A-AS2 inhibited non-small cell lung cancer proliferation and invasion and promoted cell apoptosis. Neoplasma, 2018, 65(5), 664-672.
[http://dx.doi.org/10.4149/neo_2018_170713N480] [PMID: 30249102]
[16]
Zhou, R.S.; Zhang, E.X.; Sun, Q.F.; Ye, Z.J.; Liu, J.W.; Zhou, D.H.; Tang, Y. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer, 2019, 19(1), 779.
[http://dx.doi.org/10.1186/s12885-019-5983-8] [PMID: 31391008]
[17]
Pichler, M.; Calin, G.A. MicroRNAs in cancer: From developmental genes in worms to their clinical application in patients. Br. J. Cancer, 2015, 113(4), 569-573.
[http://dx.doi.org/10.1038/bjc.2015.253] [PMID: 26158421]
[18]
Xu, S.; Guo, J.; Zhang, W. lncRNA PCAT19 promotes the proliferation of laryngocarcinoma cells via modulation of the miR-182/PDK4 axis. J. Cell. Biochem., 2019, 120(8), 12810-12821.
[http://dx.doi.org/10.1002/jcb.28552] [PMID: 30868666]
[19]
Sun, T.; Yang, P.; Gao, Y. Long non-coding RNA EPB41L4A-AS2 suppresses progression of ovarian cancer by sequestering microRNA-103a to upregulate transcription factor RUNX1T1. Exp. Physiol., 2020, 105(1), 75-87.
[http://dx.doi.org/10.1113/EP087847] [PMID: 31645082]
[20]
Feng, Y.; Zhang, L.; Wu, J.; Khadka, B.; Fang, Z.; Gu, J.; Tang, B.; Xiao, R.; Pan, G.; Liu, J. CircRNA circ_0000190 inhibits the progression of multiple myeloma through modulating miR-767-5p/MAPK4 pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 54.
[http://dx.doi.org/10.1186/s13046-019-1071-9] [PMID: 30728056]
[21]
Zhou, P.; Zhang, X.; Guo, M.; Guo, R.; Wang, L.; Zhang, Z.; Lin, Z.; Dong, M.; Dai, H.; Ji, X.; Lu, H. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/β-catenin pathway. J. Cell. Mol. Med., 2019, 23(10), 7088-7098.
[http://dx.doi.org/10.1111/jcmm.14611] [PMID: 31423730]
[22]
Zhu, H.; Xia, L.; Zhang, Y.; Wang, H.; Xu, W.; Hu, H.; Wang, J.; Xin, J.; Gang, Y.; Sha, S.; Xu, B.; Fan, D.; Nie, Y.; Wu, K. Activating transcription factor 4 confers a multidrug resistance phenotype to gastric cancer cells through transactivation of SIRT1 expression. PLoS One, 2012, 7(2), e31431.
[http://dx.doi.org/10.1371/journal.pone.0031431] [PMID: 22363646]
[23]
Qiao, K.; Ning, S.; Wan, L.; Wu, H.; Wang, Q.; Zhang, X.; Xu, S.; Pang, D. LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 418.
[http://dx.doi.org/10.1186/s13046-019-1421-7] [PMID: 31623640]
[24]
Xu, S.; Wang, P.; You, Z.; Meng, H.; Mu, G.; Bai, X.; Zhang, G.; Zhang, J.; Pang, D. The long non-coding RNA EPB41L4A-AS2 inhibits tumor proliferation and is associated with favorable prognoses in breast cancer and other solid tumors. Oncotarget, 2016, 7(15), 20704-20717.
[http://dx.doi.org/10.18632/oncotarget.8007] [PMID: 26980733]
[25]
Wang, Y.G.; Wang, T.; Shi, M.; Zhai, B. Long noncoding RNA EPB41L4A-AS2 inhibits hepatocellular carcinoma development by sponging miR-301a-5p and targeting FOXL1. J. Exp. Clin. Cancer Res., 2019, 38(1), 153.
[http://dx.doi.org/10.1186/s13046-019-1128-9] [PMID: 30971290]
[26]
Du, M.; Hu, X.; Jiang, X.; Yin, L.; Chen, J.; Wen, J.; Fan, Y.; Peng, F.; Qian, L.; Wu, J.; He, X. LncRNA EPB41L4A-AS2 represses nasopharyngeal carcinoma metastasis by binding to YBX1 in the nucleus and sponging MiR-107 in the cytoplasm. Int. J. Biol. Sci., 2021, 17(8), 1963-1978.
[http://dx.doi.org/10.7150/ijbs.55557] [PMID: 34131399]
[27]
Huang, T.; Huang, W.; Lu, H.; Zhang, B.; Ma, J.; Zhao, D.; Wang, Y.; Yu, D.; He, X. Identification and validation a TGF-β-associated long non-coding RNA of head and neck squamous cell carcinoma by bioinformatics method. J. Transl. Med., 2018, 16(1), 46.
[http://dx.doi.org/10.1186/s12967-018-1418-6] [PMID: 29490660]
[28]
Luan, Y.; Xie, B.; Wei, W. REST-repressed lncRNA NPPA-AS1 regulates cervical cancer progression by modulating miR-302e/DKK1/Wnt/β-catenin signaling pathway. J. Cell. Biochem., 2021, 122(1), 16-28.
[http://dx.doi.org/10.1002/jcb.29701] [PMID: 32965043]
[29]
Fuller, G.N.; Su, X.; Price, R.E.; Cohen, Z.R.; Lang, F.F.; Sawaya, R.; Majumder, S. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol. Cancer Ther., 2005, 4(3), 343-349.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0228] [PMID: 15767543]
[30]
Reddy, B.Y.; Greco, S.J.; Patel, P.S.; Trzaska, K.A.; Rameshwar, P. RE-1–silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4408-4413.
[http://dx.doi.org/10.1073/pnas.0809130106] [PMID: 19246391]
[31]
Carminati, E.; Buffolo, F.; Rocchi, A.; Michetti, C.; Cesca, F.; Benfenati, F. Mild inactivation of RE-1 silencing transcription factor (REST) reduces susceptibility to kainic acid-induced seizures. Front. Cell. Neurosci., 2020, 13, 580.
[http://dx.doi.org/10.3389/fncel.2019.00580] [PMID: 31998079]
[32]
González-Mundo, I.; Pérez-Vielma, N.M.; Gómez-López, M.; Fleury, A.; Correa-Basurto, J.; Rosales-Hernández, M.C.; Sixto-López, Y.; Martínez-Godinez, M.Á.; Domínguez-López, A.; Miliar-García, A. DNA methylation of the RE-1 silencing transcription factor in peripheral blood mononuclear cells and gene expression of antioxidant enzyme in patients with late-onset Alzheimer disease. Exp. Gerontol., 2020, 136, 110951.
[http://dx.doi.org/10.1016/j.exger.2020.110951] [PMID: 32305596]
[33]
Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494.
[http://dx.doi.org/10.1038/ncb2976] [PMID: 24875735]
[34]
Tiwari, N.; Gheldof, A.; Tatari, M.; Christofori, G. EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol., 2012, 22(3), 194-207.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.013] [PMID: 22406545]
[35]
Lin, S.X.; Jiang, H.; Xiang, G.Z.; Zhang, W.R.; Weng, Y.H.; Qiu, F.D.; Wu, J.; Wang, H.G. Up-regulation of long non-coding RNA SNHG1 contributes to proliferation and metastasis in laryngeal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1333-1341.
[http://dx.doi.org/10.26355/eurrev_201803_14475] [PMID: 29565491]
[36]
Choudhary, G.S.; Al-harbi, S.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2015, 1219, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-1661-0_1] [PMID: 25308257]
[37]
Farhadi, F.; Jahanpour, S.; Hazem, K.; Aghbali, A.; Baradran, B.; Vahid Pakdel, S.M. Garlic (Allium sativum) fresh juice induces apoptosis in human oral squamous cell carcinoma: The involvement of caspase-3, Bax and Bcl-2. J. Dent. Res. Dent. Clin. Dent. Prospect., 2015, 9(4), 267-273.
[http://dx.doi.org/10.15171/joddd.2015.047] [PMID: 26889365]
[38]
Zhang, J.; Wang, Q.; Quan, Z. Long non-coding RNA CASC9 enhances breast cancer progression by promoting metastasis through the meditation of miR-215/TWIST2 signaling associated with TGF-β expression. Biochem. Biophys. Res. Commun., 2019, 515(4), 644-650.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.080] [PMID: 31178137]
[39]
Xu, Z.; Xi, K. LncRNA RGMB-AS1 promotes laryngeal squamous cell carcinoma cells progression via sponging miR-22/NLRP3 axis. Biomed. Pharmacother., 2019, 118, 109222.
[http://dx.doi.org/10.1016/j.biopha.2019.109222] [PMID: 31351424]
[40]
Hongfeng, Z.; Andong, J.; Liwen, S.; Mingping, B.; Xiaowei, Y.; Mingyong, L.; Aimin, Y. lncRNA RMRP knockdown suppress hepatocellular carcinoma biological activities via regulation miRNA-206/TACR1. J. Cell. Biochem., 2020, 121(2), 1690-1702.
[http://dx.doi.org/10.1002/jcb.29404] [PMID: 31579977]
[41]
Jiang, M.; Shi, L.; Yang, C.; Ge, Y.; Lin, L.; Fan, H.; He, Y.; Zhang, D.; Miao, Y.; Yang, L. miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer. Cell Death Dis., 2019, 10(1), 32.
[http://dx.doi.org/10.1038/s41419-018-1262-x] [PMID: 30631050]
[42]
Li, H.; Yang, T.; Shang, D.; Sun, Z. miR-1254 promotes lung cancer cell proliferation by targeting SFRP1. Biomed. Pharmacother., 2017, 92, 913-918.
[http://dx.doi.org/10.1016/j.biopha.2017.05.116] [PMID: 28605875]
[43]
Kloosterman, W.P.; Plasterk, R.H.A. The diverse functions of microRNAs in animal development and disease. Dev. Cell, 2006, 11(4), 441-450.
[http://dx.doi.org/10.1016/j.devcel.2006.09.009] [PMID: 17011485]
[44]
Sun, V.; Zhou, W.B.; Majid, S.; Kashani-Sabet, M.; Dar, A.A. MicroRNA-mediated regulation of melanoma. Br. J. Dermatol., 2014, 171(2), 234-241.
[http://dx.doi.org/10.1111/bjd.12989] [PMID: 24665835]
[45]
D’Orazi, G.; Rinaldo, C.; Soddu, S. Updates on HIPK2: A resourceful oncosuppressor for clearing cancer. J. Exp. Clin. Cancer Res., 2012, 31(1), 63.
[http://dx.doi.org/10.1186/1756-9966-31-63] [PMID: 22889244]
[46]
Lavra, L.; Rinaldo, C.; Ulivieri, A.; Luciani, E.; Fidanza, P.; Giacomelli, L.; Bellotti, C.; Ricci, A.; Trovato, M.; Soddu, S.; Bartolazzi, A.; Sciacchitano, S. The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS One, 2011, 6(6), e20665.
[http://dx.doi.org/10.1371/journal.pone.0020665] [PMID: 21698151]
[47]
Tan, M.; Gong, H.; Zeng, Y.; Tao, L.; Wang, J.; Jiang, J.; Xu, D.; Bao, E.; Qiu, J.; Liu, Z. Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling. J. Cell. Biochem., 2014, 115(10), 1762-1767.
[http://dx.doi.org/10.1002/jcb.24842] [PMID: 24824041]
[48]
Zhou, L.; Feng, Y.; Jin, Y.; Liu, X.; Sui, H.; Chai, N.; Chen, X.; Liu, N.; Ji, Q.; Wang, Y.; Li, Q. Verbascoside promotes apoptosis by regulating HIPK2–p53 signaling in human colorectal cancer. BMC Cancer, 2014, 14(1), 747.
[http://dx.doi.org/10.1186/1471-2407-14-747] [PMID: 25282590]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy